Review Article

选择性雌激素受体调节剂在乳腺癌治疗中的有效性的更新

卷 30, 期 29, 2023

发表于: 18 November, 2022

页: [3287 - 3314] 页: 28

弟呕挨: 10.2174/0929867329666221006110528

价格: $65

conference banner
摘要

背景:乳腺癌被认为是全世界研究的第二大常见癌症亚型。它主要流行于绝经后妇女。雌激素受体 (ER) 是肿瘤存活和生长的主要转录因子。所有类别中大约 80% 的 BC 是 ER 阳性(ER)。强有力的证据表明,雌激素在外源性和内源性方面均参与了 BC 发病机制。它将 ER 抑制剂的概念引入了以不同机制治疗 BC 的焦点,并开发了 ER PROTAC(蛋白水解靶向嵌合体)、AI(芳香酶抑制剂)、SERM(选择性雌激素受体调节剂)和 SERD(选择性雌激素受体降解剂)。 30 多年来,三苯乙烯 SERM 的他莫昔芬一直是治疗 ER BC 患者的首选药物。尽管在他莫昔芬之后一些 SERM 获得了美国 FDA 的批准,但由于子宫内膜癌、潮热和 VTE(静脉血栓栓塞)等危险的副作用,并发症仍然存在。除此之外,耐药肿瘤对 ER BC 预防无副作用或副作用低的新型有效候选药物的需求激增。目标:本文探讨了 SERM 作为有效 BC 代理的可能性。 方法:对 SERM 的历史和最新进展进行了详细的文献调查,以 BC 为主要目标。本综述提供了有关 ER 结构、信号、药理作用、化学分类和 SAR 分析的信息,以及 SERM 作为潜在 BC 药物的益处和副作用。 结果:详尽的文献研究表明,对 ER 具有激动、拮抗或混合活性的 SERM 可有效抑制 BC 细胞增殖。 结论:每个化学类别的 SERM 都包含一些显着特征和潜力,可以进一步研究这些特征和潜力,以获得用于 BC 治疗的新型有效 SERM。

关键词: BC,ER,抑制剂,增殖,SAR,SERMs,他莫昔芬。

[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[2]
Wang, Y.; Lewin, N.; Qaoud, Y.; Rajaee, A.N.; Scheer, A.S. The oncologic impact of hormone replacement therapy in premenopausal breast cancer survivors: A systematic review. Breast, 2018, 40, 123-130.
[http://dx.doi.org/10.1016/j.breast.2018.05.002] [PMID: 29763858]
[3]
Haines, C.N.; Wardell, S.E.; McDonnell, D.P. Current and emerging estrogen receptor-targeted therapies for the treatment of breast cancer. Essays Biochem., 2021, 65(6), 985-1001.
[http://dx.doi.org/10.1042/EBC20200174] [PMID: 34328178]
[4]
Hankinson, S.E.; Willett, W.C.; Manson, J.E.; Colditz, G.A.; Hunter, D.J.; Spiegelman, D.; Barbieri, R.L.; Speizer, F.E. Plasma sex steroid hormone levels and risk of breast cancer in postmenopausal women. J. Natl. Cancer Inst., 1998, 90(17), 1292-1299.
[http://dx.doi.org/10.1093/jnci/90.17.1292] [PMID: 9731736]
[5]
Schairer, C.; Lubin, J.; Troisi, R.; Sturgeon, S.; Brinton, L.; Hoover, R. Menopausal estrogen and estrogen-progestin replacement therapy and breast cancer risk. JAMA, 2000, 283(4), 485-491.
[http://dx.doi.org/10.1001/jama.283.4.485] [PMID: 10659874]
[6]
Osborne, C.K.; Zhao, H.H.; Fuqua, S.A.W. Selective estrogen receptor modulators: Structure, function, and clinical use. J. Clin. Oncol., 2000, 18(17), 3172-3186.
[http://dx.doi.org/10.1200/JCO.2000.18.17.3172] [PMID: 10963646]
[7]
Oceguera-Basurto, P.; Topete, A.; Oceguera-Villanueva, A.; Rivas-Carrillo, J.; Paz-Davalos, M.; Quintero-Ramos, A.; Toro-Arreola, A.D.; Daneri-Navarro, A. Selective estrogen receptor modulators in the prevention of breast cancer in premenopausal women: A review. Transl. Cancer Res., 2020, 9(7), 4444-4456.
[http://dx.doi.org/10.21037/tcr-19-1956] [PMID: 35117809]
[8]
Enmark, E.; Pelto-Huikko, M.; Grandien, K.; Lagercrantz, S.; Lagercrantz, J.; Fried, G.; Nordenskjöld, M.; Gustafsson, J.A. Human estrogen receptor β-gene structure, chromosomal localization, and expression pattern. J. Clin. Endocrinol. Metab., 1997, 82(12), 4258-4265.
[http://dx.doi.org/10.1210/jc.82.12.4258] [PMID: 9398750]
[9]
Menasce, L.P.; White, G.R.; Harrison, C.J.; Boyle, J.M. Localization of the estrogen receptor locus (ESR) to chromosome 6q25. 1 by FISH and a simple post-FISH banding technique. Genomics, 1993, 17(1), 263-265.
[10]
Patel, H.K.; Bihani, T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol. Ther., 2018, 186, 1-24.
[http://dx.doi.org/10.1016/j.pharmthera.2017.12.012] [PMID: 29289555]
[11]
Jameera Begam, A.; Jubie, S.; Nanjan, M.J. Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review. Bioorg. Chem., 2017, 71, 257-274.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.011] [PMID: 28274582]
[12]
Shao, W.; Brown, M. Advances in estrogen receptor biology: Prospects for improvements in targeted breast cancer therapy. Breast Cancer Res., 2003, 6(1), 39-52.
[http://dx.doi.org/10.1186/bcr742] [PMID: 14680484]
[13]
Geserick, C.; Meyer, H.A.; Haendler, B. The role of DNA response elements as allosteric modulators of steroid receptor function. Mol. Cell. Endocrinol., 2005, 236(1-2), 1-7.
[http://dx.doi.org/10.1016/j.mce.2005.03.007] [PMID: 15876478]
[14]
Edwards, D.P. The role of coactivators and corepressors in the biology and mechanism of action of steroid hormone receptors. J. Mammary Gland Biol. Neoplasia, 2000, 5(3), 307-324.
[http://dx.doi.org/10.1023/A:1009503029176] [PMID: 14973393]
[15]
Lee, H.R.; Kim, T.H.; Choi, K.C. Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse. Lab. Anim. Res., 2012, 28(2), 71-76.
[http://dx.doi.org/10.5625/lar.2012.28.2.71] [PMID: 22787479]
[16]
Heldring, N.; Pike, A.; Andersson, S.; Matthews, J.; Cheng, G.; Hartman, J.; Tujague, M.; Ström, A.; Treuter, E.; Warner, M.; Gustafsson, J.Å. Estrogen receptors: How do they signal and what are their targets. Physiol. Rev., 2007, 87(3), 905-931.
[http://dx.doi.org/10.1152/physrev.00026.2006] [PMID: 17615392]
[17]
Kumar, R.; Zakharov, M. N.; Khan, S. H.; Miki, R.; Jang, H.; Toraldo, G.; Singh, R.; Bhasin, S.; Jasuja, R. The dynamic structure of the estrogen receptor. J. Amino Acids, 2011, 2011, 812540.
[http://dx.doi.org/10.4061/2011/812540]
[18]
Pawlak, M.; Lefebvre, P.; Staels, B. General molecular biology and architecture of nuclear receptors. Curr. Top. Med. Chem., 2012, 12(6), 486-504.
[http://dx.doi.org/10.2174/156802612799436641] [PMID: 22242852]
[19]
Kumar, V.; Chambon, P. The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell, 1988, 55(1), 145-156.
[http://dx.doi.org/10.1016/0092-8674(88)90017-7] [PMID: 3167974]
[20]
Shiau, A.K.; Barstad, D.; Loria, P.M.; Cheng, L.; Kushner, P.J.; Agard, D.A.; Greene, G.L. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell, 1998, 95(7), 927-937.
[http://dx.doi.org/10.1016/S0092-8674(00)81717-1] [PMID: 9875847]
[21]
Hall, J.M.; McDonnell, D.P. Coregulators in nuclear estrogen receptor action: From concept to therapeutic targeting. Mol. Interv., 2005, 5(6), 343-357.
[http://dx.doi.org/10.1124/mi.5.6.7] [PMID: 16394250]
[22]
Carroll, J.S.; Meyer, C.A.; Song, J.; Li, W.; Geistlinger, T.R.; Eeckhoute, J.; Brodsky, A.S.; Keeton, E.K.; Fertuck, K.C.; Hall, G.F.; Wang, Q.; Bekiranov, S.; Sementchenko, V.; Fox, E.A.; Silver, P.A.; Gingeras, T.R.; Liu, X.S.; Brown, M. Genome-wide analysis of estrogen receptor binding sites. Nat. Genet., 2006, 38(11), 1289-1297.
[http://dx.doi.org/10.1038/ng1901] [PMID: 17013392]
[23]
Ikeda, K.; Horie-Inoue, K.; Inoue, S. Identification of estrogen-responsive genes based on the DNA binding properties of estrogen receptors using high-throughput sequencing technology. Acta Pharmacol. Sin., 2015, 36(1), 24-31.
[http://dx.doi.org/10.1038/aps.2014.123] [PMID: 25500870]
[24]
Fox, E.M.; Davis, R.J.; Shupnik, M.A. ERβ in breast cancer—Onlooker, passive player, or active protector? Steroids, 2008, 73(11), 1039-1051.
[http://dx.doi.org/10.1016/j.steroids.2008.04.006] [PMID: 18501937]
[25]
Orlando, L.; Schiavone, P.; Fedele, P.; Calvani, N.; Nacci, A.; Rizzo, P.; Marino, A.; D’Amico, M.; Sponziello, F.; Mazzoni, E.; Cinefra, M.; Fazio, N.; Maiello, E.; Silvestris, N.; Colucci, G.; Cinieri, S. Molecularly targeted endocrine therapies for breast cancer. Cancer Treat. Rev., 2010, 36(Suppl. 3), S67-S71.
[http://dx.doi.org/10.1016/S0305-7372(10)70023-2] [PMID: 21129614]
[26]
Swaby, R.F.; Sharma, C.G.N.; Jordan, V.C. SERMs for the treatment and prevention of breast cancer. Rev. Endocr. Metab. Disord., 2007, 8(3), 229-239.
[http://dx.doi.org/10.1007/s11154-007-9034-4] [PMID: 17440819]
[27]
Rebbeck, T.R.; Levin, A.M.; Eisen, A.; Snyder, C.; Watson, P.; Cannon-Albright, L.; Isaacs, C.; Olopade, O.; Garber, J.E.; Godwin, A.K.; Daly, M.B.; Narod, S.A.; Neuhausen, S.L.; Lynch, H.T.; Weber, B.L. Breast cancer risk after bilateral prophylactic oophorectomy in BRCA1 mutation carriers. J. Natl. Cancer Inst., 1999, 91(17), 1475-1479.
[http://dx.doi.org/10.1093/jnci/91.17.1475] [PMID: 10469748]
[28]
Park, W.; Jordan, V.C. Selective estrogen receptor modulators (SERMS) and their roles in breast cancer prevention. Trends Mol. Med., 2002, 8(2), 82-88.
[http://dx.doi.org/10.1016/S1471-4914(02)02282-7] [PMID: 11815274]
[29]
Jordan, V.C. The development of tamoxifen for breast cancer therapy: A tribute to the late Arthur L. Walpole. Breast Cancer Res. Treat., 1988, 11(3), 197-209.
[http://dx.doi.org/10.1007/BF01807278] [PMID: 3048447]
[30]
Richardson, D.N. The history of Nolvadex. Drug Des. Deliv., 1988, 3(1), 1-14.
[PMID: 3076390]
[31]
Cole, M.P.; Jones, C.T.A.; Todd, I.D.H. A new anti-oestrogenic agent in late breast cancer. An early clinical appraisal of ICI46474. Br. J. Cancer, 1971, 25(2), 270-275.
[http://dx.doi.org/10.1038/bjc.1971.33] [PMID: 5115829]
[32]
Love, R.R.; Mazess, R.B.; Barden, H.S.; Epstein, S.; Newcomb, P.A.; Jordan, V.C.; Carbone, P.P.; DeMets, D.L. Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. N. Engl. J. Med., 1992, 326(13), 852-856.
[http://dx.doi.org/10.1056/NEJM199203263261302] [PMID: 1542321]
[33]
Shelly, W.; Draper, M.W.; Krishnan, V.; Wong, M.; Jaffe, R.B. Selective estrogen receptor modulators: An update on recent clinical findings. Obstet. Gynecol. Surv., 2008, 63(3), 163-181.
[http://dx.doi.org/10.1097/OGX.0b013e31816400d7] [PMID: 18279543]
[34]
Lippman, M.; Bolan, G. Oestrogen-responsive human breast cancer in long term tissue culture. Nature, 1975, 256(5518), 592-593.
[http://dx.doi.org/10.1038/256592a0] [PMID: 170527]
[35]
Jordan, V.C.; Robinson, S.P. Species-specific pharmacology of antiestrogens: Role of metabolism. Fed. Proc., 1987, 46(5), 1870-1874.
[PMID: 3556610]
[36]
Jordan, V.C. Effect of tamoxifen (ICI 46,474) on initiation and growth of DMBA-induced rat mammary carcinomata. Eur. J. Cancer, 1976, 12(6), 419-424.
[http://dx.doi.org/10.1016/0014-2964(76)90030-X] [PMID: 821733]
[37]
Gottardis, M.M.; Robinson, S.P.; Satyaswaroop, P.G.; Jordan, V.C. Contrasting actions of tamoxifen on endometrial and breast tumor growth in the athymic mouse. Cancer Res., 1988, 48(4), 812-815.
[PMID: 3338079]
[38]
Gambacciani, M. Selective estrogen modulators in menopause. Minerva Ginecol., 2013, 65(6), 621-630.
[PMID: 24346250]
[39]
Pinkerton, J.V.; Thomas, S. Use of SERMs for treatment in postmenopausal women. J. Steroid Biochem. Mol. Biol., 2014, 142, 142-154.
[http://dx.doi.org/10.1016/j.jsbmb.2013.12.011] [PMID: 24373794]
[40]
Labrie, F.; Labrie, C.; Bélanger, A.; Simard, J.; Gauthier, S.; Luu-The, V.; Mérand, Y.; Giguere, V.; Candas, B.; Luo, S.; Martel, C.; Singh, S.M.; Fournier, M.; Coquet, A.; Richard, V.; Charbonneau, R.; Charpenet, G.; Tremblay, A.; Tremblay, G.; Cusan, L.; Veilleux, R. EM-652 (SCH 57068), a third generation SERM acting as pure antiestrogen in the mammary gland and endometrium. J. Steroid Biochem. Mol. Biol., 1999, 69(1-6), 51-84.
[http://dx.doi.org/10.1016/S0960-0760(99)00065-5] [PMID: 10418981]
[41]
Jensen, E. Steroid hormones, receptors, and antagonists. Ann. N. Y. Acad. Sci., 1996, 784(1), 1-17.
[http://dx.doi.org/10.1111/j.1749-6632.1996.tb16223.x] [PMID: 8651563]
[42]
MacGregor, J.I.; Jordan, V.C. Basic guide to the mechanisms of antiestrogen action. Pharmacol. Rev., 1998, 50(2), 151-196.
[PMID: 9647865]
[43]
Delmas, P.D.; Bjarnason, N.H.; Mitlak, B.H.; Ravoux, A.C.; Shah, A.S.; Huster, W.J.; Draper, M.; Christiansen, C. Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N. Engl. J. Med., 1997, 337(23), 1641-1647.
[http://dx.doi.org/10.1056/NEJM199712043372301] [PMID: 9385122]
[44]
Kuiper, G.G.J.M.; van den Bemd, G.J.C.M.; van Leeuwen, J.P.T.M. Estrogen receptor and the SERM concept. J. Endocrinol. Invest., 1999, 22(8), 594-603.
[http://dx.doi.org/10.1007/BF03343616] [PMID: 10532246]
[45]
Jordan, V.C. Selective estrogen receptor modulation. Cancer Cell, 2004, 5(3), 207-213.
[http://dx.doi.org/10.1016/S1535-6108(04)00059-5] [PMID: 15050912]
[46]
Dunn, B.; Anthony, M.; Arun, B. The search for the ideal SERM. Expert Opin. Pharmacother., 2002, 3(6), 681-691.
[http://dx.doi.org/10.1517/14656566.3.6.681] [PMID: 12036407]
[47]
Schiff, R.; Massarweh, S.A.; Shou, J.; Bharwani, L.; Arpino, G.; Rimawi, M.; Osborne, C.K. Advanced concepts in estrogen receptor biology and breast cancer endocrine resistance: Implicated role of growth factor signaling and estrogen receptor coregulators. Cancer Chemother. Pharmacol., 2005, 56(S1), 10-20.
[http://dx.doi.org/10.1007/s00280-005-0108-2] [PMID: 16273359]
[48]
Colleoni, M.; Munzone, E. Navigating the challenges of endocrine treatments in premenopausal women with ERpositive early breast cancer. Drugs, 2015, 75(12), 1311-1321.
[http://dx.doi.org/10.1007/s40265-015-0433-7] [PMID: 26177891]
[49]
Riggs, B.L.; Hartmann, L.C. Selective estrogen-receptor modulators - mechanisms of action and application to clinical practice. N. Engl. J. Med., 2003, 348(7), 618-629.
[http://dx.doi.org/10.1056/NEJMra022219] [PMID: 12584371]
[50]
Gruber, C.J.; Tschugguel, W.; Schneeberger, C.; Huber, J.C. Production and actions of estrogens. N. Engl. J. Med., 2002, 346(5), 340-352.
[http://dx.doi.org/10.1056/NEJMra000471] [PMID: 11821512]
[51]
Marín, F.; Barbancho, M.C. Clinical pharmacology of selective estrogen receptor modulators (SERMs). In: Selective Estrogen Receptor Modulators; Springer, 2006; pp. 49-69.
[http://dx.doi.org/10.1007/3-540-34742-9_2]
[52]
Palacios, S. The future of the new selective estrogen receptor modulators. Menopause Int., 2007, 13(1), 27-34.
[http://dx.doi.org/10.1258/175404507780456791] [PMID: 17448265]
[53]
Taylor, H.S. Designing the ideal selective estrogen receptor modulator-an achievable goal? Menopause, 2009, 16(3), 609-615.
[http://dx.doi.org/10.1097/gme.0b013e3181906fa3] [PMID: 19182697]
[54]
Lewis, J.S.; Jordan, V.C. Selective estrogen receptor modulators (SERMs): Mechanisms of anticarcinogenesis and drug resistance. Mutat. Res., 2005, 591(1-2), 247-263.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.02.028] [PMID: 16083919]
[55]
Jordan, V.C.; Gapstur, S.; Morrow, M. Selective estrogen receptor modulation and reduction in risk of breast cancer, osteoporosis, and coronary heart disease. J. Natl. Cancer Inst., 2001, 93(19), 1449-1457.
[http://dx.doi.org/10.1093/jnci/93.19.1449] [PMID: 11584060]
[56]
Chauhan, N.; Maher, D.M.; Yallapu, M.M.; Hafeez, B.; Singh, M.M.; Chauhan, S.C.; Jaggi, M. A triphenylethylene nonsteroidal SERM attenuates cervical cancer growth. Sci. Rep., 2019, 9(1), 1-12.
[http://dx.doi.org/10.1038/s41598-019-46680-0] [PMID: 30626917]
[57]
Jordan, V.C.; Morrow, M. Tamoxifen, raloxifene, and the prevention of breast cancer. Endocr. Rev., 1999, 20(3), 253-278.
[PMID: 10368771]
[58]
Vogel, C.L. Phase II and III clinical trials of toremifene for metastatic breast cancer. Oncology (Williston Park), 1998, 12(3)(Suppl. 5), 9-13.
[PMID: 9556785]
[59]
Vogel, V.G.; Costantino, J.P.; Wickerham, D.L.; Cronin, W.M.; Cecchini, R.S.; Atkins, J.N.; Bevers, T.B.; Fehrenbacher, L.; Pajon, E.R., Jr; Wade, J.L., III; Robidoux, A.; Margolese, R.G.; James, J.; Lippman, S.M.; Runowicz, C.D.; Ganz, P.A.; Reis, S.E.; McCaskill-Stevens, W.; Ford, L.G.; Jordan, V.C.; Wolmark, N. Effects of tamoxifen vs. raloxifene on the risk of developing invasive breast cancer and other disease outcomes: The NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA, 2006, 295(23), 2727-2741.
[http://dx.doi.org/10.1001/jama.295.23.joc60074] [PMID: 16754727]
[60]
Ghasemnejad-Berenji, M.; Pashapour, S.; Ghasemnejad-Berenji, H. Therapeutic potential for clomiphene, a selective estrogen receptor modulator, in the treatment of COVID‐19. Med. Hypotheses, 2020, 145, 110354.
[http://dx.doi.org/10.1016/j.mehy.2020.110354] [PMID: 33129007]
[61]
Elkinson, S.; Yang, L.P.H. Ospemifene: First global approval. Drugs, 2013, 73(6), 605-612.
[http://dx.doi.org/10.1007/s40265-013-0046-y] [PMID: 23605694]
[62]
Komi, J.; Lankinen, K.S.; Härkönen, P.; DeGregorio, M.W.; Voipio, S.; Kivinen, S.; Tuimala, R.; Vihtamäki, T.; Vihko, K.; Ylikorkala, O.; Erkkola, R. Effects of ospemifene and raloxifene on hormonal status, lipids, genital tract, and tolerability in postmenopausal women. Menopause, 2005, 12(2), 202-209.
[http://dx.doi.org/10.1097/00042192-200512020-00015] [PMID: 15772568]
[63]
Bruning, P.F. Droloxifene, a new anti-oestrogen in postmenopausal advanced breast cancer: Preliminary results of a double-blind dose-finding phase II trial. Eur. J. Cancer, 1992, 28(8-9), 1404-1407.
[http://dx.doi.org/10.1016/0959-8049(92)90530-F] [PMID: 1515258]
[64]
Jordan, V.C.; Furr, B.J. Recent Progress in Breast Cancer Research. In: Hormone Therapy in Breast and Prostate Cancer; American Cancer Society: USA, 2009; pp. 385-408.
[65]
Roos, W.; Oeze, L.; Löser, R.; Eppenberger, U. Antiestrogenic action of 3-hydroxytamoxifen in the human breast cancer cell line MCF-7. J. Natl. Cancer Inst., 1983, 71(1), 55-59.
[PMID: 6575210]
[66]
Savolainen-Peltonen, H.; Luoto, N.M.; Kangas, L.; Häyry, P. Selective estrogen receptor modulators prevent neointima formation after vascular injury. Mol. Cell. Endocrinol., 2004, 227(1-2), 9-20.
[http://dx.doi.org/10.1016/j.mce.2004.08.004] [PMID: 15501580]
[67]
Arpino, G.; Nair Krishnan, M.; Doval Dinesh, C.; Bardou, V.J.; Clark, G.M.; Elledge, R.M. Idoxifene versus tamoxifen: A randomized comparison in postmenopausal patients with metastatic breast cancer. Ann. Oncol., 2003, 14(2), 233-241.
[http://dx.doi.org/10.1093/annonc/mdg097] [PMID: 12562650]
[68]
Gumbrell, L.A.; Evans, T.R.J.; Coleman, R.E.; Smith, I.E.; Twelves, C.J.; Soukop, M.; Rea, D.W.; Earl, H.M.; Howell, A.; Jones, A.; Canney, P.; Powles, T.J.; Haynes, B.P.; Nutley, B.; Grimshaw, R.; Jarman, M.; Halbert, G.W.; Brampton, M.; Haviland, J.; Dowsett, M.; Coombes, R.C.; Johnston, S.R.D. A Cancer Research (UK) randomized phase II study of idoxifene in patients with locally advanced/metastatic breast cancer resistant to tamoxifen. Cancer Chemother. Pharmacol., 2004, 53(4), 341-348.
[http://dx.doi.org/10.1007/s00280-003-0733-6] [PMID: 14722733]
[69]
Nomura, Y.; Nakajima, M.; Tominaga, T.; Abe, O. Late phase II study of TAT-59 (miproxifene phospate) in advanced or recurrent breast cancer patients (a double-blind comparative study with tamoxifen citrate). Gan To Kagaku Ryoho, 1998, 25(7), 1045-1063.
[PMID: 9644320]
[70]
Toko, T.; Sugimoto, Y.; Matsuo, K.I.; Yamasaki, R.; Takeda, S.; Wierzba, K.; Asao, T.; Yamada, Y. TAT-59, a new triphenylethylene derivative with antitumor activity against hormone-dependent tumors. Eur. J. Cancer Clin. Oncol., 1990, 26(3), 397-404.
[http://dx.doi.org/10.1016/0277-5379(90)90241-K] [PMID: 2141500]
[71]
Elnakib, H.E.; Ramsis, M.M.; Albably, N.O.; Vector, M.A.; Weigand, J.J.; Schwedtmann, K.; Wober, J.; Zierau, O.; Vollmer, G.; Abadi, A.H.; Ahmed, N.S. Manipulating estrogenic/anti-estrogenic activity of triphenylethylenes towards development of novel anti-neoplastic SERMs. Int. J. Mol. Sci., 2021, 22(22), 12575.
[http://dx.doi.org/10.3390/ijms222212575] [PMID: 34830456]
[72]
Zhao, L.M.; Jin, H.S.; Liu, J.; Skaar, T.C.; Ipe, J.; Lv, W.; Flockhart, D.A.; Cushman, M. A new Suzuki synthesis of triphenylethylenes that inhibit aromatase and bind to estrogen receptors α and β. Bioorg. Med. Chem., 2016, 24(21), 5400-5409.
[http://dx.doi.org/10.1016/j.bmc.2016.08.064] [PMID: 27647367]
[73]
Lv, W.; Liu, J.; Skaar, T.C.; O’Neill, E.; Yu, G.; Flockhart, D.A.; Cushman, M. Synthesis of triphenylethylene bisphenols as aromatase inhibitors that also modulate estrogen receptors. J. Med. Chem., 2016, 59(1), 157-170.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01677] [PMID: 26704594]
[74]
Bitonti, A.J.; Baumann, R.J.; Bush, T.L.; Cashman, E.A.; Wright, C.L.; Prakash, N.J. Antitumor and chemopreventive effects of a clomiphene analog, MDL 103,323, in mammary carcinoma. Anticancer Res., 1996, 16(5A), 2553-2557.
[PMID: 8917350]
[75]
Bourrin, S.; Ammann, P.; Bonjour, J.P.; Rizzoli, R. Recovery of proximal tibia bone mineral density and strength, but not cancellous bone architecture, after long-term bisphosphonate or selective estrogen receptor modulator therapy in aged rats. Bone, 2002, 30(1), 195-200.
[http://dx.doi.org/10.1016/S8756-3282(01)00661-5] [PMID: 11792585]
[76]
Chavassieux, P.; Garnero, P.; Duboeuf, F.; Vergnaud, P.; Brunner-Ferber, F.; Delmas, P.D.; Meunier, P.J. Effects of a new selective estrogen receptor modulator (MDL 103,323) on cancellous and cortical bone in ovariectomized ewes: A biochemical, histomorphometric, and densitometric study. J. Bone Miner. Res., 2001, 16(1), 89-96.
[http://dx.doi.org/10.1359/jbmr.2001.16.1.89] [PMID: 11149494]
[77]
Robertson, D.W.; Katzenellenbogen, J.A.; Hayes, J.R.; Katzenellenbogen, B.S. Antiestrogen basicity-activity relationships: A comparison of the estrogen receptor binding and antiuterotrophic potencies of several analogs of (Z)-1,2-diphenyl-1-[4-[2-(dimethylamino)ethoxy]phenyl]-1-butene (Tamoxifen, Nolvadex) having altered basicity. J. Med. Chem., 1982, 25(2), 167-171.
[http://dx.doi.org/10.1021/jm00344a015] [PMID: 7057423]
[78]
Robertson, D.W.; Katzenellenbogen, J.A.; Long, D.J.; Rorke, E.A.; Katzenellenbogen, B.S. Tamoxifen antiestrogens. A comparison of the activity, pharmacokinetics, and metabolic activation of the cis and trans isomers of tamoxifen. J. Steroid Biochem., 1982, 16(1), 1-13.
[http://dx.doi.org/10.1016/0022-4731(82)90137-6] [PMID: 7062732]
[79]
Bai, C.; Wu, S.; Ren, S.; Zhu, M.; Luo, G.; Xiang, H. Benzothiophene derivatives as selective estrogen receptor covalent antagonists: Design, synthesis and anti-ERα activities. Bioorg. Med. Chem., 2021, 47, 116395.
[http://dx.doi.org/10.1016/j.bmc.2021.116395] [PMID: 34509864]
[80]
Dayan, G.; Lupien, M.; Auger, A.; Anghel, S.I.; Rocha, W.; Croisetière, S.; Katzenellenbogen, J.A.; Mader, S. Tamoxifen and raloxifene differ in their functional interactions with aspartate 351 of estrogen receptor α. Mol. Pharmacol., 2006, 70(2), 579-588.
[http://dx.doi.org/10.1124/mol.105.021931] [PMID: 16679488]
[81]
Palkowitz, A.D.; Glasebrook, A.L.; Thrasher, K.J.; Hauser, K.L.; Short, L.L.; Phillips, D.L.; Muehl, B.S.; Sato, M.; Shetler, P.K.; Cullinan, G.J.; Pell, T.R.; Bryant, H.U. Discovery and synthesis of [6-Hydroxy-3-[4-[2-(1-piperidinyl)ethoxy]phenoxy]-2-(4-hydroxyphenyl)]benzo[ b]thiophene: A novel, highly potent, selective estrogen receptor modulator. J. Med. Chem., 1997, 40(10), 1407-1416.
[http://dx.doi.org/10.1021/jm970167b] [PMID: 9154963]
[82]
Deshmane, V.; Krishnamurthy, S.; Melemed, A.S.; Peterson, P.; Buzdar, A.U. Phase III double-blind trial of arzoxifene compared with tamoxifen for locally advanced or metastatic breast cancer. J. Clin. Oncol., 2007, 25(31), 4967-4973.
[http://dx.doi.org/10.1200/JCO.2006.09.5992] [PMID: 17971595]
[83]
Gizzo, S.; Saccardi, C.; Patrelli, T.S.; Berretta, R.; Capobianco, G.; Gangi, S.D.; Vacilotto, A.; Bertocco, A.; Noventa, M.; Ancona, E.; D’Antona, D.; Nardelli, G.B. Update on Raloxifene. Obstet. Gynecol. Surv., 2013, 68(6), 467-481.
[http://dx.doi.org/10.1097/OGX.0b013e31828baef9] [PMID: 23942473]
[84]
Hong, S.; Chang, J.; Jeong, K.; Lee, W. Raloxifene as a treatment option for viral infections. J. Microbiol., 2021, 59(2), 124-131.
[http://dx.doi.org/10.1007/s12275-021-0617-7] [PMID: 33527314]
[85]
Baselga, J.; Llombart-Cussac, A.; Bellet, M.; Guillem-Porta, V.; Enas, N.; Krejcy, K.; Carrasco, E.; Kayitalire, L.; Kuta, M.; Lluch, A.; Vodvarka, P.; Kerbrat, P.; Namer, M.; Petruzelka, L. Randomized, double-blind, multicenter trial comparing two doses of arzoxifene (LY353381) in hormone-sensitive advanced or metastatic breast cancer patients. Ann. Oncol., 2003, 14(9), 1383-1390.
[http://dx.doi.org/10.1093/annonc/mdg368] [PMID: 12954577]
[86]
Bolognese, M.; Krege, J.H.; Utian, W.H.; Feldman, R.; Broy, S.; Meats, D.L.; Alam, J.; Lakshmanan, M.; Omizo, M. Effects of arzoxifene on bone mineral density and endometrium in postmenopausal women with normal or low bone mass. J. Clin. Endocrinol. Metab., 2009, 94(7), 2284-2289.
[http://dx.doi.org/10.1210/jc.2008-2143] [PMID: 19351734]
[87]
Gombos, A. Selective oestrogen receptor degraders in breast cancer. Curr. Opin. Oncol., 2019, 31(5), 424-429.
[http://dx.doi.org/10.1097/CCO.0000000000000567] [PMID: 31335829]
[88]
Bai, C.; Ren, S.; Wu, S.; Zhu, M.; Luo, G.; Xiang, H. Design and synthesis of novel benzothiophene analogs as selective estrogen receptor covalent antagonists against breast cancer. Eur. J. Med. Chem., 2021, 221, 113543.
[http://dx.doi.org/10.1016/j.ejmech.2021.113543] [PMID: 34022716]
[89]
Lu, Y.; Gutgesell, L.M.; Xiong, R.; Zhao, J.; Li, Y.; Rosales, C.I.; Hollas, M.; Shen, Z.; Gordon-Blake, J.; Dye, K.; Wang, Y.; Lee, S.; Chen, H.; He, D.; Dubrovyskyii, O.; Zhao, H.; Huang, F.; Lasek, A.W.; Tonetti, D.A.; Thatcher, G.R.J. Design and synthesis of basic selective estrogen receptor degraders for endocrine therapy resistant breast cancer. J. Med. Chem., 2019, 62(24), 11301-11323.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01580] [PMID: 31746603]
[90]
Grese, T.A.; Cho, S.; Finley, D.R.; Godfrey, A.G.; Jones, C.D.; Lugar, C.W., III; Martin, M.J.; Matsumoto, K.; Pennington, L.D.; Winter, M.A.; Adrian, M.D.; Cole, H.W.; Magee, D.E.; Phillips, D.L.; Rowley, E.R.; Short, L.L.; Glasebrook, A.L.; Bryant, H.U. Structure-activity relationships of selective estrogen receptor modulators: Modifications to the 2-arylbenzothiophene core of raloxifene. J. Med. Chem., 1997, 40(2), 146-167.
[http://dx.doi.org/10.1021/jm9606352] [PMID: 9003514]
[91]
Lambrinidis, G.; Gouedard, C.; Stasinopoulou, S.; Angelopoulou, A.; Ganou, V.; Meligova, A.K.; Mitsiou, D.J.; Marakos, P.; Pouli, N.; Mikros, E.; Alexis, M.N. Design, synthesis, and biological evaluation of new raloxifene analogues of improved antagonist activity and endometrial safety. Bioorg. Chem., 2021, 106, 104482.
[http://dx.doi.org/10.1016/j.bioorg.2020.104482] [PMID: 33272706]
[92]
Qin, Z.; Kastrati, I.; Chandrasena, R.E.P.; Liu, H.; Yao, P.; Petukhov, P.A.; Bolton, J.L.; Thatcher, G.R.J. Benzothiophene selective estrogen receptor modulators with modulated oxidative activity and receptor affinity. J. Med. Chem., 2007, 50(11), 2682-2692.
[http://dx.doi.org/10.1021/jm070079j] [PMID: 17489582]
[93]
Kaur, K.; Jaitak, V. Recent development in indole derivatives as anticancer agents for breast cancer. Anticancer. Agents Med. Chem., 2019, 19(8), 962-983.
[http://dx.doi.org/10.2174/1871520619666190312125602] [PMID: 30864529]
[94]
Goldberg, T.; Fidler, B. Conjugated estrogens/bazedoxifene (Duavee): A novel agent for the treatment of moderate-to-severe vasomotor symptoms associated with menopause and the prevention of postmenopausal osteoporosis. P&T, 2015, 40(3), 178-182.
[PMID: 25798038]
[95]
Miller, C.P.; Collini, M.D.; Tran, B.D.; Harris, H.A.; Kharode, Y.P.; Marzolf, J.T.; Moran, R.A.; Henderson, R.A.; Bender, R.H.W.; Unwalla, R.J.; Greenberger, L.M.; Yardley, J.P.; Abou-Gharbia, M.A.; Lyttle, C.R.; Komm, B.S. Design, synthesis, and preclinical characterization of novel, highly selective indole estrogens. J. Med. Chem., 2001, 44(11), 1654-1657.
[http://dx.doi.org/10.1021/jm010086m] [PMID: 11356100]
[96]
Placios, S.; Mejía Ríos, A. Bazedoxifene/conjugated estrogens combination for the treatment of the vasomotor symptoms associated with menopause and for prevention of osteoporosis in postmenopausal women. Drugs Today (Barc), 2015, 51(2), 107-116.
[http://dx.doi.org/10.1358/dot.2015.51.2.2281023] [PMID: 25756066]
[97]
Sorbera, L.A.; Castañer, J.; Silvestre, J.S. Pipendoxifene. Drugs Future, 2002, 27(10), 942-947.
[http://dx.doi.org/10.1358/dof.2002.027.10.703467]
[98]
Makar, S.; Saha, T.; Swetha, R.; Gutti, G.; Kumar, A.; Singh, S.K. Rational approaches of drug design for the development of selective estrogen receptor modulators (SERMs), implicated in breast cancer. Bioorg. Chem., 2020, 94, 103380.
[http://dx.doi.org/10.1016/j.bioorg.2019.103380] [PMID: 31757413]
[99]
Karadayi, F.Z.; Yaman, M.; Kisla, M.M.; Keskus, A.G.; Konu, O.; Ates-Alagoz, Z. Design, synthesis and anticancer/antiestrogenic activities of novel indolebenzimidazoles. Bioorg. Chem., 2020, 100, 103929.
[http://dx.doi.org/10.1016/j.bioorg.2020.103929] [PMID: 32464404]
[100]
Wang, T.; Milner, M.; Milner, J.; Kim, Y. Estrogen receptor α as a target for indole-3-carbinol. J. Nutr. Biochem., 2006, 17(10), 659-664.
[http://dx.doi.org/10.1016/j.jnutbio.2005.10.012] [PMID: 16488130]
[101]
Singla, R.; Gupta, K.B.; Upadhyay, S.; Dhiman, M.; Jaitak, V. Design, synthesis and biological evaluation of novel indole-benzimidazole hybrids targeting estrogen receptor alpha (ER-α). Eur. J. Med. Chem., 2018, 146, 206-219.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.051] [PMID: 29407951]
[102]
Singla, R.; Gupta, K.B.; Upadhyay, S.; Dhiman, M.; Jaitak, V. Design, synthesis and biological evaluation of novel indole-xanthendione hybrids as selective estrogen receptor modulators. Bioorg. Med. Chem., 2018, 26(1), 266-277.
[http://dx.doi.org/10.1016/j.bmc.2017.11.040] [PMID: 29198894]
[103]
De Savi, C.; Bradbury, R.H.; Rabow, A.A.; Norman, R.A.; de Almeida, C.; Andrews, D.M.; Ballard, P.; Buttar, D.; Callis, R.J.; Currie, G.S.; Curwen, J.O.; Davies, C.D.; Donald, C.S.; Feron, L.J.L.; Gingell, H.; Glossop, S.C.; Hayter, B.R.; Hussain, S.; Karoutchi, G.; Lamont, S.G.; MacFaul, P.; Moss, T.A.; Pearson, S.E.; Tonge, M.; Walker, G.E.; Weir, H.M.; Wilson, Z. Optimization of a novel binding motif to (E)-3-(3,5-difluoro-4-((1 R, 3 R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2, 3, 4, 9-tetrahydro-1 H-pyrido [3, 4-b] indol-1-yl) phenyl) acrylic Acid (AZD9496), a potent and orally bioavailable selective estrogen receptor downregulator and antagonist. J. Med. Chem., 2015, 58(20), 8128-8140.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00984] [PMID: 26407012]
[104]
Ji, Q.; Gao, J.; Wang, J.; Yang, C.; Hui, X.; Yan, X.; Wu, X.; Xie, Y.; Wang, M.W. Benzothieno[3,2-b]indole derivatives as potent selective estrogen receptor modulators. Bioorg. Med. Chem. Lett., 2005, 15(11), 2891-2893.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.111] [PMID: 15911274]
[105]
Weir, H.M.; Bradbury, R.H.; Lawson, M.; Rabow, A.A.; Buttar, D.; Callis, R.J.; Curwen, J.O.; de Almeida, C.; Ballard, P.; Hulse, M.; Donald, C.S.; Feron, L.J.L.; Karoutchi, G.; MacFaul, P.; Moss, T.; Norman, R.A.; Pearson, S.E.; Tonge, M.; Davies, G.; Walker, G.E.; Wilson, Z.; Rowlinson, R.; Powell, S.; Sadler, C.; Richmond, G.; Ladd, B.; Pazolli, E.; Mazzola, A.M.; D’Cruz, C.; De Savi, C. AZD9496: An oral estrogen receptor inhibitor that blocks the growth of ER-positive and ESR1-mutant breast tumors in preclinical models. Cancer Res., 2016, 76(11), 3307-3318.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2357] [PMID: 27020862]
[106]
Croxtall, J.D.; McKeage, K. Fulvestrant. Drugs, 2011, 71(3), 363-380.
[http://dx.doi.org/10.2165/11204810-000000000-00000] [PMID: 21319872]
[107]
Hu, X.F.; Veroni, M.; de Luise, M.; Wakeling, A.; Sutherland, R.; Watts, C.K.W.; Zalcberg, J.R. Circumvention of tamoxifen resistance by the pure anti-estrogen ICI 182, 780. Int. J. Cancer, 1993, 55(5), 873-876.
[http://dx.doi.org/10.1002/ijc.2910550529] [PMID: 8244585]
[108]
Harrison, M.; Laight, A.; Clarke, D.; Giles, P.; Yates, Y. 564 Pharmacokinetics and metabolism of fulvestrant after oral, intravenous and intramuscular administration in healthy volunteers. Eur. J. Cancer, Suppl., 2003, 1(5), S171.
[http://dx.doi.org/10.1016/S1359-6349(03)90596-9]
[109]
Gardner, M.; Taylor, A.; Wei, G.; Calcagni, A., Jr; Duncan, B.; Milton, A. Clinical pharmacology of multiple doses of lasofoxifene in postmenopausal women. J. Clin. Pharmacol., 2006, 46(1), 52-58.
[http://dx.doi.org/10.1177/0091270005283280] [PMID: 16397284]
[110]
Fontalis, A.; Kenanidis, E.; Kotronias, R.A.; Papachristou, A.; Anagnostis, P.; Potoupnis, M.; Tsiridis, E. Current and emerging osteoporosis pharmacotherapy for women: State of the art therapies for preventing bone loss. Expert Opin. Pharmacother., 2019, 20(9), 1123-1134.
[http://dx.doi.org/10.1080/14656566.2019.1594772] [PMID: 30958709]
[111]
Liu, J.; Rajasekaran, N.; Hossain, A.; Zhang, C.; Guo, S.; Kang, B.; Jung, H.; Kim, H.; Wang, G. Fulvestrant-3-boronic acid (ZB716) demonstrates oral bioavailability and favorable pharmacokinetic profile in preclinical ADME studies. Pharmaceuticals (Basel), 2021, 14(8), 719.
[http://dx.doi.org/10.3390/ph14080719] [PMID: 34451816]
[112]
Wallace, O.B.; Bryant, H.U.; Shetler, P.K.; Adrian, M.D.; Geiser, A.G. Benzothiophene and naphthalene derived constrained SERMs. Bioorg. Med. Chem. Lett., 2004, 14(20), 5103-5106.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.072] [PMID: 15380208]
[113]
Liu, J.; Birzin, E.T.; Chan, W.; Yang, Y.T.; Pai, L.Y.; DaSilva, C.; Hayes, E.C.; Mosley, R.T.; DiNinno, F.; Rohrer, S.P.; Schaeffer, J.M.; Hammond, M.L. Estrogen receptor ligands. Part 11: Synthesis and activity of isochromans and isothiochromans. Bioorg. Med. Chem. Lett., 2005, 15(3), 715-718.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.018] [PMID: 15664843]
[114]
Frotscher, M.; Ziegler, E.; Marchais-Oberwinkler, S.; Kruchten, P.; Neugebauer, A.; Fetzer, L.; Scherer, C.; Müller-Vieira, U.; Messinger, J.; Thole, H.; Hartmann, R.W. Design, synthesis, and biological evaluation of (hydroxyphenyl)naphthalene and -quinoline derivatives: potent and selective nonsteroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) for the treatment of estrogen-dependent diseases. J. Med. Chem., 2008, 51(7), 2158-2169.
[http://dx.doi.org/10.1021/jm701447v] [PMID: 18324762]
[115]
Kabra, R.; Allagh, K.P.; Ali, M.; Jayathilaka, C.A.; Mwinga, K.; Kiarie, J. Scoping review to map evidence on mechanism of action, pharmacokinetics, effectiveness and side effects of centchroman as a contraceptive pill. BMJ Open, 2019, 9(10), e030373.
[http://dx.doi.org/10.1136/bmjopen-2019-030373] [PMID: 31594884]
[116]
Makker, A.; Tandon, I.; Goel, M.M.; Singh, M.; Singh, M.M. Effect of ormeloxifene, a selective estrogen receptor modulator, on biomarkers of endometrial receptivity and pinopode development and its relation to fertility and infertility in Indian subjects. Fertil. Steril., 2009, 91(6), 2298-2307.
[http://dx.doi.org/10.1016/j.fertnstert.2008.04.018] [PMID: 18675966]
[117]
Ravn, P.; Nielsen, T.F.; Christiansen, C. What can be learned from the levormeloxifene experience? Acta Obstet. Gynecol. Scand., 2006, 85(2), 135-142.
[http://dx.doi.org/10.1080/00016340500345691] [PMID: 16532904]
[118]
Elkak, A.E.; Mokbel, K. Pure antiestrogens and breast cancer. Curr. Med. Res. Opin., 2001, 17(4), 282-289.
[http://dx.doi.org/10.1185/0300799019117015] [PMID: 11922402]
[119]
Dubey, R.; Kant, R.; Pandey, J. Design, synthesis and biological activity evaluation of carboxylic acid derivatives of substituted 2, 3-diphenyl-2H-1-benzopyrans as novel selective estrogen receptor modulators. Chem. Biol. Lett., 2020, 7(3), 183-191.
[120]
Lu, X.; Teng, Y.; Lin, X.; Xiao, M.; Liu, C.; Chi, X.; Zhang, Y.; Luo, G.; Xiang, H. Discovery of novel 2Hchromene-3-carbonyl derivatives as selective estrogen receptor degraders (SERDs): Design, synthesis and biological evaluation. Bioorg. Chem., 2021, 109, 104714.
[http://dx.doi.org/10.1016/j.bioorg.2021.104714] [PMID: 33618254]
[121]
McKie, J.A.; Bhagwat, S.S.; Brady, H.; Doubleday, M.; Gayo, L.; Hickman, M.; Jalluri, R.K.; Khammungkhune, S.; Kois, A.; Mortensen, D.; Richard, N.; Sapienza, J.; Shevlin, G.; Stein, B.; Sutherland, M. Lead identification of a potent benzopyranone selective estrogen receptor modulator. Bioorg. Med. Chem. Lett., 2004, 14(13), 3407-3410.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.081] [PMID: 15177442]
[122]
Grese, T.A.; Pennington, L.D.; Sluka, J.P.; Adrian, M.D.; Cole, H.W.; Fuson, T.R.; Magee, D.E.; Phillips, D.L.; Rowley, E.R.; Shetler, P.K.; Short, L.L.; Venugopalan, M.; Yang, N.N.; Sato, M.; Glasebrook, A.L.; Bryant, H.U. Synthesis and pharmacology of conformationally restricted raloxifene analogues: Highly potent selective estrogen receptor modulators. J. Med. Chem., 1998, 41(8), 1272-1283.
[http://dx.doi.org/10.1021/jm970688z] [PMID: 9548817]
[123]
Singh, A.; Kaur, H.; Arora, S.; Bedi, P.M.S. Design, synthesis, and biological evaluation of novel morpholinated isatin–quinoline hybrids as potent anti‐breast cancer agents. Arch. Pharm. (Weinheim), 2022, 355(2), 2100368.
[http://dx.doi.org/10.1002/ardp.202100368] [PMID: 34783073]
[124]
Jin, L.P.; Xie, Q.; Huang, E.F.; Wang, L.; Zhang, B.Q.; Hu, J.S.; Wan, D.C.C.; Jin, Z.; Hu, C. Design, synthesis, and biological activity of a novel series of benzofuran derivatives against oestrogen receptor-dependent breast cancer cell lines. Bioorg. Chem., 2020, 95, 103566.
[http://dx.doi.org/10.1016/j.bioorg.2020.103566] [PMID: 31935604]
[125]
Shalini, Pankaj; Saha, S.T.; Kaur, M.; Oluwakemi, E.; Awolade, P.; Singh, P.; Kumar, V. Synthesis and in vitro anti-proliferative evaluation of naphthalimide–chalcone/pyrazoline conjugates as potential SERMs with computational validation. RSC Advances, 2020, 10(27), 15836-15845.
[http://dx.doi.org/10.1039/D0RA01822H] [PMID: 35493668]
[126]
Li, X.; Wu, C.; Lin, X.; Cai, X.; Liu, L.; Luo, G.; You, Q.; Xiang, H. Synthesis and biological evaluation of 3-arylquinolin derivatives as anti-breast cancer agents targeting ERα and VEGFR-2. Eur. J. Med. Chem., 2019, 161, 445-455.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.045] [PMID: 30384047]
[127]
Liu, L.; Tang, Z.; Wu, C.; Li, X.; Huang, A.; Lu, X.; You, Q.; Xiang, H. Synthesis and biological evaluation of 4,6-diaryl-2-pyrimidinamine derivatives as anti-breast cancer agents. Bioorg. Med. Chem. Lett., 2018, 28(6), 1138-1142.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.066] [PMID: 29482944]
[128]
Luo, G.; Chen, M.; Lyu, W.; Zhao, R.; Xu, Q.; You, Q.; Xiang, H. Design, synthesis, biological evaluation and molecular docking studies of novel 3-aryl-4-anilino-2 H -chromen-2-one derivatives targeting ERα as anti-breast cancer agents. Bioorg. Med. Chem. Lett., 2017, 27(12), 2668-2673.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.029] [PMID: 28460819]
[129]
Kaur, G.; Mahajan, M.P.; Pandey, M.K.; Singh, P.; Ramisetti, S.R.; Sharma, A.K. Design, synthesis and evaluation of Ospemifene analogs as anti-breast cancer agents. Eur. J. Med. Chem., 2014, 86, 211-218.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.050] [PMID: 25164760]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy