Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Modified Release of Acetaminophen from Matrix Tablet Formulations: Influence of Tablet Geometry

Author(s): Angeliki Siamidi, Anna Konstantinou, Panagoula Pavlou, Ioannis Siamidis and Marilena Vlachou*

Volume 21, Issue 3, 2024

Published on: 11 November, 2022

Page: [568 - 574] Pages: 7

DOI: 10.2174/1570180820666221017162352

Price: $65

Abstract

Background: Acetaminophen (APAP) or paracetamol is a widely used over-the-counter, analgesic (common conditions treated include headaches, backache, toothache, muscle aches, arthritis, sore throat etc.) and antipyretic drug. It can be administered orally, in the form of a tablet (plain, effervescent, orodispersable, etc.) or liquid, rectally in the form of a suppository or by injection (intravenously or intramuscularly). It is well absorbed orally with a plasma elimination half-life ranging from 1 to 4 h. The modified release oral formulation can prolong its therapeutic effects by maintaining APAP average plasma concentrations.

Objective: In the context of this work, two APAP formulation tablets with different geometries were produced from standard pharmaceutical excipients to investigate the role of altered tablet geometry in modified oral drug delivery.

Methods: APAP tablets were prepared by direct compression, using hydroxypropyl methylcellulose (HPMC K15M), polyvinylpyrrolidone (PVP, MW: 55,000) and magnesium stearate, as ingredients. The release profiles were probed in aqueous dissolution media (pH 1.2 and 6.8) to simulate the conditions in the gastrointestinal tract in a United States Pharmacopeia (USP) dissolution paddle apparatus II and analyzed using an ultraviolet (UV) spectrophotometer (λmax = 244 nm).

Results: The results indicated that the tablets were within the acceptable range of all evaluation parameters (tablet dimensions, drug content, weight variation, and breaking force) as defined by the international standards stated in the US Pharmacopoeia. The dissolution results showed that the APAP’s release profile was controlled by the tablets’ different geometries and, specifically the surface area (SA) and the surface area/volume (SA/V) ratio of the different tablets. The tablets with smaller SA/V ratios and SA showed slower drug release, indicative of a modified release motif.

Conclusion: Altered tablet geometry plays an important role in APAP-modified oral drug delivery.

Keywords: Acetaminophen matrix, tablets geometry, modified release, surface area, volume ratio.

Graphical Abstract
[1]
Whalen, K.; Finkel, R.; Panavelil, T.A. Pharmacology. Lippincott; 6th ed, 2015.
[2]
Hilal-Dandan, R.; Brunton, L.L. Goodman and Gilman’s Manual of Pharmacology and Therapeutics, 2nd ed; McGraw-Hill, 2014.
[3]
Kawashima, Y.; Takeuchi, H.; Hino, T.; Niwa, T.; Lin, T.L.; Sekigawa, F.; Ohya, M. Preparation of prolonged-release matrix tablet of acetaminophen with pulverized low-substituted hydroxypropylcellulose via wet granulation. Int. J. Pharm., 1993, 99(2-3), 229-238.
[http://dx.doi.org/10.1016/0378-5173(93)90365-M]
[4]
Hernandez, J.I.; Ghal, E.S.; Malave, A.; Marti, A. Controlled-release matrix of acetaminophen–ethylcellulose solid dispersion. Drug Dev. Ind. Pharm., 1994, 20(7), 1253-1265.
[http://dx.doi.org/10.3109/03639049409038365]
[5]
Hossain, M.; Ayres, J.W. Pharmacokinetics and pharmacodynamics in the design of controlled‐release beads with acetaminophen as model drug. J. Pharm. Sci., 1992, 81(5), 444-448.
[http://dx.doi.org/10.1002/jps.2600810511] [PMID: 1403677]
[6]
Bacon, T.H.; Hole, J.G.; North, M.; Burnett, I. Analgesic efficacy of sustained release paracetamol in patients with osteoarthritis of the knee. Br. J. Clin. Pharmacol., 2002, 53(6), 629-636.
[http://dx.doi.org/10.1046/j.1365-2125.2002.01603.x] [PMID: 12047487]
[7]
Ghosh, S.; Patel, J.; Patel, H.; Pandya, N.; Naik, S.; Patel, H. A novel paracetamol 1,000 mg sustained release formulation vs conventional paracetamol 500 mg formulation in patients with fever and pain: A randomized noninferiority trial. Pain Med., 2013, 14(3), 436-441.
[http://dx.doi.org/10.1111/pme.12047] [PMID: 23369038]
[8]
Zhang, S.; Wang, J. Sustained release formulations containing acetaminophen and tramadol. U.S. Patent 7,374,781 B2, 2008.
[9]
Khaled, S.A.; Alexander, M.R.; Irvine, D.J.; Wildman, R.D.; Wallace, M.J.; Sharpe, S.; Yoo, J.; Roberts, C.J. Extrusion 3D printing of paracetamol tablets from a single formulation with tunable release profiles through control of tablet geometry. AAPS PharmSciTech, 2018, 19(8), 3403-3413.
[http://dx.doi.org/10.1208/s12249-018-1107-z] [PMID: 30097806]
[10]
Goyanes, A.; Robles Martinez, P.; Buanz, A.; Basit, A.W.; Gaisford, S. Effect of geometry on drug release from 3D printed tablets. Int. J. Pharm., 2015, 494(2), 657-663.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.069] [PMID: 25934428]
[11]
Gökçe, E.H. Özyazıcı M.; Ertan, G. The effect of geometric shape on the release properties of metronidazole from lipid matrix tablets. J. Biomed. Nanotechnol., 2009, 5(4), 421-427.
[http://dx.doi.org/10.1166/jbn.2009.1052] [PMID: 20055089]
[12]
Siepmann, J.; Kranz, H.; Peppas, N.A.; Bodmeier, R. Calculation of the required size and shape of hydroxypropyl methylcellulose matrices to achieve desired drug release profiles. Int. J. Pharm., 2000, 201(2), 151-164.
[http://dx.doi.org/10.1016/S0378-5173(00)00390-2] [PMID: 10878322]
[13]
Vlachou, M.; Kikionis, S.; Siamidi, A.; Tragou, K.; Kapoti, S.; Ioannou, E.; Roussis, V.; Tsotinis, A. Fabrication and characterization of electrospun nanofibers for the modified release of the chronobiotic hormone melatonin. Curr. Drug Deliv., 2018, 16(1), 79-85.
[http://dx.doi.org/10.2174/1567201815666180914095701] [PMID: 30215335]
[14]
Khan, K.A. The concept of dissolution efficiency. J. Pharm. Pharmacol., 2011, 27(1), 48-49.
[http://dx.doi.org/10.1111/j.2042-7158.1975.tb09378.x] [PMID: 235616]
[15]
Podczeck, F. Comparison of in vitro dissolution profiles by calculating mean dissolution time (MDT) or mean residence time (MRT). Int. J. Pharm., 1993, 97(1-3), 93-100.
[http://dx.doi.org/10.1016/0378-5173(93)90129-4]
[16]
Hadjiioannou, T.P.; Christian, G.D.; Koupparis, M.A.; Macheras, P.E. Quantitative Calculations in Pharmaceutical Practice and Research; VCH Publishers Inc.: New York, 1993, pp. 345-348.
[17]
Banker, G.S.; Rhodes, C.T. Modern Pharmaceutics, 4th ed; Marcel Dekker: New York, 2022, pp. 67-92.
[18]
Higuchi, T. Mechanism of sustained‐action medication. Theoretical analysis of rate of release of solid drugs dispersed in solid matrices. J. Pharm. Sci., 1963, 52(12), 1145-1149.
[http://dx.doi.org/10.1002/jps.2600521210] [PMID: 14088963]
[19]
Ritger, P.L.; Peppas, N.A. A simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J. Control. Release, 1987, 5(1), 37-42.
[http://dx.doi.org/10.1016/0168-3659(87)90035-6]
[20]
Shah, V.P.; Tsong, Y.; Sathe, P.; Liu, J.P. In vitro dissolution profile comparison-statistics and analysis of the similarity factor, f2. Pharm. Res., 1998, 15(6), 889-896.
[http://dx.doi.org/10.1023/A:1011976615750] [PMID: 9647355]
[21]
Costa, P.; Sousa, Lobo J.M. Modeling and comparison of dissolution profiles. Eur. J. Pharm. Sci., 2001, 13(2), 123-133.
[http://dx.doi.org/10.1016/S0928-0987(01)00095-1] [PMID: 11297896]
[22]
Pharmacopoeia, U.S. USP 29-NF24; USP: Rockville, MD, 2005.
[23]
Rujivipat, S.; Bodmeier, R. Modified release from hydroxypropyl methylcellulose compression-coated tablets. Int. J. Pharm., 2010, 402(1-2), 72-77.
[http://dx.doi.org/10.1016/j.ijpharm.2010.09.021] [PMID: 20883759]
[24]
Ebube, N.K.; Jones, A.B. Sustained release of acetaminophen from a heterogeneous mixture of two hydrophilic non-ionic cellulose ether polymers. Int. J. Pharm., 2004, 272(1-2), 19-27.
[http://dx.doi.org/10.1016/j.ijpharm.2003.11.020] [PMID: 15019065]
[25]
Cao, Q.R.; Choi, Y.W.; Cui, J.H.; Lee, B.J. Formulation, release characteristics and bioavailability of novel monolithic hydroxypropylmethylcellulose matrix tablets containing acetaminophen. J. Control. Release, 2005, 108(2-3), 351-361.
[http://dx.doi.org/10.1016/j.jconrel.2005.08.004] [PMID: 16154656]
[26]
Ebube, N.K.; Hikal, A.H.; Wyandt, C.M.; Beer, D.C.; Miller, L.G.; Jones, A.B. Sustained release of acetaminophen from heterogeneous matrix tablets: influence of polymer ratio, polymer loading, and co-active on drug release. Pharm. Dev. Technol., 1997, 2(2), 161-170.
[http://dx.doi.org/10.3109/10837459709022621] [PMID: 9552442]
[27]
Yu, L.X.; Amidon, G.L.; Polli, J.E.; Zhao, H.; Mehta, M.U.; Conner, D.P.; Shah, V.P.; Lesko, L.J.; Chen, M.L.; Lee, V.H.L.; Hussain, A.S. Biopharmaceutics classification system: The scientific basis for biowaiver extensions. Pharm. Res., 2002, 19(7), 921-925.
[http://dx.doi.org/10.1023/A:1016473601633] [PMID: 12180542]
[28]
Raju, P.N.; Katakam, P.; Tadikonda, R.R.; Reddy, B.C.S.; Sreenivasuluand, V.; Narasu, M.L. Effect of tablet surface area and surface area/volume on drug release from lamivudine extended release matrix tablets. Int. J. Pharm. Sci. Nanotechnol., 2010, 3(1), 872-876.
[http://dx.doi.org/10.37285/ijpsn.2010.3.1.11]
[29]
Dalton, J.T.; Straughn, A.B.; Dickason, D.A.; Grandolfi, G.P. Predictive ability of level A in vitro-in vivo correlation for ringcap controlled-release acetaminophen tablets. Pharm. Res., 2001, 18(12), 1729-1734.
[http://dx.doi.org/10.1023/A:1013326714345] [PMID: 11785693]

© 2024 Bentham Science Publishers | Privacy Policy