Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Effectiveness of Selective Estrogen Receptor Modulators in Breast Cancer Therapy: An Update

Author(s): Agnidipta Das, Kanamarlapudi Joshna Lavanya, Nandini, Kamalpreet Kaur and Vikas Jaitak*

Volume 30, Issue 29, 2023

Published on: 18 November, 2022

Page: [3287 - 3314] Pages: 28

DOI: 10.2174/0929867329666221006110528

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Breast cancer is considered to be 2nd most common cancer subtype investigated worldwide. It is mainly prevalent in postmenopausal women. Estrogen Receptor (ER) is a primary transcription factor for the survival and growth of tumors. Around 80% BCs of all classes are ER-positive (ER+). Powerful evidence for estrogen proved to be involved in BC pathogenesis both exogenously and endogenously. It brings the concept of ER inhibitors to treat BC with distinct mechanisms into focus and ER PROTACs (Proteolysis-Targeting Chimeras), AIs (Aromatase inhibitors), SERMs (Selective estrogen receptor modulators), and SERDs (Selective estrogen receptor degrader) were developed. For over 30 years, Tamoxifen, a triphenylethylene SERM, was the drug of choice solely to treat ER+BC patients. Although several SERMs got approval by US FDA after tamoxifen, complicacies remain because of dangerous adverse effects like endometrial carcinoma, hot flashes, and VTE (Venous thromboembolism). In addition to that, drug-resistant tumors put a surging need for novel, potent candidates with no or low adverse effects for ER+ BC prevention.

Objectives: This article explores the possibilities of SERMs as effective BC agents.

Methods: A detailed literature survey of the history and recent advancements of SERMs has been carried out, taking BC as the primary target. This review provides information about ER structure, signaling, pharmacological action, chemical classification with SAR analysis, and benefits and adverse effects of SERMs as potential BC agents.

Results: Exhaustive literature studies suggested that SERMs having an agonistic, antagonistic or mixed activity to ER could efficiently inhibit BC cell proliferation.

Conclusion: Each chemical class of SERMs comprises some salient features and potentials, which may be further investigated to obtain novel effective SERMs in BC therapy.

Keywords: BC, ER, inhibitors, proliferation, SAR, SERMs, tamoxifen.

[1]
Ferlay, J.; Colombet, M.; Soerjomataram, I.; Mathers, C.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer, 2019, 144(8), 1941-1953.
[http://dx.doi.org/10.1002/ijc.31937] [PMID: 30350310]
[2]
Wang, Y.; Lewin, N.; Qaoud, Y.; Rajaee, A.N.; Scheer, A.S. The oncologic impact of hormone replacement therapy in premenopausal breast cancer survivors: A systematic review. Breast, 2018, 40, 123-130.
[http://dx.doi.org/10.1016/j.breast.2018.05.002] [PMID: 29763858]
[3]
Haines, C.N.; Wardell, S.E.; McDonnell, D.P. Current and emerging estrogen receptor-targeted therapies for the treatment of breast cancer. Essays Biochem., 2021, 65(6), 985-1001.
[http://dx.doi.org/10.1042/EBC20200174] [PMID: 34328178]
[4]
Hankinson, S.E.; Willett, W.C.; Manson, J.E.; Colditz, G.A.; Hunter, D.J.; Spiegelman, D.; Barbieri, R.L.; Speizer, F.E. Plasma sex steroid hormone levels and risk of breast cancer in postmenopausal women. J. Natl. Cancer Inst., 1998, 90(17), 1292-1299.
[http://dx.doi.org/10.1093/jnci/90.17.1292] [PMID: 9731736]
[5]
Schairer, C.; Lubin, J.; Troisi, R.; Sturgeon, S.; Brinton, L.; Hoover, R. Menopausal estrogen and estrogen-progestin replacement therapy and breast cancer risk. JAMA, 2000, 283(4), 485-491.
[http://dx.doi.org/10.1001/jama.283.4.485] [PMID: 10659874]
[6]
Osborne, C.K.; Zhao, H.H.; Fuqua, S.A.W. Selective estrogen receptor modulators: Structure, function, and clinical use. J. Clin. Oncol., 2000, 18(17), 3172-3186.
[http://dx.doi.org/10.1200/JCO.2000.18.17.3172] [PMID: 10963646]
[7]
Oceguera-Basurto, P.; Topete, A.; Oceguera-Villanueva, A.; Rivas-Carrillo, J.; Paz-Davalos, M.; Quintero-Ramos, A.; Toro-Arreola, A.D.; Daneri-Navarro, A. Selective estrogen receptor modulators in the prevention of breast cancer in premenopausal women: A review. Transl. Cancer Res., 2020, 9(7), 4444-4456.
[http://dx.doi.org/10.21037/tcr-19-1956] [PMID: 35117809]
[8]
Enmark, E.; Pelto-Huikko, M.; Grandien, K.; Lagercrantz, S.; Lagercrantz, J.; Fried, G.; Nordenskjöld, M.; Gustafsson, J.A. Human estrogen receptor β-gene structure, chromosomal localization, and expression pattern. J. Clin. Endocrinol. Metab., 1997, 82(12), 4258-4265.
[http://dx.doi.org/10.1210/jc.82.12.4258] [PMID: 9398750]
[9]
Menasce, L.P.; White, G.R.; Harrison, C.J.; Boyle, J.M. Localization of the estrogen receptor locus (ESR) to chromosome 6q25. 1 by FISH and a simple post-FISH banding technique. Genomics, 1993, 17(1), 263-265.
[10]
Patel, H.K.; Bihani, T. Selective estrogen receptor modulators (SERMs) and selective estrogen receptor degraders (SERDs) in cancer treatment. Pharmacol. Ther., 2018, 186, 1-24.
[http://dx.doi.org/10.1016/j.pharmthera.2017.12.012] [PMID: 29289555]
[11]
Jameera Begam, A.; Jubie, S.; Nanjan, M.J. Estrogen receptor agonists/antagonists in breast cancer therapy: A critical review. Bioorg. Chem., 2017, 71, 257-274.
[http://dx.doi.org/10.1016/j.bioorg.2017.02.011] [PMID: 28274582]
[12]
Shao, W.; Brown, M. Advances in estrogen receptor biology: Prospects for improvements in targeted breast cancer therapy. Breast Cancer Res., 2003, 6(1), 39-52.
[http://dx.doi.org/10.1186/bcr742] [PMID: 14680484]
[13]
Geserick, C.; Meyer, H.A.; Haendler, B. The role of DNA response elements as allosteric modulators of steroid receptor function. Mol. Cell. Endocrinol., 2005, 236(1-2), 1-7.
[http://dx.doi.org/10.1016/j.mce.2005.03.007] [PMID: 15876478]
[14]
Edwards, D.P. The role of coactivators and corepressors in the biology and mechanism of action of steroid hormone receptors. J. Mammary Gland Biol. Neoplasia, 2000, 5(3), 307-324.
[http://dx.doi.org/10.1023/A:1009503029176] [PMID: 14973393]
[15]
Lee, H.R.; Kim, T.H.; Choi, K.C. Functions and physiological roles of two types of estrogen receptors, ERα and ERβ, identified by estrogen receptor knockout mouse. Lab. Anim. Res., 2012, 28(2), 71-76.
[http://dx.doi.org/10.5625/lar.2012.28.2.71] [PMID: 22787479]
[16]
Heldring, N.; Pike, A.; Andersson, S.; Matthews, J.; Cheng, G.; Hartman, J.; Tujague, M.; Ström, A.; Treuter, E.; Warner, M.; Gustafsson, J.Å. Estrogen receptors: How do they signal and what are their targets. Physiol. Rev., 2007, 87(3), 905-931.
[http://dx.doi.org/10.1152/physrev.00026.2006] [PMID: 17615392]
[17]
Kumar, R.; Zakharov, M. N.; Khan, S. H.; Miki, R.; Jang, H.; Toraldo, G.; Singh, R.; Bhasin, S.; Jasuja, R. The dynamic structure of the estrogen receptor. J. Amino Acids, 2011, 2011, 812540.
[http://dx.doi.org/10.4061/2011/812540]
[18]
Pawlak, M.; Lefebvre, P.; Staels, B. General molecular biology and architecture of nuclear receptors. Curr. Top. Med. Chem., 2012, 12(6), 486-504.
[http://dx.doi.org/10.2174/156802612799436641] [PMID: 22242852]
[19]
Kumar, V.; Chambon, P. The estrogen receptor binds tightly to its responsive element as a ligand-induced homodimer. Cell, 1988, 55(1), 145-156.
[http://dx.doi.org/10.1016/0092-8674(88)90017-7] [PMID: 3167974]
[20]
Shiau, A.K.; Barstad, D.; Loria, P.M.; Cheng, L.; Kushner, P.J.; Agard, D.A.; Greene, G.L. The structural basis of estrogen receptor/coactivator recognition and the antagonism of this interaction by tamoxifen. Cell, 1998, 95(7), 927-937.
[http://dx.doi.org/10.1016/S0092-8674(00)81717-1] [PMID: 9875847]
[21]
Hall, J.M.; McDonnell, D.P. Coregulators in nuclear estrogen receptor action: From concept to therapeutic targeting. Mol. Interv., 2005, 5(6), 343-357.
[http://dx.doi.org/10.1124/mi.5.6.7] [PMID: 16394250]
[22]
Carroll, J.S.; Meyer, C.A.; Song, J.; Li, W.; Geistlinger, T.R.; Eeckhoute, J.; Brodsky, A.S.; Keeton, E.K.; Fertuck, K.C.; Hall, G.F.; Wang, Q.; Bekiranov, S.; Sementchenko, V.; Fox, E.A.; Silver, P.A.; Gingeras, T.R.; Liu, X.S.; Brown, M. Genome-wide analysis of estrogen receptor binding sites. Nat. Genet., 2006, 38(11), 1289-1297.
[http://dx.doi.org/10.1038/ng1901] [PMID: 17013392]
[23]
Ikeda, K.; Horie-Inoue, K.; Inoue, S. Identification of estrogen-responsive genes based on the DNA binding properties of estrogen receptors using high-throughput sequencing technology. Acta Pharmacol. Sin., 2015, 36(1), 24-31.
[http://dx.doi.org/10.1038/aps.2014.123] [PMID: 25500870]
[24]
Fox, E.M.; Davis, R.J.; Shupnik, M.A. ERβ in breast cancer—Onlooker, passive player, or active protector? Steroids, 2008, 73(11), 1039-1051.
[http://dx.doi.org/10.1016/j.steroids.2008.04.006] [PMID: 18501937]
[25]
Orlando, L.; Schiavone, P.; Fedele, P.; Calvani, N.; Nacci, A.; Rizzo, P.; Marino, A.; D’Amico, M.; Sponziello, F.; Mazzoni, E.; Cinefra, M.; Fazio, N.; Maiello, E.; Silvestris, N.; Colucci, G.; Cinieri, S. Molecularly targeted endocrine therapies for breast cancer. Cancer Treat. Rev., 2010, 36(Suppl. 3), S67-S71.
[http://dx.doi.org/10.1016/S0305-7372(10)70023-2] [PMID: 21129614]
[26]
Swaby, R.F.; Sharma, C.G.N.; Jordan, V.C. SERMs for the treatment and prevention of breast cancer. Rev. Endocr. Metab. Disord., 2007, 8(3), 229-239.
[http://dx.doi.org/10.1007/s11154-007-9034-4] [PMID: 17440819]
[27]
Rebbeck, T.R.; Levin, A.M.; Eisen, A.; Snyder, C.; Watson, P.; Cannon-Albright, L.; Isaacs, C.; Olopade, O.; Garber, J.E.; Godwin, A.K.; Daly, M.B.; Narod, S.A.; Neuhausen, S.L.; Lynch, H.T.; Weber, B.L. Breast cancer risk after bilateral prophylactic oophorectomy in BRCA1 mutation carriers. J. Natl. Cancer Inst., 1999, 91(17), 1475-1479.
[http://dx.doi.org/10.1093/jnci/91.17.1475] [PMID: 10469748]
[28]
Park, W.; Jordan, V.C. Selective estrogen receptor modulators (SERMS) and their roles in breast cancer prevention. Trends Mol. Med., 2002, 8(2), 82-88.
[http://dx.doi.org/10.1016/S1471-4914(02)02282-7] [PMID: 11815274]
[29]
Jordan, V.C. The development of tamoxifen for breast cancer therapy: A tribute to the late Arthur L. Walpole. Breast Cancer Res. Treat., 1988, 11(3), 197-209.
[http://dx.doi.org/10.1007/BF01807278] [PMID: 3048447]
[30]
Richardson, D.N. The history of Nolvadex. Drug Des. Deliv., 1988, 3(1), 1-14.
[PMID: 3076390]
[31]
Cole, M.P.; Jones, C.T.A.; Todd, I.D.H. A new anti-oestrogenic agent in late breast cancer. An early clinical appraisal of ICI46474. Br. J. Cancer, 1971, 25(2), 270-275.
[http://dx.doi.org/10.1038/bjc.1971.33] [PMID: 5115829]
[32]
Love, R.R.; Mazess, R.B.; Barden, H.S.; Epstein, S.; Newcomb, P.A.; Jordan, V.C.; Carbone, P.P.; DeMets, D.L. Effects of tamoxifen on bone mineral density in postmenopausal women with breast cancer. N. Engl. J. Med., 1992, 326(13), 852-856.
[http://dx.doi.org/10.1056/NEJM199203263261302] [PMID: 1542321]
[33]
Shelly, W.; Draper, M.W.; Krishnan, V.; Wong, M.; Jaffe, R.B. Selective estrogen receptor modulators: An update on recent clinical findings. Obstet. Gynecol. Surv., 2008, 63(3), 163-181.
[http://dx.doi.org/10.1097/OGX.0b013e31816400d7] [PMID: 18279543]
[34]
Lippman, M.; Bolan, G. Oestrogen-responsive human breast cancer in long term tissue culture. Nature, 1975, 256(5518), 592-593.
[http://dx.doi.org/10.1038/256592a0] [PMID: 170527]
[35]
Jordan, V.C.; Robinson, S.P. Species-specific pharmacology of antiestrogens: Role of metabolism. Fed. Proc., 1987, 46(5), 1870-1874.
[PMID: 3556610]
[36]
Jordan, V.C. Effect of tamoxifen (ICI 46,474) on initiation and growth of DMBA-induced rat mammary carcinomata. Eur. J. Cancer, 1976, 12(6), 419-424.
[http://dx.doi.org/10.1016/0014-2964(76)90030-X] [PMID: 821733]
[37]
Gottardis, M.M.; Robinson, S.P.; Satyaswaroop, P.G.; Jordan, V.C. Contrasting actions of tamoxifen on endometrial and breast tumor growth in the athymic mouse. Cancer Res., 1988, 48(4), 812-815.
[PMID: 3338079]
[38]
Gambacciani, M. Selective estrogen modulators in menopause. Minerva Ginecol., 2013, 65(6), 621-630.
[PMID: 24346250]
[39]
Pinkerton, J.V.; Thomas, S. Use of SERMs for treatment in postmenopausal women. J. Steroid Biochem. Mol. Biol., 2014, 142, 142-154.
[http://dx.doi.org/10.1016/j.jsbmb.2013.12.011] [PMID: 24373794]
[40]
Labrie, F.; Labrie, C.; Bélanger, A.; Simard, J.; Gauthier, S.; Luu-The, V.; Mérand, Y.; Giguere, V.; Candas, B.; Luo, S.; Martel, C.; Singh, S.M.; Fournier, M.; Coquet, A.; Richard, V.; Charbonneau, R.; Charpenet, G.; Tremblay, A.; Tremblay, G.; Cusan, L.; Veilleux, R. EM-652 (SCH 57068), a third generation SERM acting as pure antiestrogen in the mammary gland and endometrium. J. Steroid Biochem. Mol. Biol., 1999, 69(1-6), 51-84.
[http://dx.doi.org/10.1016/S0960-0760(99)00065-5] [PMID: 10418981]
[41]
Jensen, E. Steroid hormones, receptors, and antagonists. Ann. N. Y. Acad. Sci., 1996, 784(1), 1-17.
[http://dx.doi.org/10.1111/j.1749-6632.1996.tb16223.x] [PMID: 8651563]
[42]
MacGregor, J.I.; Jordan, V.C. Basic guide to the mechanisms of antiestrogen action. Pharmacol. Rev., 1998, 50(2), 151-196.
[PMID: 9647865]
[43]
Delmas, P.D.; Bjarnason, N.H.; Mitlak, B.H.; Ravoux, A.C.; Shah, A.S.; Huster, W.J.; Draper, M.; Christiansen, C. Effects of raloxifene on bone mineral density, serum cholesterol concentrations, and uterine endometrium in postmenopausal women. N. Engl. J. Med., 1997, 337(23), 1641-1647.
[http://dx.doi.org/10.1056/NEJM199712043372301] [PMID: 9385122]
[44]
Kuiper, G.G.J.M.; van den Bemd, G.J.C.M.; van Leeuwen, J.P.T.M. Estrogen receptor and the SERM concept. J. Endocrinol. Invest., 1999, 22(8), 594-603.
[http://dx.doi.org/10.1007/BF03343616] [PMID: 10532246]
[45]
Jordan, V.C. Selective estrogen receptor modulation. Cancer Cell, 2004, 5(3), 207-213.
[http://dx.doi.org/10.1016/S1535-6108(04)00059-5] [PMID: 15050912]
[46]
Dunn, B.; Anthony, M.; Arun, B. The search for the ideal SERM. Expert Opin. Pharmacother., 2002, 3(6), 681-691.
[http://dx.doi.org/10.1517/14656566.3.6.681] [PMID: 12036407]
[47]
Schiff, R.; Massarweh, S.A.; Shou, J.; Bharwani, L.; Arpino, G.; Rimawi, M.; Osborne, C.K. Advanced concepts in estrogen receptor biology and breast cancer endocrine resistance: Implicated role of growth factor signaling and estrogen receptor coregulators. Cancer Chemother. Pharmacol., 2005, 56(S1), 10-20.
[http://dx.doi.org/10.1007/s00280-005-0108-2] [PMID: 16273359]
[48]
Colleoni, M.; Munzone, E. Navigating the challenges of endocrine treatments in premenopausal women with ERpositive early breast cancer. Drugs, 2015, 75(12), 1311-1321.
[http://dx.doi.org/10.1007/s40265-015-0433-7] [PMID: 26177891]
[49]
Riggs, B.L.; Hartmann, L.C. Selective estrogen-receptor modulators - mechanisms of action and application to clinical practice. N. Engl. J. Med., 2003, 348(7), 618-629.
[http://dx.doi.org/10.1056/NEJMra022219] [PMID: 12584371]
[50]
Gruber, C.J.; Tschugguel, W.; Schneeberger, C.; Huber, J.C. Production and actions of estrogens. N. Engl. J. Med., 2002, 346(5), 340-352.
[http://dx.doi.org/10.1056/NEJMra000471] [PMID: 11821512]
[51]
Marín, F.; Barbancho, M.C. Clinical pharmacology of selective estrogen receptor modulators (SERMs). In: Selective Estrogen Receptor Modulators; Springer, 2006; pp. 49-69.
[http://dx.doi.org/10.1007/3-540-34742-9_2]
[52]
Palacios, S. The future of the new selective estrogen receptor modulators. Menopause Int., 2007, 13(1), 27-34.
[http://dx.doi.org/10.1258/175404507780456791] [PMID: 17448265]
[53]
Taylor, H.S. Designing the ideal selective estrogen receptor modulator-an achievable goal? Menopause, 2009, 16(3), 609-615.
[http://dx.doi.org/10.1097/gme.0b013e3181906fa3] [PMID: 19182697]
[54]
Lewis, J.S.; Jordan, V.C. Selective estrogen receptor modulators (SERMs): Mechanisms of anticarcinogenesis and drug resistance. Mutat. Res., 2005, 591(1-2), 247-263.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.02.028] [PMID: 16083919]
[55]
Jordan, V.C.; Gapstur, S.; Morrow, M. Selective estrogen receptor modulation and reduction in risk of breast cancer, osteoporosis, and coronary heart disease. J. Natl. Cancer Inst., 2001, 93(19), 1449-1457.
[http://dx.doi.org/10.1093/jnci/93.19.1449] [PMID: 11584060]
[56]
Chauhan, N.; Maher, D.M.; Yallapu, M.M.; Hafeez, B.; Singh, M.M.; Chauhan, S.C.; Jaggi, M. A triphenylethylene nonsteroidal SERM attenuates cervical cancer growth. Sci. Rep., 2019, 9(1), 1-12.
[http://dx.doi.org/10.1038/s41598-019-46680-0] [PMID: 30626917]
[57]
Jordan, V.C.; Morrow, M. Tamoxifen, raloxifene, and the prevention of breast cancer. Endocr. Rev., 1999, 20(3), 253-278.
[PMID: 10368771]
[58]
Vogel, C.L. Phase II and III clinical trials of toremifene for metastatic breast cancer. Oncology (Williston Park), 1998, 12(3)(Suppl. 5), 9-13.
[PMID: 9556785]
[59]
Vogel, V.G.; Costantino, J.P.; Wickerham, D.L.; Cronin, W.M.; Cecchini, R.S.; Atkins, J.N.; Bevers, T.B.; Fehrenbacher, L.; Pajon, E.R., Jr; Wade, J.L., III; Robidoux, A.; Margolese, R.G.; James, J.; Lippman, S.M.; Runowicz, C.D.; Ganz, P.A.; Reis, S.E.; McCaskill-Stevens, W.; Ford, L.G.; Jordan, V.C.; Wolmark, N. Effects of tamoxifen vs. raloxifene on the risk of developing invasive breast cancer and other disease outcomes: The NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA, 2006, 295(23), 2727-2741.
[http://dx.doi.org/10.1001/jama.295.23.joc60074] [PMID: 16754727]
[60]
Ghasemnejad-Berenji, M.; Pashapour, S.; Ghasemnejad-Berenji, H. Therapeutic potential for clomiphene, a selective estrogen receptor modulator, in the treatment of COVID‐19. Med. Hypotheses, 2020, 145, 110354.
[http://dx.doi.org/10.1016/j.mehy.2020.110354] [PMID: 33129007]
[61]
Elkinson, S.; Yang, L.P.H. Ospemifene: First global approval. Drugs, 2013, 73(6), 605-612.
[http://dx.doi.org/10.1007/s40265-013-0046-y] [PMID: 23605694]
[62]
Komi, J.; Lankinen, K.S.; Härkönen, P.; DeGregorio, M.W.; Voipio, S.; Kivinen, S.; Tuimala, R.; Vihtamäki, T.; Vihko, K.; Ylikorkala, O.; Erkkola, R. Effects of ospemifene and raloxifene on hormonal status, lipids, genital tract, and tolerability in postmenopausal women. Menopause, 2005, 12(2), 202-209.
[http://dx.doi.org/10.1097/00042192-200512020-00015] [PMID: 15772568]
[63]
Bruning, P.F. Droloxifene, a new anti-oestrogen in postmenopausal advanced breast cancer: Preliminary results of a double-blind dose-finding phase II trial. Eur. J. Cancer, 1992, 28(8-9), 1404-1407.
[http://dx.doi.org/10.1016/0959-8049(92)90530-F] [PMID: 1515258]
[64]
Jordan, V.C.; Furr, B.J. Recent Progress in Breast Cancer Research. In: Hormone Therapy in Breast and Prostate Cancer; American Cancer Society: USA, 2009; pp. 385-408.
[65]
Roos, W.; Oeze, L.; Löser, R.; Eppenberger, U. Antiestrogenic action of 3-hydroxytamoxifen in the human breast cancer cell line MCF-7. J. Natl. Cancer Inst., 1983, 71(1), 55-59.
[PMID: 6575210]
[66]
Savolainen-Peltonen, H.; Luoto, N.M.; Kangas, L.; Häyry, P. Selective estrogen receptor modulators prevent neointima formation after vascular injury. Mol. Cell. Endocrinol., 2004, 227(1-2), 9-20.
[http://dx.doi.org/10.1016/j.mce.2004.08.004] [PMID: 15501580]
[67]
Arpino, G.; Nair Krishnan, M.; Doval Dinesh, C.; Bardou, V.J.; Clark, G.M.; Elledge, R.M. Idoxifene versus tamoxifen: A randomized comparison in postmenopausal patients with metastatic breast cancer. Ann. Oncol., 2003, 14(2), 233-241.
[http://dx.doi.org/10.1093/annonc/mdg097] [PMID: 12562650]
[68]
Gumbrell, L.A.; Evans, T.R.J.; Coleman, R.E.; Smith, I.E.; Twelves, C.J.; Soukop, M.; Rea, D.W.; Earl, H.M.; Howell, A.; Jones, A.; Canney, P.; Powles, T.J.; Haynes, B.P.; Nutley, B.; Grimshaw, R.; Jarman, M.; Halbert, G.W.; Brampton, M.; Haviland, J.; Dowsett, M.; Coombes, R.C.; Johnston, S.R.D. A Cancer Research (UK) randomized phase II study of idoxifene in patients with locally advanced/metastatic breast cancer resistant to tamoxifen. Cancer Chemother. Pharmacol., 2004, 53(4), 341-348.
[http://dx.doi.org/10.1007/s00280-003-0733-6] [PMID: 14722733]
[69]
Nomura, Y.; Nakajima, M.; Tominaga, T.; Abe, O. Late phase II study of TAT-59 (miproxifene phospate) in advanced or recurrent breast cancer patients (a double-blind comparative study with tamoxifen citrate). Gan To Kagaku Ryoho, 1998, 25(7), 1045-1063.
[PMID: 9644320]
[70]
Toko, T.; Sugimoto, Y.; Matsuo, K.I.; Yamasaki, R.; Takeda, S.; Wierzba, K.; Asao, T.; Yamada, Y. TAT-59, a new triphenylethylene derivative with antitumor activity against hormone-dependent tumors. Eur. J. Cancer Clin. Oncol., 1990, 26(3), 397-404.
[http://dx.doi.org/10.1016/0277-5379(90)90241-K] [PMID: 2141500]
[71]
Elnakib, H.E.; Ramsis, M.M.; Albably, N.O.; Vector, M.A.; Weigand, J.J.; Schwedtmann, K.; Wober, J.; Zierau, O.; Vollmer, G.; Abadi, A.H.; Ahmed, N.S. Manipulating estrogenic/anti-estrogenic activity of triphenylethylenes towards development of novel anti-neoplastic SERMs. Int. J. Mol. Sci., 2021, 22(22), 12575.
[http://dx.doi.org/10.3390/ijms222212575] [PMID: 34830456]
[72]
Zhao, L.M.; Jin, H.S.; Liu, J.; Skaar, T.C.; Ipe, J.; Lv, W.; Flockhart, D.A.; Cushman, M. A new Suzuki synthesis of triphenylethylenes that inhibit aromatase and bind to estrogen receptors α and β. Bioorg. Med. Chem., 2016, 24(21), 5400-5409.
[http://dx.doi.org/10.1016/j.bmc.2016.08.064] [PMID: 27647367]
[73]
Lv, W.; Liu, J.; Skaar, T.C.; O’Neill, E.; Yu, G.; Flockhart, D.A.; Cushman, M. Synthesis of triphenylethylene bisphenols as aromatase inhibitors that also modulate estrogen receptors. J. Med. Chem., 2016, 59(1), 157-170.
[http://dx.doi.org/10.1021/acs.jmedchem.5b01677] [PMID: 26704594]
[74]
Bitonti, A.J.; Baumann, R.J.; Bush, T.L.; Cashman, E.A.; Wright, C.L.; Prakash, N.J. Antitumor and chemopreventive effects of a clomiphene analog, MDL 103,323, in mammary carcinoma. Anticancer Res., 1996, 16(5A), 2553-2557.
[PMID: 8917350]
[75]
Bourrin, S.; Ammann, P.; Bonjour, J.P.; Rizzoli, R. Recovery of proximal tibia bone mineral density and strength, but not cancellous bone architecture, after long-term bisphosphonate or selective estrogen receptor modulator therapy in aged rats. Bone, 2002, 30(1), 195-200.
[http://dx.doi.org/10.1016/S8756-3282(01)00661-5] [PMID: 11792585]
[76]
Chavassieux, P.; Garnero, P.; Duboeuf, F.; Vergnaud, P.; Brunner-Ferber, F.; Delmas, P.D.; Meunier, P.J. Effects of a new selective estrogen receptor modulator (MDL 103,323) on cancellous and cortical bone in ovariectomized ewes: A biochemical, histomorphometric, and densitometric study. J. Bone Miner. Res., 2001, 16(1), 89-96.
[http://dx.doi.org/10.1359/jbmr.2001.16.1.89] [PMID: 11149494]
[77]
Robertson, D.W.; Katzenellenbogen, J.A.; Hayes, J.R.; Katzenellenbogen, B.S. Antiestrogen basicity-activity relationships: A comparison of the estrogen receptor binding and antiuterotrophic potencies of several analogs of (Z)-1,2-diphenyl-1-[4-[2-(dimethylamino)ethoxy]phenyl]-1-butene (Tamoxifen, Nolvadex) having altered basicity. J. Med. Chem., 1982, 25(2), 167-171.
[http://dx.doi.org/10.1021/jm00344a015] [PMID: 7057423]
[78]
Robertson, D.W.; Katzenellenbogen, J.A.; Long, D.J.; Rorke, E.A.; Katzenellenbogen, B.S. Tamoxifen antiestrogens. A comparison of the activity, pharmacokinetics, and metabolic activation of the cis and trans isomers of tamoxifen. J. Steroid Biochem., 1982, 16(1), 1-13.
[http://dx.doi.org/10.1016/0022-4731(82)90137-6] [PMID: 7062732]
[79]
Bai, C.; Wu, S.; Ren, S.; Zhu, M.; Luo, G.; Xiang, H. Benzothiophene derivatives as selective estrogen receptor covalent antagonists: Design, synthesis and anti-ERα activities. Bioorg. Med. Chem., 2021, 47, 116395.
[http://dx.doi.org/10.1016/j.bmc.2021.116395] [PMID: 34509864]
[80]
Dayan, G.; Lupien, M.; Auger, A.; Anghel, S.I.; Rocha, W.; Croisetière, S.; Katzenellenbogen, J.A.; Mader, S. Tamoxifen and raloxifene differ in their functional interactions with aspartate 351 of estrogen receptor α. Mol. Pharmacol., 2006, 70(2), 579-588.
[http://dx.doi.org/10.1124/mol.105.021931] [PMID: 16679488]
[81]
Palkowitz, A.D.; Glasebrook, A.L.; Thrasher, K.J.; Hauser, K.L.; Short, L.L.; Phillips, D.L.; Muehl, B.S.; Sato, M.; Shetler, P.K.; Cullinan, G.J.; Pell, T.R.; Bryant, H.U. Discovery and synthesis of [6-Hydroxy-3-[4-[2-(1-piperidinyl)ethoxy]phenoxy]-2-(4-hydroxyphenyl)]benzo[ b]thiophene: A novel, highly potent, selective estrogen receptor modulator. J. Med. Chem., 1997, 40(10), 1407-1416.
[http://dx.doi.org/10.1021/jm970167b] [PMID: 9154963]
[82]
Deshmane, V.; Krishnamurthy, S.; Melemed, A.S.; Peterson, P.; Buzdar, A.U. Phase III double-blind trial of arzoxifene compared with tamoxifen for locally advanced or metastatic breast cancer. J. Clin. Oncol., 2007, 25(31), 4967-4973.
[http://dx.doi.org/10.1200/JCO.2006.09.5992] [PMID: 17971595]
[83]
Gizzo, S.; Saccardi, C.; Patrelli, T.S.; Berretta, R.; Capobianco, G.; Gangi, S.D.; Vacilotto, A.; Bertocco, A.; Noventa, M.; Ancona, E.; D’Antona, D.; Nardelli, G.B. Update on Raloxifene. Obstet. Gynecol. Surv., 2013, 68(6), 467-481.
[http://dx.doi.org/10.1097/OGX.0b013e31828baef9] [PMID: 23942473]
[84]
Hong, S.; Chang, J.; Jeong, K.; Lee, W. Raloxifene as a treatment option for viral infections. J. Microbiol., 2021, 59(2), 124-131.
[http://dx.doi.org/10.1007/s12275-021-0617-7] [PMID: 33527314]
[85]
Baselga, J.; Llombart-Cussac, A.; Bellet, M.; Guillem-Porta, V.; Enas, N.; Krejcy, K.; Carrasco, E.; Kayitalire, L.; Kuta, M.; Lluch, A.; Vodvarka, P.; Kerbrat, P.; Namer, M.; Petruzelka, L. Randomized, double-blind, multicenter trial comparing two doses of arzoxifene (LY353381) in hormone-sensitive advanced or metastatic breast cancer patients. Ann. Oncol., 2003, 14(9), 1383-1390.
[http://dx.doi.org/10.1093/annonc/mdg368] [PMID: 12954577]
[86]
Bolognese, M.; Krege, J.H.; Utian, W.H.; Feldman, R.; Broy, S.; Meats, D.L.; Alam, J.; Lakshmanan, M.; Omizo, M. Effects of arzoxifene on bone mineral density and endometrium in postmenopausal women with normal or low bone mass. J. Clin. Endocrinol. Metab., 2009, 94(7), 2284-2289.
[http://dx.doi.org/10.1210/jc.2008-2143] [PMID: 19351734]
[87]
Gombos, A. Selective oestrogen receptor degraders in breast cancer. Curr. Opin. Oncol., 2019, 31(5), 424-429.
[http://dx.doi.org/10.1097/CCO.0000000000000567] [PMID: 31335829]
[88]
Bai, C.; Ren, S.; Wu, S.; Zhu, M.; Luo, G.; Xiang, H. Design and synthesis of novel benzothiophene analogs as selective estrogen receptor covalent antagonists against breast cancer. Eur. J. Med. Chem., 2021, 221, 113543.
[http://dx.doi.org/10.1016/j.ejmech.2021.113543] [PMID: 34022716]
[89]
Lu, Y.; Gutgesell, L.M.; Xiong, R.; Zhao, J.; Li, Y.; Rosales, C.I.; Hollas, M.; Shen, Z.; Gordon-Blake, J.; Dye, K.; Wang, Y.; Lee, S.; Chen, H.; He, D.; Dubrovyskyii, O.; Zhao, H.; Huang, F.; Lasek, A.W.; Tonetti, D.A.; Thatcher, G.R.J. Design and synthesis of basic selective estrogen receptor degraders for endocrine therapy resistant breast cancer. J. Med. Chem., 2019, 62(24), 11301-11323.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01580] [PMID: 31746603]
[90]
Grese, T.A.; Cho, S.; Finley, D.R.; Godfrey, A.G.; Jones, C.D.; Lugar, C.W., III; Martin, M.J.; Matsumoto, K.; Pennington, L.D.; Winter, M.A.; Adrian, M.D.; Cole, H.W.; Magee, D.E.; Phillips, D.L.; Rowley, E.R.; Short, L.L.; Glasebrook, A.L.; Bryant, H.U. Structure-activity relationships of selective estrogen receptor modulators: Modifications to the 2-arylbenzothiophene core of raloxifene. J. Med. Chem., 1997, 40(2), 146-167.
[http://dx.doi.org/10.1021/jm9606352] [PMID: 9003514]
[91]
Lambrinidis, G.; Gouedard, C.; Stasinopoulou, S.; Angelopoulou, A.; Ganou, V.; Meligova, A.K.; Mitsiou, D.J.; Marakos, P.; Pouli, N.; Mikros, E.; Alexis, M.N. Design, synthesis, and biological evaluation of new raloxifene analogues of improved antagonist activity and endometrial safety. Bioorg. Chem., 2021, 106, 104482.
[http://dx.doi.org/10.1016/j.bioorg.2020.104482] [PMID: 33272706]
[92]
Qin, Z.; Kastrati, I.; Chandrasena, R.E.P.; Liu, H.; Yao, P.; Petukhov, P.A.; Bolton, J.L.; Thatcher, G.R.J. Benzothiophene selective estrogen receptor modulators with modulated oxidative activity and receptor affinity. J. Med. Chem., 2007, 50(11), 2682-2692.
[http://dx.doi.org/10.1021/jm070079j] [PMID: 17489582]
[93]
Kaur, K.; Jaitak, V. Recent development in indole derivatives as anticancer agents for breast cancer. Anticancer. Agents Med. Chem., 2019, 19(8), 962-983.
[http://dx.doi.org/10.2174/1871520619666190312125602] [PMID: 30864529]
[94]
Goldberg, T.; Fidler, B. Conjugated estrogens/bazedoxifene (Duavee): A novel agent for the treatment of moderate-to-severe vasomotor symptoms associated with menopause and the prevention of postmenopausal osteoporosis. P&T, 2015, 40(3), 178-182.
[PMID: 25798038]
[95]
Miller, C.P.; Collini, M.D.; Tran, B.D.; Harris, H.A.; Kharode, Y.P.; Marzolf, J.T.; Moran, R.A.; Henderson, R.A.; Bender, R.H.W.; Unwalla, R.J.; Greenberger, L.M.; Yardley, J.P.; Abou-Gharbia, M.A.; Lyttle, C.R.; Komm, B.S. Design, synthesis, and preclinical characterization of novel, highly selective indole estrogens. J. Med. Chem., 2001, 44(11), 1654-1657.
[http://dx.doi.org/10.1021/jm010086m] [PMID: 11356100]
[96]
Placios, S.; Mejía Ríos, A. Bazedoxifene/conjugated estrogens combination for the treatment of the vasomotor symptoms associated with menopause and for prevention of osteoporosis in postmenopausal women. Drugs Today (Barc), 2015, 51(2), 107-116.
[http://dx.doi.org/10.1358/dot.2015.51.2.2281023] [PMID: 25756066]
[97]
Sorbera, L.A.; Castañer, J.; Silvestre, J.S. Pipendoxifene. Drugs Future, 2002, 27(10), 942-947.
[http://dx.doi.org/10.1358/dof.2002.027.10.703467]
[98]
Makar, S.; Saha, T.; Swetha, R.; Gutti, G.; Kumar, A.; Singh, S.K. Rational approaches of drug design for the development of selective estrogen receptor modulators (SERMs), implicated in breast cancer. Bioorg. Chem., 2020, 94, 103380.
[http://dx.doi.org/10.1016/j.bioorg.2019.103380] [PMID: 31757413]
[99]
Karadayi, F.Z.; Yaman, M.; Kisla, M.M.; Keskus, A.G.; Konu, O.; Ates-Alagoz, Z. Design, synthesis and anticancer/antiestrogenic activities of novel indolebenzimidazoles. Bioorg. Chem., 2020, 100, 103929.
[http://dx.doi.org/10.1016/j.bioorg.2020.103929] [PMID: 32464404]
[100]
Wang, T.; Milner, M.; Milner, J.; Kim, Y. Estrogen receptor α as a target for indole-3-carbinol. J. Nutr. Biochem., 2006, 17(10), 659-664.
[http://dx.doi.org/10.1016/j.jnutbio.2005.10.012] [PMID: 16488130]
[101]
Singla, R.; Gupta, K.B.; Upadhyay, S.; Dhiman, M.; Jaitak, V. Design, synthesis and biological evaluation of novel indole-benzimidazole hybrids targeting estrogen receptor alpha (ER-α). Eur. J. Med. Chem., 2018, 146, 206-219.
[http://dx.doi.org/10.1016/j.ejmech.2018.01.051] [PMID: 29407951]
[102]
Singla, R.; Gupta, K.B.; Upadhyay, S.; Dhiman, M.; Jaitak, V. Design, synthesis and biological evaluation of novel indole-xanthendione hybrids as selective estrogen receptor modulators. Bioorg. Med. Chem., 2018, 26(1), 266-277.
[http://dx.doi.org/10.1016/j.bmc.2017.11.040] [PMID: 29198894]
[103]
De Savi, C.; Bradbury, R.H.; Rabow, A.A.; Norman, R.A.; de Almeida, C.; Andrews, D.M.; Ballard, P.; Buttar, D.; Callis, R.J.; Currie, G.S.; Curwen, J.O.; Davies, C.D.; Donald, C.S.; Feron, L.J.L.; Gingell, H.; Glossop, S.C.; Hayter, B.R.; Hussain, S.; Karoutchi, G.; Lamont, S.G.; MacFaul, P.; Moss, T.A.; Pearson, S.E.; Tonge, M.; Walker, G.E.; Weir, H.M.; Wilson, Z. Optimization of a novel binding motif to (E)-3-(3,5-difluoro-4-((1 R, 3 R)-2-(2-fluoro-2-methylpropyl)-3-methyl-2, 3, 4, 9-tetrahydro-1 H-pyrido [3, 4-b] indol-1-yl) phenyl) acrylic Acid (AZD9496), a potent and orally bioavailable selective estrogen receptor downregulator and antagonist. J. Med. Chem., 2015, 58(20), 8128-8140.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00984] [PMID: 26407012]
[104]
Ji, Q.; Gao, J.; Wang, J.; Yang, C.; Hui, X.; Yan, X.; Wu, X.; Xie, Y.; Wang, M.W. Benzothieno[3,2-b]indole derivatives as potent selective estrogen receptor modulators. Bioorg. Med. Chem. Lett., 2005, 15(11), 2891-2893.
[http://dx.doi.org/10.1016/j.bmcl.2005.03.111] [PMID: 15911274]
[105]
Weir, H.M.; Bradbury, R.H.; Lawson, M.; Rabow, A.A.; Buttar, D.; Callis, R.J.; Curwen, J.O.; de Almeida, C.; Ballard, P.; Hulse, M.; Donald, C.S.; Feron, L.J.L.; Karoutchi, G.; MacFaul, P.; Moss, T.; Norman, R.A.; Pearson, S.E.; Tonge, M.; Davies, G.; Walker, G.E.; Wilson, Z.; Rowlinson, R.; Powell, S.; Sadler, C.; Richmond, G.; Ladd, B.; Pazolli, E.; Mazzola, A.M.; D’Cruz, C.; De Savi, C. AZD9496: An oral estrogen receptor inhibitor that blocks the growth of ER-positive and ESR1-mutant breast tumors in preclinical models. Cancer Res., 2016, 76(11), 3307-3318.
[http://dx.doi.org/10.1158/0008-5472.CAN-15-2357] [PMID: 27020862]
[106]
Croxtall, J.D.; McKeage, K. Fulvestrant. Drugs, 2011, 71(3), 363-380.
[http://dx.doi.org/10.2165/11204810-000000000-00000] [PMID: 21319872]
[107]
Hu, X.F.; Veroni, M.; de Luise, M.; Wakeling, A.; Sutherland, R.; Watts, C.K.W.; Zalcberg, J.R. Circumvention of tamoxifen resistance by the pure anti-estrogen ICI 182, 780. Int. J. Cancer, 1993, 55(5), 873-876.
[http://dx.doi.org/10.1002/ijc.2910550529] [PMID: 8244585]
[108]
Harrison, M.; Laight, A.; Clarke, D.; Giles, P.; Yates, Y. 564 Pharmacokinetics and metabolism of fulvestrant after oral, intravenous and intramuscular administration in healthy volunteers. Eur. J. Cancer, Suppl., 2003, 1(5), S171.
[http://dx.doi.org/10.1016/S1359-6349(03)90596-9]
[109]
Gardner, M.; Taylor, A.; Wei, G.; Calcagni, A., Jr; Duncan, B.; Milton, A. Clinical pharmacology of multiple doses of lasofoxifene in postmenopausal women. J. Clin. Pharmacol., 2006, 46(1), 52-58.
[http://dx.doi.org/10.1177/0091270005283280] [PMID: 16397284]
[110]
Fontalis, A.; Kenanidis, E.; Kotronias, R.A.; Papachristou, A.; Anagnostis, P.; Potoupnis, M.; Tsiridis, E. Current and emerging osteoporosis pharmacotherapy for women: State of the art therapies for preventing bone loss. Expert Opin. Pharmacother., 2019, 20(9), 1123-1134.
[http://dx.doi.org/10.1080/14656566.2019.1594772] [PMID: 30958709]
[111]
Liu, J.; Rajasekaran, N.; Hossain, A.; Zhang, C.; Guo, S.; Kang, B.; Jung, H.; Kim, H.; Wang, G. Fulvestrant-3-boronic acid (ZB716) demonstrates oral bioavailability and favorable pharmacokinetic profile in preclinical ADME studies. Pharmaceuticals (Basel), 2021, 14(8), 719.
[http://dx.doi.org/10.3390/ph14080719] [PMID: 34451816]
[112]
Wallace, O.B.; Bryant, H.U.; Shetler, P.K.; Adrian, M.D.; Geiser, A.G. Benzothiophene and naphthalene derived constrained SERMs. Bioorg. Med. Chem. Lett., 2004, 14(20), 5103-5106.
[http://dx.doi.org/10.1016/j.bmcl.2004.07.072] [PMID: 15380208]
[113]
Liu, J.; Birzin, E.T.; Chan, W.; Yang, Y.T.; Pai, L.Y.; DaSilva, C.; Hayes, E.C.; Mosley, R.T.; DiNinno, F.; Rohrer, S.P.; Schaeffer, J.M.; Hammond, M.L. Estrogen receptor ligands. Part 11: Synthesis and activity of isochromans and isothiochromans. Bioorg. Med. Chem. Lett., 2005, 15(3), 715-718.
[http://dx.doi.org/10.1016/j.bmcl.2004.11.018] [PMID: 15664843]
[114]
Frotscher, M.; Ziegler, E.; Marchais-Oberwinkler, S.; Kruchten, P.; Neugebauer, A.; Fetzer, L.; Scherer, C.; Müller-Vieira, U.; Messinger, J.; Thole, H.; Hartmann, R.W. Design, synthesis, and biological evaluation of (hydroxyphenyl)naphthalene and -quinoline derivatives: potent and selective nonsteroidal inhibitors of 17β-hydroxysteroid dehydrogenase type 1 (17β-HSD1) for the treatment of estrogen-dependent diseases. J. Med. Chem., 2008, 51(7), 2158-2169.
[http://dx.doi.org/10.1021/jm701447v] [PMID: 18324762]
[115]
Kabra, R.; Allagh, K.P.; Ali, M.; Jayathilaka, C.A.; Mwinga, K.; Kiarie, J. Scoping review to map evidence on mechanism of action, pharmacokinetics, effectiveness and side effects of centchroman as a contraceptive pill. BMJ Open, 2019, 9(10), e030373.
[http://dx.doi.org/10.1136/bmjopen-2019-030373] [PMID: 31594884]
[116]
Makker, A.; Tandon, I.; Goel, M.M.; Singh, M.; Singh, M.M. Effect of ormeloxifene, a selective estrogen receptor modulator, on biomarkers of endometrial receptivity and pinopode development and its relation to fertility and infertility in Indian subjects. Fertil. Steril., 2009, 91(6), 2298-2307.
[http://dx.doi.org/10.1016/j.fertnstert.2008.04.018] [PMID: 18675966]
[117]
Ravn, P.; Nielsen, T.F.; Christiansen, C. What can be learned from the levormeloxifene experience? Acta Obstet. Gynecol. Scand., 2006, 85(2), 135-142.
[http://dx.doi.org/10.1080/00016340500345691] [PMID: 16532904]
[118]
Elkak, A.E.; Mokbel, K. Pure antiestrogens and breast cancer. Curr. Med. Res. Opin., 2001, 17(4), 282-289.
[http://dx.doi.org/10.1185/0300799019117015] [PMID: 11922402]
[119]
Dubey, R.; Kant, R.; Pandey, J. Design, synthesis and biological activity evaluation of carboxylic acid derivatives of substituted 2, 3-diphenyl-2H-1-benzopyrans as novel selective estrogen receptor modulators. Chem. Biol. Lett., 2020, 7(3), 183-191.
[120]
Lu, X.; Teng, Y.; Lin, X.; Xiao, M.; Liu, C.; Chi, X.; Zhang, Y.; Luo, G.; Xiang, H. Discovery of novel 2Hchromene-3-carbonyl derivatives as selective estrogen receptor degraders (SERDs): Design, synthesis and biological evaluation. Bioorg. Chem., 2021, 109, 104714.
[http://dx.doi.org/10.1016/j.bioorg.2021.104714] [PMID: 33618254]
[121]
McKie, J.A.; Bhagwat, S.S.; Brady, H.; Doubleday, M.; Gayo, L.; Hickman, M.; Jalluri, R.K.; Khammungkhune, S.; Kois, A.; Mortensen, D.; Richard, N.; Sapienza, J.; Shevlin, G.; Stein, B.; Sutherland, M. Lead identification of a potent benzopyranone selective estrogen receptor modulator. Bioorg. Med. Chem. Lett., 2004, 14(13), 3407-3410.
[http://dx.doi.org/10.1016/j.bmcl.2004.04.081] [PMID: 15177442]
[122]
Grese, T.A.; Pennington, L.D.; Sluka, J.P.; Adrian, M.D.; Cole, H.W.; Fuson, T.R.; Magee, D.E.; Phillips, D.L.; Rowley, E.R.; Shetler, P.K.; Short, L.L.; Venugopalan, M.; Yang, N.N.; Sato, M.; Glasebrook, A.L.; Bryant, H.U. Synthesis and pharmacology of conformationally restricted raloxifene analogues: Highly potent selective estrogen receptor modulators. J. Med. Chem., 1998, 41(8), 1272-1283.
[http://dx.doi.org/10.1021/jm970688z] [PMID: 9548817]
[123]
Singh, A.; Kaur, H.; Arora, S.; Bedi, P.M.S. Design, synthesis, and biological evaluation of novel morpholinated isatin–quinoline hybrids as potent anti‐breast cancer agents. Arch. Pharm. (Weinheim), 2022, 355(2), 2100368.
[http://dx.doi.org/10.1002/ardp.202100368] [PMID: 34783073]
[124]
Jin, L.P.; Xie, Q.; Huang, E.F.; Wang, L.; Zhang, B.Q.; Hu, J.S.; Wan, D.C.C.; Jin, Z.; Hu, C. Design, synthesis, and biological activity of a novel series of benzofuran derivatives against oestrogen receptor-dependent breast cancer cell lines. Bioorg. Chem., 2020, 95, 103566.
[http://dx.doi.org/10.1016/j.bioorg.2020.103566] [PMID: 31935604]
[125]
Shalini, Pankaj; Saha, S.T.; Kaur, M.; Oluwakemi, E.; Awolade, P.; Singh, P.; Kumar, V. Synthesis and in vitro anti-proliferative evaluation of naphthalimide–chalcone/pyrazoline conjugates as potential SERMs with computational validation. RSC Advances, 2020, 10(27), 15836-15845.
[http://dx.doi.org/10.1039/D0RA01822H] [PMID: 35493668]
[126]
Li, X.; Wu, C.; Lin, X.; Cai, X.; Liu, L.; Luo, G.; You, Q.; Xiang, H. Synthesis and biological evaluation of 3-arylquinolin derivatives as anti-breast cancer agents targeting ERα and VEGFR-2. Eur. J. Med. Chem., 2019, 161, 445-455.
[http://dx.doi.org/10.1016/j.ejmech.2018.10.045] [PMID: 30384047]
[127]
Liu, L.; Tang, Z.; Wu, C.; Li, X.; Huang, A.; Lu, X.; You, Q.; Xiang, H. Synthesis and biological evaluation of 4,6-diaryl-2-pyrimidinamine derivatives as anti-breast cancer agents. Bioorg. Med. Chem. Lett., 2018, 28(6), 1138-1142.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.066] [PMID: 29482944]
[128]
Luo, G.; Chen, M.; Lyu, W.; Zhao, R.; Xu, Q.; You, Q.; Xiang, H. Design, synthesis, biological evaluation and molecular docking studies of novel 3-aryl-4-anilino-2 H -chromen-2-one derivatives targeting ERα as anti-breast cancer agents. Bioorg. Med. Chem. Lett., 2017, 27(12), 2668-2673.
[http://dx.doi.org/10.1016/j.bmcl.2017.04.029] [PMID: 28460819]
[129]
Kaur, G.; Mahajan, M.P.; Pandey, M.K.; Singh, P.; Ramisetti, S.R.; Sharma, A.K. Design, synthesis and evaluation of Ospemifene analogs as anti-breast cancer agents. Eur. J. Med. Chem., 2014, 86, 211-218.
[http://dx.doi.org/10.1016/j.ejmech.2014.08.050] [PMID: 25164760]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy