Review Article

生殖医学中的褪黑素:一个有希望的治疗靶点?

卷 30, 期 27, 2023

发表于: 14 November, 2022

页: [3090 - 3118] 页: 29

弟呕挨: 10.2174/0929867329666221005101031

价格: $65

摘要

褪黑激素主要从松果体释放,也在生殖器官和细胞中产生,在睡眠-觉醒周期的节律、延缓衰老过程和抗氧化/抗炎功能中起着重要作用。褪黑激素作为生殖系统的关键介质,通过调节配子和胚胎发育参与生殖过程,影响生殖疾病和妊娠结局。潜在的机制包括表观遗传和其他法规,这对于探索预防和治疗生殖疾病的新目标很有趣。本综述讨论了褪黑激素与生殖功能和功能障碍之间的关系,以及褪黑激素在生殖医学中的潜在临床应用。值得注意的是,健康与疾病的发育起源(DOHaD)与生殖密切相关,本文首次对褪黑激素与DOHaD可能关系研究的新进展进行综述。

关键词: 褪黑激素,生殖生理学,生殖病理学,DOHaD,配子形成,受精。

[1]
Yong, W.; Ma, H.; Na, M.; Gao, T.; Zhang, Y.; Hao, L.; Yu, H.; Yang, H.; Deng, X. Roles of melatonin in the field of reproductive medicine. Biomed. Pharmacother., 2021, 144, 112001.
[http://dx.doi.org/10.1016/j.biopha.2021.112001] [PMID: 34624677]
[2]
Vander Borght, M.; Wyns, C. Fertility and infertility: Definition and epidemiology. Clin. Biochem., 2018, 62, 2-10.
[http://dx.doi.org/10.1016/j.clinbiochem.2018.03.012] [PMID: 29555319]
[3]
Sun, H.; Gong, T.T.; Jiang, Y.T.; Zhang, S.; Zhao, Y.H.; Wu, Q.J. Global, regional, and national prevalence and disability-adjusted life-years for infertility in 195 countries and territories, 1990–2017: Results from a global burden of disease study, 2017. Aging (Albany NY), 2019, 11(23), 10952-10991.
[http://dx.doi.org/10.18632/aging.102497] [PMID: 31790362]
[4]
Yasmin, F.; Sutradhar, S.; Das, P.; Mukherjee, S. Gut melatonin: A potent candidate in the diversified journey of melatonin research. Gen. Comp. Endocrinol., 2021, 303, 113693.
[http://dx.doi.org/10.1016/j.ygcen.2020.113693] [PMID: 33309697]
[5]
Di Bella, G.; Mascia, F.; Gualano, L.; Di Bella, L. Melatonin anticancer effects: Review. Int. J. Mol. Sci., 2013, 14(2), 2410-2430.
[http://dx.doi.org/10.3390/ijms14022410] [PMID: 23348932]
[6]
Talib, W. Melatonin and cancer hallmarks. Molecules, 2018, 23(3), 518.
[http://dx.doi.org/10.3390/molecules23030518] [PMID: 29495398]
[7]
Claustrat, B.; Leston, J. Melatonin: Physiological effects in humans. Neurochirurgie, 2015, 61(2-3), 77-84.
[http://dx.doi.org/10.1016/j.neuchi.2015.03.002] [PMID: 25908646]
[8]
Meng, X.; Li, Y.; Li, S.; Zhou, Y.; Gan, R.Y.; Xu, D.P.; Li, H.B. Dietary sources and bioactivities of melatonin. Nutrients, 2017, 9(4), 367.
[http://dx.doi.org/10.3390/nu9040367] [PMID: 28387721]
[9]
Sae-Teaw, M.; Johns, J.; Johns, N.P.; Subongkot, S. Serum melatonin levels and antioxidant capacities after consumption of pineapple, orange, or banana by healthy male volunteers. J. Pineal Res., 2013, 55(1), 58-64.
[http://dx.doi.org/10.1111/jpi.12025] [PMID: 23137025]
[10]
Bernard, M.; Guerlotté, J.; Grève, P.; Gréchez-Cassiau, A.; Iuvone, M.P.; Zatz, M.; Chong, N.W.; Klein, D.C.; Voisin, P. Melatonin synthesis pathway: Circadian regulation of the genes encoding the key enzymes in the chicken pineal gland and retina. Reprod. Nutr. Dev., 1999, 39(3), 325-334.
[http://dx.doi.org/10.1051/rnd:19990305] [PMID: 10420435]
[11]
Xiao, L.; Hu, J.; Zhao, X.; Song, L.; Zhang, Y.; Dong, W.; Zhang, Q.; Ma, Y.; Li, F. Expression of melatonin and its related synthase and membrane receptors in the oestrous corpus luteum and corpus luteum verum of sheep. Reprod. Domest. Anim., 2018, 53(5), 1142-1148.
[http://dx.doi.org/10.1111/rda.13218] [PMID: 29943511]
[12]
Reppert, S.M.; Godson, C.; Mahle, C.D.; Weaver, D.R.; Slaugenhaupt, S.A.; Gusella, J.F. Molecular characterization of a second melatonin receptor expressed in human retina and brain: The Mel1b melatonin receptor. Proc. Natl. Acad. Sci. USA, 1995, 92(19), 8734-8738.
[http://dx.doi.org/10.1073/pnas.92.19.8734] [PMID: 7568007]
[13]
Reppert, S.M.; Weaver, D.R.; Ebisawa, T. Cloning and characterization of a mammalian melatonin receptor that mediates reproductive and circadian responses. Neuron, 1994, 13(5), 1177-1185.
[http://dx.doi.org/10.1016/0896-6273(94)90055-8] [PMID: 7946354]
[14]
von Gall, C.; Stehle, J.H.; Weaver, D.R. Mammalian melatonin receptors: Molecular biology and signal transduction. Cell Tissue Res., 2002, 309(1), 151-162.
[http://dx.doi.org/10.1007/s00441-002-0581-4] [PMID: 12111545]
[15]
Vanecek, J. Cellular mechanisms of melatonin action. Physiol. Rev., 1998, 78(3), 687-721.
[http://dx.doi.org/10.1152/physrev.1998.78.3.687] [PMID: 9674691]
[16]
Zhang, L.; Zhang, Z.; Wang, J.; Lv, D.; Zhu, T.; Wang, F.; Tian, X.; Yao, Y.; Ji, P.; Liu, G. Melatonin regulates the activities of ovary and delays the fertility decline in female animals via MT1/AMPK pathway. J. Pineal Res., 2019, 66(3), e12550.
[http://dx.doi.org/10.1111/jpi.12550] [PMID: 30597622]
[17]
Kandalepas, P.C.; Mitchell, J.W.; Gillette, M.U. Melatonin signal transduction pathways require e-box-mediated transcription of Per1 and Per2 to reset the SCN clock at dusk. PLoS One, 2016, 11(6), e0157824.
[http://dx.doi.org/10.1371/journal.pone.0157824] [PMID: 27362940]
[18]
Wang, J.; Zhu, T.; Ma, X.; Wang, Y.; Liu, J.; Li, G.; Liu, Y.; Ji, P.; Zhang, Z.; Zhang, L.; Liu, G. Melatonergic systems of AANAT, melatonin, and its receptor MT2 in the corpus luteum are essential for reproductive success in mammals. Biol. Reprod., 2021, 104(2), 430-444.
[http://dx.doi.org/10.1093/biolre/ioaa190] [PMID: 33571374]
[19]
Nosjean, O.; Ferro, M.; Cogé, F.; Beauverger, P.; Henlin, J.M.; Lefoulon, F.; Fauchère, J.L.; Delagrange, P.; Canet, E.; Boutin, J.A. Identification of the melatonin-binding site MT3 as the quinone reductase 2. J. Biol. Chem., 2000, 275(40), 31311-31317.
[http://dx.doi.org/10.1074/jbc.M005141200] [PMID: 10913150]
[20]
Tan, D.X.; Manchester, L.C.; Terron, M.P.; Flores, L.J.; Tamura, H.; Reiter, R.J. Melatonin as a naturally occurring co-substrate of quinone reductase-2, the putative MT 3 melatonin membrane receptor: Hypothesis and significance. J. Pineal Res., 2007, 43(4), 317-320.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00513.x] [PMID: 17910598]
[21]
Yang, H.L.; Zhou, W.J.; Gu, C.J.; Meng, Y.H.; Shao, J.; Li, D.J.; Li, M.Q. Pleiotropic roles of melatonin in endometriosis, recurrent spontaneous abortion, and polycystic ovary syndrome. Am. J. Reprod. Immunol., 2018, 80(1), e12839.
[http://dx.doi.org/10.1111/aji.12839] [PMID: 29493042]
[22]
Hu, J.J.; Zhang, X.Y.; Zhang, Y.; Zhao, X.X.; Li, F.D.; Tao, J.Z. Molecular characterization and expression profile of the melatonin receptor MT1 in the ovary of Tianzhu white yak (Bos grunniens). Gen. Comp. Endocrinol., 2017, 242, 101-107.
[http://dx.doi.org/10.1016/j.ygcen.2015.10.006] [PMID: 26482006]
[23]
Woo, M.M.M.; Tai, C.J.; Kang, S.K.; Nathwani, P.S.; Pang, S.F.; Leung, P.C.K. Direct action of melatonin in human granulosa-luteal cells. J. Clin. Endocrinol. Metab., 2001, 86(10), 4789-4797.
[http://dx.doi.org/10.1210/jcem.86.10.7912] [PMID: 11600542]
[24]
Niles, L.P.; Wang, J.; Shen, L.; Lobb, D.K.; Younglai, E.V. Melatonin receptor mRNA expression in human granulosa cells. Mol. Cell. Endocrinol., 1999, 156(1-2), 107-110.
[http://dx.doi.org/10.1016/S0303-7207(99)00135-5] [PMID: 10612428]
[25]
Lemley, C.O.; Camacho, L.E.; Vonnahme, K.A. Uterine infusion of melatonin or melatonin receptor antagonist alters ovine feto-placental hemodynamics during midgestation. Biol. Reprod., 2013, 89(2), 40.
[http://dx.doi.org/10.1095/biolreprod.113.109074] [PMID: 23782836]
[26]
Berbets, A.M.; Davydenko, I.S.; Barbe, A.M.; Konkov, D.H.; Albota, O.M.; Yuzko, O.M. Melatonin 1A and 1B receptors’ expression decreases in the placenta of women with fetal growth restriction. Reprod. Sci., 2021, 28(1), 197-206.
[http://dx.doi.org/10.1007/s43032-020-00285-5] [PMID: 32804352]
[27]
Sagrillo-Fagundes, L.; Soliman, A.; Vaillancourt, C. Maternal and placental melatonin: Actions and implication for successful pregnancies. Minerva Ginecol., 2014, 66(3), 251-266.
[PMID: 24971781]
[28]
Lanoix, D.; Beghdadi, H.; Lafond, J.; Vaillancourt, C. Human placental trophoblasts synthesize melatonin and express its receptors. J. Pineal Res., 2008, 45(1), 50-60.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00555.x] [PMID: 18312298]
[29]
Mosher, A.A.; Tsoulis, M.W.; Lim, J.; Tan, C.; Agarwal, S.K.; Leyland, N.A.; Foster, W.G. Melatonin activity and receptor expression in endometrial tissue and endometriosis. Hum. Reprod., 2019, 34(7), 1215-1224.
[http://dx.doi.org/10.1093/humrep/dez082] [PMID: 31211323]
[30]
Zhao, H.; Pang, S.F.; Poon, A.M.S. Variations of mt 1 melatonin receptor density in the rat uterus during decidualization, the estrous cycle and in response to exogenous steroid treatment. J. Pineal Res., 2002, 33(3), 140-145.
[http://dx.doi.org/10.1034/j.1600-079X.2002.02898.x] [PMID: 12220327]
[31]
Steffens, F.; Zhou, X.B.; Sausbier, U.; Sailer, C.; Motejlek, K.; Ruth, P.; Olcese, J.; Korth, M.; Wieland, T. Melatonin receptor signaling in pregnant and nonpregnant rat uterine myocytes as probed by large conductance Ca2+-activated K+ channel activity. Mol. Endocrinol., 2003, 17(10), 2103-2115.
[http://dx.doi.org/10.1210/me.2003-0047] [PMID: 12869590]
[32]
Tabecka-Lonczynska, A.; Mytych, J.; Solek, P.; Kulpa-Greszta, M.; Koziorowski, M. Melatonin receptors subtypes (MT1 and MT2) in the uterus masculinus of mature male european bison. Biological and seasonal reproductive role. J. Physiol. Pharmacol., 2018, 69(1), 67-73.
[http://dx.doi.org/10.26402/jpp.2018.1.07] [PMID: 29769422]
[33]
Xu, D.; Liu, L.; Zhao, Y.; Yang, L.; Cheng, J.; Hua, R.; Zhang, Z.; Li, Q. Melatonin protects mouse testes from palmitic acid‐induced lipotoxicity by attenuating oxidative stress and DNA damage in a SIRT1‐dependent manner. J. Pineal Res., 2020, 69(4), e12690.
[http://dx.doi.org/10.1111/jpi.12690] [PMID: 32761924]
[34]
Izzo, G.; Francesco, A.; Ferrara, D.; Campitiello, M.R.; Serino, I.; Minucci, S.; d’Istria, M. Expression of melatonin (MT1, MT2) and melatonin-related receptors in the adult rat testes and during development. Zygote, 2010, 18(3), 257-264.
[http://dx.doi.org/10.1017/S0967199409990293] [PMID: 20109269]
[35]
Kozioł, K.; Broda, D.; Romerowicz-Misielak, M.; Nowak, S.; Koziorowski, M. Melatonin concentration in peripheral blood and melatonin receptors (MT1 and MT2) in the testis and epididymis of male roe deer during active spermatogenesis. Theriogenology, 2020, 149, 25-37.
[http://dx.doi.org/10.1016/j.theriogenology.2020.03.025] [PMID: 32234648]
[36]
González-Arto, M.; Aguilar, D.; Gaspar-Torrubia, E.; Gallego, M.; Carvajal-Serna, M.; Herrera-Marcos, L.; Serrano-Blesa, E.; Hamilton, T.; Pérez-Pé, R.; Muiño-Blanco, T.; Cebrián-Pérez, J.; Casao, A. Melatonin MT1 and MT2 receptors in the ram reproductive tract. Int. J. Mol. Sci., 2017, 18(3), 662.
[http://dx.doi.org/10.3390/ijms18030662] [PMID: 28335493]
[37]
Yang, W.C.; Tang, K.Q.; Fu, C.Z.; Riaz, H.; Zhang, Q.; Zan, L.S. Melatonin regulates the development and function of bovine Sertoli cells via its receptors MT1 and MT2. Anim. Reprod. Sci., 2014, 147(1-2), 10-16.
[http://dx.doi.org/10.1016/j.anireprosci.2014.03.017] [PMID: 24768045]
[38]
Zhi, S.M.; Fang, G.X.; Xie, X.M.; Liu, L.H.; Yan, J.; Liu, D.B.; Yu, H.Y. Melatonin reduces OGD/R-induced neuron injury by regulating redox/inflammation/apoptosis signaling. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(3), 1524-1536.
[http://dx.doi.org/10.26355/eurrev_202002_20211] [PMID: 32096202]
[39]
Gou, Z.; Su, X.; Hu, X.; Zhou, Y.; Huang, L.; Fan, Y.; Li, J.; Lu, L. Melatonin improves hypoxic-ischemic brain damage through the Akt/Nrf2/Gpx4 signaling pathway. Brain Res. Bull., 2020, 163, 40-48.
[http://dx.doi.org/10.1016/j.brainresbull.2020.07.011] [PMID: 32679060]
[40]
Cui, L.; Xu, F.; Wang, S.; Jiang, Z.; Liu, L.; Ding, Y.; Sun, X.; Du, M. Melatonin-MT1 signal is essential for endometrial decidualization. Reproduction, 2021, 162(2), 161-170.
[http://dx.doi.org/10.1530/REP-21-0159] [PMID: 34115609]
[41]
Barberino, R.S.; Lins, T.L.B.G.; Monte, A.P.O.; Gouveia, B.B.; Campinho, D.S.P.; Palheta, R.C., Jr; Smitz, J.E.J.; Matos, M.H.T. Melatonin attenuates cyclophosphamide-induced primordial follicle loss by interaction with MT1 receptor and modulation of PTEN/Akt/FOXO3a proteins in the mouse ovary. Reprod. Sci., 2022, 29(9), 2505-2514.
[http://dx.doi.org/10.1007/s43032-021-00768-z] [PMID: 34642909]
[42]
Tamura, H.; Nakamura, Y.; Korkmaz, A.; Manchester, L.C.; Tan, D.X.; Sugino, N.; Reiter, R.J. Melatonin and the ovary: Physiological and pathophysiological implications. Fertil. Steril., 2009, 92(1), 328-343.
[http://dx.doi.org/10.1016/j.fertnstert.2008.05.016] [PMID: 18804205]
[43]
Lemley, C.O.; Vonnahme, K.A. Physiology and endocrinology symposium: Alterations in uteroplacental hemodynamics during melatonin supplementation in sheep and cattle. J. Anim. Sci., 2017, 95(5), 2211-2221.
[http://dx.doi.org/10.2527/jas2016.1151] [PMID: 28726984]
[44]
Cruz, M.H.C.; Leal, C.L.V.; Cruz, J.F.; Tan, D.X.; Reiter, R.J. Role of melatonin on production and preservation of gametes and embryos: A brief review. Anim. Reprod. Sci., 2014, 145(3-4), 150-160.
[http://dx.doi.org/10.1016/j.anireprosci.2014.01.011] [PMID: 24559971]
[45]
Tripathi, A.; PremKumar, K.V.; Pandey, A.N.; Khatun, S.; Mishra, S.K.; Shrivastav, T.G.; Chaube, S.K. Melatonin protects against clomiphene citrate-induced generation of hydrogen peroxide and morphological apoptotic changes in rat eggs. Eur. J. Pharmacol., 2011, 667(1-3), 419-424.
[http://dx.doi.org/10.1016/j.ejphar.2011.06.005] [PMID: 21693115]
[46]
Shi, J.M.; Tian, X.Z.; Zhou, G.B.; Wang, L.; Gao, C.; Zhu, S.E.; Zeng, S.M.; Tian, J.H.; Liu, G.S. Melatonin exists in porcine follicular fluid and improves in vitro maturation and parthenogenetic development of porcine oocytes. J. Pineal Res., 2009, 47(4), 318-323.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00717.x] [PMID: 19817971]
[47]
Gao, C.; Han, H.B.; Tian, X.Z.; Tan, D.X.; Wang, L.; Zhou, G.B.; Zhu, S.E.; Liu, G.S. Melatonin promotes embryonic development and reduces reactive oxygen species in vitrified mouse 2-cell embryos. J. Pineal Res., 2012, 52(3), 305-311.
[http://dx.doi.org/10.1111/j.1600-079X.2011.00944.x] [PMID: 22225541]
[48]
Sagrillo-Fagundes, L.; Clabault, H.; Laurent, L.; Hudon-Thibeault, A.A.; Salustiano, E.M.A.; Fortier, M.; Bienvenue-Pariseault, J.; Wong Yen, P.; Sanderson, T.J.; Vaillancourt, C. Human primary trophoblast cell culture model to study the protective effects of melatonin against hypoxia/reoxygenation-induced disruption. J. Vis. Exp., 2016, 113, 54228.
[http://dx.doi.org/10.3791/54228] [PMID: 27500522]
[49]
Tamura, H.; Nakamura, Y.; Terron, M.; Flores, L.; Manchester, L.; Tan, D.; Sugino, N.; Reiter, R. Melatonin and pregnancy in the human. Reprod. Toxicol., 2008, 25(3), 291-303.
[http://dx.doi.org/10.1016/j.reprotox.2008.03.005] [PMID: 18485664]
[50]
Reiter, R.J.; Tan, D.X.; Korkmaz, A.; Rosales-Corral, S.A. Melatonin and stable circadian rhythms optimize maternal, placental and fetal physiology. Hum. Reprod. Update, 2014, 20(2), 293-307.
[http://dx.doi.org/10.1093/humupd/dmt054] [PMID: 24132226]
[51]
Peng, X.; Cai, X.; Li, J.; Huang, Y.; Liu, H.; He, J.; Fang, Z.; Feng, B.; Tang, J.; Lin, Y.; Jiang, X.; Hu, L.; Xu, S.; Zhuo, Y.; Che, L.; Wu, D. Effects of melatonin supplementation during pregnancy on reproductive performance, maternal–placental–fetal redox status, and placental mitochondrial function in a sow model. Antioxidants, 2021, 10(12), 1867.
[http://dx.doi.org/10.3390/antiox10121867] [PMID: 34942970]
[52]
Hsu, C.N.; Tain, Y.L. Early origins of hypertension: Should prevention start before birth using natural antioxidants? Antioxidants, 2020, 9(11), 1034.
[http://dx.doi.org/10.3390/antiox9111034] [PMID: 33113999]
[53]
Sales, F.; Peralta, O.A.; Narbona, E.; McCoard, S.; González-Bulnes, A.; Parraguez, V.H. Rapid Communication: Maternal melatonin implants improve fetal oxygen supply and body weight at term in sheep pregnancies1. J. Anim. Sci., 2019, 97(2), 839-845.
[http://dx.doi.org/10.1093/jas/sky443] [PMID: 30452689]
[54]
Choi, J.; Park, S.M.; Lee, E.; Kim, J.H.; Jeong, Y.I.; Lee, J.Y.; Park, S.W.; Kim, H.S.; Hossein, M.S.; Jeong, Y.W.; Kim, S.; Hyun, S.H.; Hwang, W.S. Anti-apoptotic effect of melatonin on preimplantation development of porcine parthenogenetic embryos. Mol. Reprod. Dev., 2008, 75(7), 1127-1135.
[http://dx.doi.org/10.1002/mrd.20861] [PMID: 18324672]
[55]
Chitimus, D.M.; Popescu, M.R.; Voiculescu, S.E.; Panaitescu, A.M.; Pavel, B.; Zagrean, L.; Zagrean, A.M. Melatonin’s impact on antioxidative and anti-inflammatory reprogramming in homeostasis and disease. Biomolecules, 2020, 10(9), 1211.
[http://dx.doi.org/10.3390/biom10091211] [PMID: 32825327]
[56]
Reiter, R.J.; Tan, D.X.; Tamura, H.; Cruz, M.H.C.; Fuentes-Broto, L. Clinical relevance of melatonin in ovarian and placental physiology: A review. Gynecol. Endocrinol., 2014, 30(2), 83-89.
[http://dx.doi.org/10.3109/09513590.2013.849238] [PMID: 24319996]
[57]
Zhu, H.L.; Shi, X.T.; Xu, X.F.; Zhou, G.X.; Xiong, Y.W.; Yi, S.J.; Liu, W.B.; Dai, L.M.; Cao, X.L.; Xu, D.X.; Wang, H. Melatonin protects against environmental stress-induced fetal growth restriction via suppressing ROS-mediated GCN2/ATF4/BNIP3-dependent mitophagy in placental trophoblasts. Redox Biol., 2021, 40, 101854.
[http://dx.doi.org/10.1016/j.redox.2021.101854] [PMID: 33454563]
[58]
Doğanlar, O.; Doğanlar, Z.B.; Ovali, M.A.; Güçlü, O.; Demir, U.; Doğan, A.; Uzun, M. Melatonin regulates oxidative stress and apoptosis in fetal hearts of pinealectomised RUPP rats. Hypertens. Pregnancy, 2020, 39(4), 429-443.
[http://dx.doi.org/10.1080/10641955.2020.1802595] [PMID: 32791955]
[59]
Doğanlar, Z.B.; Güçlü, H.; Öztopuz, Ö.; Türkön, H.; Dogan, A.; Uzun, M.; Doğanlar, O. The role of melatonin in oxidative stress, DNA damage, apoptosis and angiogenesis in fetal eye under preeclampsia and melatonin deficiency stress. Curr. Eye Res., 2019, 44(10), 1157-1169.
[http://dx.doi.org/10.1080/02713683.2019.1619778] [PMID: 31090463]
[60]
Sagrillo-Fagundes, L.; Assunção Salustiano, E.M.; Ruano, R.; Markus, R.P.; Vaillancourt, C. Melatonin modulates autophagy and inflammation protecting human placental trophoblast from hypoxia/reoxygenation. J. Pineal Res., 2018, 65(4), e12520.
[http://dx.doi.org/10.1111/jpi.12520] [PMID: 30091210]
[61]
Domínguez Rubio, A.P.; Sordelli, M.S.; Salazar, A.I.; Aisemberg, J.; Bariani, M.V.; Cella, M.; Rosenstein, R.E.; Franchi, A.M. Melatonin prevents experimental preterm labor and increases offspring survival. J. Pineal Res., 2014, 56(2), 154-162.
[http://dx.doi.org/10.1111/jpi.12108] [PMID: 24313220]
[62]
Kim, J.M.; Lee, S.Y.; Lee, J.Y. Melatonin for the prevention of fetal injury associated with intrauterine inflammation. Am. J. Reprod. Immunol., 2021, 86(1), e13402.
[http://dx.doi.org/10.1111/aji.13402] [PMID: 33583108]
[63]
Lee, J.Y.; Na, Q.; Shin, N.E.; Shin, H.E.; Kang, Y.; Chudnovets, A.; Lei, J.; Song, H.; Burd, I. Melatonin for prevention of fetal lung injury associated with intrauterine inflammation and for improvement of lung maturation. J. Pineal Res., 2020, 69(3), e12687.
[http://dx.doi.org/10.1111/jpi.12687] [PMID: 32737901]
[64]
Xu, D.X.; Wang, H.; Ning, H.; Zhao, L.; Chen, Y.H. Maternally administered melatonin differentially regulates lipopolysaccharide-induced proinflammatory and anti-inflammatory cytokines in maternal serum, amniotic fluid, fetal liver, and fetal brain. J. Pineal Res., 2007, 43(1), 74-79.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00445.x] [PMID: 17614838]
[65]
Domínguez Rubio, A.P.; Correa, F.; Aisemberg, J.; Dorfman, D.; Bariani, M.V.; Rosenstein, R.E.; Zorrilla Zubilete, M.; Franchi, A.M. Maternal administration of melatonin exerts short- and long-term neuroprotective effects on the offspring from lipopolysaccharide-treated mice. J. Pineal Res., 2017, 63(4), e12439.
[http://dx.doi.org/10.1111/jpi.12439] [PMID: 28776755]
[66]
Tain, Y.L.; Sheen, J.M.; Yu, H.R.; Chen, C.C.; Tiao, M.M.; Hsu, C.N.; Lin, Y.J.; Kuo, K.C.; Huang, L.T. Maternal melatonin therapy rescues prenatal dexamethasone and postnatal high-fat diet induced programmed hypertension in male rat offspring. Front. Physiol., 2015, 6, 377.
[http://dx.doi.org/10.3389/fphys.2015.00377] [PMID: 26696906]
[67]
Tain, Y.L.; Huang, L.T.; Hsu, C.N.; Lee, C.T. Melatonin therapy prevents programmed hypertension and nitric oxide deficiency in offspring exposed to maternal caloric restriction. Oxid. Med. Cell. Longev., 2014, 2014, 283180.
[http://dx.doi.org/10.1155/2014/283180] [PMID: 24864188]
[68]
Chang, H.Y.; Tain, Y.L. Postnatal dexamethasone-induced programmed hypertension is related to the regulation of melatonin and its receptors. Steroids, 2016, 108, 1-6.
[http://dx.doi.org/10.1016/j.steroids.2016.02.017] [PMID: 26921678]
[69]
Shi, X.T.; Zhu, H.L.; Xu, X.F.; Xiong, Y.W.; Dai, L.M.; Zhou, G.X.; Liu, W.B.; Zhang, Y.F.; Xu, D.X.; Wang, H. Gestational cadmium exposure impairs placental angiogenesis via activating GC/GR signaling. Ecotoxicol. Environ. Saf., 2021, 224, 112632.
[http://dx.doi.org/10.1016/j.ecoenv.2021.112632] [PMID: 34411824]
[70]
Russo, M.; Forte, G.; Montanino Oliva, M.; Laganà, A.S.; Unfer, V. Melatonin and myo-inositol: Supporting reproduction from the oocyte to birth. Int. J. Mol. Sci., 2021, 22(16), 8433.
[http://dx.doi.org/10.3390/ijms22168433] [PMID: 34445135]
[71]
Félix, F.; Oliveira, C.C.V.; Cabrita, E. Antioxidants in fish sperm and the potential role of melatonin. Antioxidants, 2020, 10(1), 36.
[http://dx.doi.org/10.3390/antiox10010036] [PMID: 33396234]
[72]
Hsu, C.N.; Huang, L.T.; Tain, Y.L. Perinatal use of melatonin for offspring health: Focus on cardiovascular and neurological diseases. Int. J. Mol. Sci., 2019, 20(22), 5681.
[http://dx.doi.org/10.3390/ijms20225681] [PMID: 31766163]
[73]
Ejaz, H.; Figaro, J.K.; Woolner, A.M.F.; Thottakam, B.M.V.; Galley, H.F. Maternal serum melatonin increases during pregnancy and falls immediately after delivery implicating the placenta as a major source of melatonin. Front. Endocrinol. (Lausanne), 2021, 11, 623038.
[http://dx.doi.org/10.3389/fendo.2020.623038] [PMID: 33679607]
[74]
Nakamura, Y.; Tamura, H.; Kashida, S.; Takayama, H.; Yamagata, Y.; Karube, A.; Sugino, N.; Kato, H. Changes of serum melatonin level and its relationship to feto-placental unit during pregnancy. J. Pineal Res., 2001, 30(1), 29-33.
[http://dx.doi.org/10.1034/j.1600-079X.2001.300104.x] [PMID: 11168904]
[75]
Lanoix, D.; Ouellette, R.; Vaillancourt, C. Expression of melatoninergic receptors in human placental choriocarcinoma cell lines. Hum. Reprod., 2006, 21(8), 1981-1989.
[http://dx.doi.org/10.1093/humrep/del120] [PMID: 16632463]
[76]
Ogasawara, T.; Adachi, N.; Nishijima, M. Melatonin levels in maternal plasma before and during delivery, and in fetal and neonatal plasma. Nihon. Sanka. Fujinka. Gakkai. Zasshi., 1991, 43(3), 335-341.
[PMID: 2045702]
[77]
McMillen, I.C.; Nowak, R. Maternal pinealectomy abolishes the diurnal rhythm in plasma melatonin concentrations in the fetal sheep and pregnant ewe during late gestation. J. Endocrinol., 1989, 120(3), 459-464.
[http://dx.doi.org/10.1677/joe.0.1200459] [PMID: 2926312]
[78]
Tarocco, A.; Caroccia, N.; Morciano, G.; Wieckowski, M.R.; Ancora, G.; Garani, G.; Pinton, P. Melatonin as a master regulator of cell death and inflammation: Molecular mechanisms and clinical implications for newborn care. Cell Death Dis., 2019, 10(4), 317.
[http://dx.doi.org/10.1038/s41419-019-1556-7] [PMID: 30962427]
[79]
Okatani, Y.; Okamoto, K.; Hayashi, K.; Wakatsuki, A.; Tamura, S.; Sagara, Y. Maternal-fetal transfer of melatonin in pregnant women near term. J. Pineal Res., 1998, 25(3), 129-134.
[http://dx.doi.org/10.1111/j.1600-079X.1998.tb00550.x] [PMID: 9745980]
[80]
Bagci, S.; Berner, A.L.; Reinsberg, J.; Gast, A.S.; Zur, B.; Welzing, L.; Bartmann, P.; Mueller, A. Melatonin concentration in umbilical cord blood depends on mode of delivery. Early Hum. Dev., 2012, 88(6), 369-373.
[http://dx.doi.org/10.1016/j.earlhumdev.2011.09.012] [PMID: 22018695]
[81]
Voiculescu, S.E.; Zygouropoulos, N.; Zahiu, C.D.; Zagrean, A.M. Role of melatonin in embryo fetal development. J. Med. Life, 2014, 7(4), 488-492.
[PMID: 25713608]
[82]
Serón-Ferré, M.; Mendez, N.; Abarzua-Catalan, L.; Vilches, N.; Valenzuela, F.J.; Reynolds, H.E.; Llanos, A.J.; Rojas, A.; Valenzuela, G.J.; Torres-Farfan, C. Circadian rhythms in the fetus. Mol. Cell. Endocrinol., 2012, 349(1), 68-75.
[http://dx.doi.org/10.1016/j.mce.2011.07.039] [PMID: 21840372]
[83]
Jimenez-Jorge, S.; Jimenez-Caliani, A.J.; Guerrero, J.M.; Naranjo, M.C.; Lardone, P.J.; Carrillo-Vico, A.; Osuna, C.; Molinero, P. Melatonin synthesis and melatonin-membrane receptor (MT1) expression during rat thymus development: Role of the pineal gland. J. Pineal Res., 2005, 39(1), 77-83.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00220.x] [PMID: 15978061]
[84]
Nagasawa, Y.; Nanami, M.; Kuragano, T.; Ishihara, M. Melatonin and gestational hypertension. Hypertens. Res., 2021, 44(11), 1540-1542.
[http://dx.doi.org/10.1038/s41440-021-00722-1] [PMID: 34385689]
[85]
Man, G.C.W.; Zhang, T.; Chen, X.; Wang, J.; Wu, F.; Liu, Y.; Wang, C.C.; Cheong, Y.; Li, T.C. The regulations and role of circadian clock and melatonin in uterine receptivity and pregnancy-An immunological perspective. Am. J. Reprod. Immunol., 2017, 78(2), e12715.
[http://dx.doi.org/10.1111/aji.12715] [PMID: 28585704]
[86]
Dair, E.L.; Simoes, R.S.; Simões, M.J.; Romeu, L.R.G.; Oliveira-Filho, R.M.; Haidar, M.A.; Baracat, E.C.; Soares, J.M., Jr Effects of melatonin on the endometrial morphology and embryo implantation in rats. Fertil. Steril., 2008, 89(5)(Suppl.), 1299-1305.
[http://dx.doi.org/10.1016/j.fertnstert.2007.03.050] [PMID: 17561006]
[87]
de Almeida Chuffa, L.G.; Lupi, L.A.; Cucielo, M.S.; Silveira, H.S.; Reiter, R.J.; Seiva, F.R.F. Melatonin promotes uterine and placental health: Potential molecular mechanisms. Int. J. Mol. Sci., 2019, 21(1), 300.
[http://dx.doi.org/10.3390/ijms21010300] [PMID: 31906255]
[88]
Drew, J.E.; Williams, L.M.; Hannah, L.T.; Barrett, P.; Abramovich, D.R. Melatonin receptors in the human fetal kidney: 2-[125I]iodomelatonin binding sites correlated with expression of Mel1a and Mel1b receptor genes. J. Endocrinol., 1998, 156(2), 261-267.
[http://dx.doi.org/10.1677/joe.0.1560261] [PMID: 9518871]
[89]
Wu, Y.H.; Zhou, J.N.; Balesar, R.; Unmehopa, U.; Bao, A.; Jockers, R.; Van Heerikhuize, J.; Swaab, D.F. Distribution of MT1 melatonin receptor immunoreactivity in the human hypothalamus and pituitary gland: Colocalization of MT1 with vasopressin, oxytocin, and corticotropin-releasing hormone. J. Comp. Neurol., 2006, 499(6), 897-910.
[http://dx.doi.org/10.1002/cne.21152] [PMID: 17072839]
[90]
Seron-Ferre, M.; Valenzuela, G.J.; Torres-Farfan, C. Circadian clocks during embryonic and fetal development. Birth Defects Res. C Embryo Today, 2007, 81(3), 204-214.
[http://dx.doi.org/10.1002/bdrc.20101] [PMID: 17963275]
[91]
Paster, M.B. Avian reproductive endocrinology. Vet. Clin. North Am. Small Anim. Pract., 1991, 21(6), 1343-1359.
[http://dx.doi.org/10.1016/S0195-5616(91)50143-1] [PMID: 1767479]
[92]
Serón-Ferré, M.; Torres-Farfán, C.; Forcelledo, M.L.; Valenzuela, G.J. The development of circadian rhythms in the fetus and neonate. Semin. Perinatol., 2001, 25(6), 363-370.
[http://dx.doi.org/10.1053/sper.2001.29037] [PMID: 11778907]
[93]
Mirmiran, M.; Maas, Y.G.H.; Ariagno, R.L. Development of fetal and neonatal sleep and circadian rhythms. Sleep Med. Rev., 2003, 7(4), 321-334.
[http://dx.doi.org/10.1053/smrv.2002.0243] [PMID: 14505599]
[94]
Yellon, S.M.; Longo, L.D. Effect of maternal pinealectomy and reverse photoperiod on the circadian melatonin rhythm in the sheep and fetus during the last trimester of pregnancy. Biol. Reprod., 1988, 39(5), 1093-1099.
[http://dx.doi.org/10.1095/biolreprod39.5.1093] [PMID: 3219382]
[95]
Torres-Farfan, C.; Rocco, V.; Monsó, C.; Valenzuela, F.J.; Campino, C.; Germain, A.; Torrealba, F.; Valenzuela, G.J.; Seron-Ferre, M. Maternal melatonin effects on clock gene expression in a nonhuman primate fetus. Endocrinology, 2006, 147(10), 4618-4626.
[http://dx.doi.org/10.1210/en.2006-0628] [PMID: 16840546]
[96]
Mendez, N.; Abarzua-Catalan, L.; Vilches, N.; Galdames, H.A.; Spichiger, C.; Richter, H.G.; Valenzuela, G.J.; Seron-Ferre, M.; Torres-Farfan, C. Timed maternal melatonin treatment reverses circadian disruption of the fetal adrenal clock imposed by exposure to constant light. PLoS One, 2012, 7(8), e42713.
[http://dx.doi.org/10.1371/journal.pone.0042713] [PMID: 22912724]
[97]
Arima, Y.; Nishiyama, K.; Izumiya, Y.; Kaikita, K.; Hokimoto, S.; Tsujita, K. Fetal origins of hypertension. Adv. Exp. Med. Biol., 2018, 1012, 41-48.
[http://dx.doi.org/10.1007/978-981-10-5526-3_5] [PMID: 29956193]
[98]
Kanaka-Gantenbein, C. Fetal origins of adult diabetes. Ann. N. Y. Acad. Sci., 2010, 1205(1), 99-105.
[http://dx.doi.org/10.1111/j.1749-6632.2010.05683.x] [PMID: 20840260]
[99]
Wu, G.; Bazer, F.W.; Cudd, T.A.; Meininger, C.J.; Spencer, T.E. Maternal nutrition and fetal development. J. Nutr., 2004, 134(9), 2169-2172.
[http://dx.doi.org/10.1093/jn/134.9.2169] [PMID: 15333699]
[100]
Reiter, R.J.; Tan, D.X.; Manchester, L.C.; Paredes, S.D.; Mayo, J.C.; Sainz, R.M. Melatonin and reproduction revisited. Biol. Reprod., 2009, 81(3), 445-456.
[http://dx.doi.org/10.1095/biolreprod.108.075655] [PMID: 19439728]
[101]
Richter, H.G.; Hansell, J.A.; Raut, S.; Giussani, D.A. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy. J. Pineal Res., 2009, 46(4), 357-364.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00671.x] [PMID: 19552758]
[102]
Valenzuela, F.J.; Vera, J.; Venegas, C.; Pino, F.; Lagunas, C. Circadian system and melatonin hormone: Risk factors for complications during pregnancy. Obstet. Gynecol. Int., 2015, 2015, 825802.
[http://dx.doi.org/10.1155/2015/825802] [PMID: 25821470]
[103]
Aydın, S.; Benian, A.; Madazli, R.; Uludaǧ, S.; Uzun, H.; Kaya, S. Plasma malondialdehyde, superoxide dismutase, sE-selectin, fibronectin, endothelin-1 and nitric oxide levels in women with preeclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol., 2004, 113(1), 21-25.
[http://dx.doi.org/10.1016/S0301-2115(03)00368-3] [PMID: 15036705]
[104]
Aversa, S.; Pellegrino, S.; Barberi, I.; Reiter, R.J.; Gitto, E. Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period. J. Matern. Fetal Neonatal Med., 2012, 25(3), 207-221.
[http://dx.doi.org/10.3109/14767058.2011.573827] [PMID: 21557691]
[105]
Lanoix, D.; Guérin, P.; Vaillancourt, C. Placental melatonin production and melatonin receptor expression are altered in preeclampsia: New insights into the role of this hormone in pregnancy. J. Pineal Res., 2012, 53(4), 417-425.
[http://dx.doi.org/10.1111/j.1600-079X.2012.01012.x] [PMID: 22686298]
[106]
Tranquilli, A.L.; Turi, A.; Giannubilo, S.R.; Garbati, E. Circadian melatonin concentration rhythm is lost in pregnant women with altered blood pressure rhythm. Gynecol. Endocrinol., 2004, 18(3), 124-129.
[http://dx.doi.org/10.1080/09513590410001667841] [PMID: 15255280]
[107]
Zhao, M.; Li, Y.; Xu, L.; Hickey, A.; Groom, K.; Stone, P.R.; Chamley, L.W.; Chen, Q. Melatonin prevents preeclamptic sera and antiphospholipid antibodies inducing the production of reactive nitrogen species and extrusion of toxic trophoblastic debris from first trimester placentae. Placenta, 2017, 58, 17-24.
[http://dx.doi.org/10.1016/j.placenta.2017.08.001] [PMID: 28962691]
[108]
Laste, G.; Silva, A.A.; Gheno, B.R.; Rychcik, P.M. Relationship between melatonin and high-risk pregnancy: A review of investigations published between the years 2010 and 2020. Chronobiol. Int., 2021, 38(2), 168-181.
[http://dx.doi.org/10.1080/07420528.2020.1863975] [PMID: 33432828]
[109]
Çelik, S.; Guve, H.; Çalışkan, C.; Çelik, S. The role of melatonin, IL-8 and IL-10 in intrahepatic cholestasis of pregnancy. Z. Geburtshilfe Neonatol., 2021, 225(3), 238-243.
[http://dx.doi.org/10.1055/a-1233-9084] [PMID: 32942322]
[110]
Reiter, R.J.; Tan, D.; Osuna, C.; Gitto, E. Actions of melatonin in the reduction of oxidative stress. J. Biomed. Sci., 2000, 7(6), 444-458.
[http://dx.doi.org/10.1007/BF02253360] [PMID: 11060493]
[111]
Ortiz, A.; Espino, J.; Bejarano, I.; Lozano, G.M.; Monllor, F.; García, J.F.; Pariente, J.A.; Rodríguez, A.B. High endogenous melatonin concentrations enhance sperm quality and short-term in vitro exposure to melatonin improves aspects of sperm motility. J. Pineal Res., 2010, 50(2), 132-139.
[http://dx.doi.org/10.1111/j.1600-079X.2010.00822.x] [PMID: 20964711]
[112]
Casao, A.; Vega, S.; Palacín, I.; Pérez-Pe, R.; Laviña, A.; Quintín, F.J.; Sevilla, E.; Abecia, J.A.; Cebrián-Pérez, J.A.; Forcada, F.; Muiño-Blanco, T. Effects of melatonin implants during non-breeding season on sperm motility and reproductive parameters in Rasa aragonesa rams. Reprod. Domest. Anim., 2010, 45(3), 425-432.
[http://dx.doi.org/10.1111/j.1439-0531.2008.01215.x] [PMID: 18954380]
[113]
Jang, H.Y.; Kim, Y.H.; Kim, B.W.; Park, I.C.; Cheong, H.T.; Kim, J.T.; Park, C.K.; Kong, H.S.; Lee, H.K.; Yang, B.K. Ameliorative effects of melatonin against hydrogen peroxide-induced oxidative stress on boar sperm characteristics and subsequent in vitro embryo development. Reprod. Domest. Anim., 2010, 45(6), 943-950.
[http://dx.doi.org/10.1111/j.1439-0531.2009.01466.x] [PMID: 19473309]
[114]
Casao, A.; Pérez-Pé, R.; Abecia, J.A.; Forcada, F.; Muiño-Blanco, T.; Cebrián-Pérez, J.Á. The effect of exogenous melatonin during the non-reproductive season on the seminal plasma hormonal profile and the antioxidant defence system of Rasa aragonesa rams. Anim. Reprod. Sci., 2013, 138(3-4), 168-174.
[http://dx.doi.org/10.1016/j.anireprosci.2013.02.002] [PMID: 23522696]
[115]
Casao, A.; Mendoza, N.; Pérez-Pé, R.; Grasa, P.; Abecia, J.A.; Forcada, F.; Cebrián-Pérez, J.A.; Muino-Blanco, T. Melatonin prevents capacitation and apoptotic-like changes of ram spermatozoa and increases fertility rate. J. Pineal Res., 2010, 48(1), 39-46.
[http://dx.doi.org/10.1111/j.1600-079X.2009.00722.x] [PMID: 19919602]
[116]
Martín-Hidalgo, D.; Barón, F.J.; Bragado, M.J.; Carmona, P.; Robina, A.; García-Marín, L.J.; Gil, M.C. The effect of melatonin on the quality of extended boar semen after long-term storage at 17 °C. Theriogenology, 2011, 75(8), 1550-1560.
[http://dx.doi.org/10.1016/j.theriogenology.2010.12.021] [PMID: 21320723]
[117]
Cebrián-Pérez, J.A.; Casao, A.; González-Arto, M.; dos Santos Hamilton, T.R.; Pérez-Pé, R.; Muiño-Blanco, T. Melatonin in sperm biology: Breaking paradigms. Reprod. Domest. Anim., 2014, 49(Suppl. 4), 11-21.
[http://dx.doi.org/10.1111/rda.12378] [PMID: 25277428]
[118]
Fujinoki, M. Melatonin-enhanced hyperactivation of hamster sperm. Reproduction, 2008, 136(5), 533-541.
[http://dx.doi.org/10.1530/REP-08-0202] [PMID: 18715981]
[119]
De Lamirande, E.; Gagnon, C. Origin of a motility inhibitor within the male reproductive tract. J. Androl., 1984, 5(4), 269-276.
[http://dx.doi.org/10.1002/j.1939-4640.1984.tb00788.x] [PMID: 6332104]
[120]
Tamura, H.; Takasaki, A.; Taketani, T.; Tanabe, M.; Kizuka, F.; Lee, L.; Tamura, I.; Maekawa, R.; Asada, H.; Yamagata, Y.; Sugino, N. Melatonin as a free radical scavenger in the ovarian follicle. Endocr. J., 2013, 60(1), 1-13.
[http://dx.doi.org/10.1507/endocrj.EJ12-0263] [PMID: 23171705]
[121]
Drevet, J.R. The antioxidant glutathione peroxidase family and spermatozoa: A complex story. Mol. Cell. Endocrinol., 2006, 250(1-2), 70-79.
[http://dx.doi.org/10.1016/j.mce.2005.12.027] [PMID: 16427183]
[122]
Talpur, H.S.; Chandio, I.B.; Brohi, R.D.; Worku, T.; Rehman, Z.; Bhattarai, D.; Ullah, F.; JiaJia, L.; Yang, L. Research progress on the role of melatonin and its receptors in animal reproduction: A comprehensive review. Reprod. Domest. Anim., 2018, 53(4), 831-849.
[http://dx.doi.org/10.1111/rda.13188] [PMID: 29663591]
[123]
Valenti, S.; Thellung, S.; Florio, T.; Giusti, M.; Schettini, G.; Giordano, G. A novel mechanism for the melatonin inhibition of testosterone secretion by rat Leydig cells: Reduction of GnRH-induced increase in cytosolic Ca2+. J. Mol. Endocrinol., 1999, 23(3), 299-306.
[http://dx.doi.org/10.1677/jme.0.0230299] [PMID: 10601975]
[124]
Bouchard, M.F.; Taniguchi, H.; Viger, R.S. The effect of human GATA4 gene mutations on the activity of target gonadal promoters. J. Mol. Endocrinol., 2009, 42(2), 149-160.
[http://dx.doi.org/10.1677/JME-08-0089] [PMID: 19008335]
[125]
Svechnikov, K.; Landreh, L.; Weisser, J.; Izzo, G.; Colón, E.; Svechnikova, I.; Söder, O. Origin, development and regulation of human Leydig cells. Horm. Res. Paediatr., 2010, 73(2), 93-101.
[http://dx.doi.org/10.1159/000277141] [PMID: 20190545]
[126]
Qin, F.; Zhang, J.; Zan, L.; Guo, W.; Wang, J.; Chen, L.; Cao, Y.; Shen, O.; Tong, J. Inhibitory effect of melatonin on testosterone synthesis is mediated via GATA-4/SF-1 transcription factors. Reprod. Biomed. Online, 2015, 31(5), 638-646.
[http://dx.doi.org/10.1016/j.rbmo.2015.07.009] [PMID: 26386639]
[127]
Rocha, C.S.; Martins, A.D.; Rato, L.; Silva, B.M.; Oliveira, P.F.; Alves, M.G. Melatonin alters the glycolytic profile of Sertoli cells: Implications for male fertility. Mol. Hum. Reprod., 2014, 20(11), 1067-1076.
[http://dx.doi.org/10.1093/molehr/gau080] [PMID: 25205674]
[128]
Deng, S.L.; Wang, Z.P.; Jin, C.; Kang, X.L.; Batool, A.; Zhang, Y.; Li, X.Y.; Wang, X.X.; Chen, S.R.; Chang, C.S.; Cheng, C.Y.; Lian, Z.X.; Liu, Y.X. Melatonin promotes sheep Leydig cell testosterone secretion in a co-culture with Sertoli cells. Theriogenology, 2018, 106, 170-177.
[http://dx.doi.org/10.1016/j.theriogenology.2017.10.025] [PMID: 29073541]
[129]
Bustos-Obregón, E.; González, J.R.; Espinoza, O. Melatonin as protective agent for the cytotoxic effects of diazinon in the spermatogenesis in the earthworm Eisenia foetida. Ital. J. Anat. Embryol., 2005, 110(2)(Suppl. 1), 159-165.
[PMID: 16101034]
[130]
Onofre, J.; Baert, Y.; Faes, K.; Goossens, E. Cryopreservation of testicular tissue or testicular cell suspensions: A pivotal step in fertility preservation. Hum. Reprod. Update, 2016, 22(6), 744-761.
[http://dx.doi.org/10.1093/humupd/dmw029] [PMID: 27566839]
[131]
Sato, T.; Katagiri, K.; Gohbara, A.; Inoue, K.; Ogonuki, N.; Ogura, A.; Kubota, Y.; Ogawa, T. In vitro production of functional sperm in cultured neonatal mouse testes. Nature, 2011, 471(7339), 504-507.
[http://dx.doi.org/10.1038/nature09850] [PMID: 21430778]
[132]
Zhou, Q.; Wang, M.; Yuan, Y.; Wang, X.; Fu, R.; Wan, H.; Xie, M.; Liu, M.; Guo, X.; Zheng, Y.; Feng, G.; Shi, Q.; Zhao, X.Y.; Sha, J.; Zhou, Q. Complete meiosis from embryonic stem cell-derived germ cells in vitro. Cell Stem Cell, 2016, 18(3), 330-340.
[http://dx.doi.org/10.1016/j.stem.2016.01.017] [PMID: 26923202]
[133]
Navid, S.; Abbasi, M.; Hoshino, Y. The effects of melatonin on colonization of neonate spermatogonial mouse stem cells in a three-dimensional soft agar culture system. Stem Cell Res. Ther., 2017, 8(1), 233.
[http://dx.doi.org/10.1186/s13287-017-0687-y] [PMID: 29041987]
[134]
Navid, S.; Rastegar, T.; Baazm, M.; Alizadeh, R.; Talebi, A.; Gholami, K.; Khosravi-Farsani, S.; Koruji, M.; Abbasi, M. In vitro effects of melatonin on colonization of neonate mouse spermatogonial stem cells. Syst. Biol. Reprod. Med., 2017, 63(6), 370-381.
[http://dx.doi.org/10.1080/19396368.2017.1358774] [PMID: 28846448]
[135]
Niu, B.; Li, B.; Wu, C.; Wu, J.; Yan, Y.; Shang, R.; Bai, C.; Li, G.; Hua, J. Melatonin promotes goat spermatogonia stem cells (SSCs) proliferation by stimulating glial cell line-derived neurotrophic factor (GDNF) production in Sertoli cells. Oncotarget, 2016, 7(47), 77532-77542.
[http://dx.doi.org/10.18632/oncotarget.12720] [PMID: 27769051]
[136]
Deng, S.L.; Chen, S.R.; Wang, Z.P.; Zhang, Y.; Tang, J.X.; Li, J.; Wang, X.X.; Cheng, J.M.; Jin, C.; Li, X.Y.; Zhang, B.L.; Yu, K.; Lian, Z.X.; Liu, G.S.; Liu, Y.X. Melatonin promotes development of haploid germ cells from early developing spermatogenic cells of Suffolk sheep under in vitro condition. J. Pineal Res., 2016, 60(4), 435-447.
[http://dx.doi.org/10.1111/jpi.12327] [PMID: 26993286]
[137]
Deng, S.L.; Zhang, Y.; Yu, K.; Wang, X.X.; Chen, S.R.; Han, D.P.; Cheng, C.Y.; Lian, Z.X.; Liu, Y.X. Melatonin up-regulates the expression of the GATA-4 transcription factor and increases testosterone secretion from Leydig cells through RORα signaling in an in vitro goat spermatogonial stem cell differentiation culture system. Oncotarget, 2017, 8(66), 110592-110605.
[http://dx.doi.org/10.18632/oncotarget.22855] [PMID: 29299171]
[138]
Araki, A.; Mitsui, T.; Miyashita, C.; Nakajima, T.; Naito, H.; Ito, S.; Sasaki, S.; Cho, K.; Ikeno, T.; Nonomura, K.; Kishi, R. Association between maternal exposure to di(2-ethylhexyl) phthalate and reproductive hormone levels in fetal blood: The Hokkaido study on environment and children’s health. PLoS One, 2014, 9(10), e109039.
[http://dx.doi.org/10.1371/journal.pone.0109039] [PMID: 25296284]
[139]
Fénichel, P.; Déchaux, H.; Harthe, C.; Gal, J.; Ferrari, P.; Pacini, P.; Wagner-Mahler, K.; Pugeat, M.; Brucker-Davis, F. Unconjugated bisphenol A cord blood levels in boys with descended or undescended testes. Hum. Reprod., 2012, 27(4), 983-990.
[http://dx.doi.org/10.1093/humrep/der451] [PMID: 22267833]
[140]
Rahman, M.S.; Kwon, W.S.; Lee, J.S.; Yoon, S.J.; Ryu, B.Y.; Pang, M.G. Bisphenol-A affects male fertility via fertility-related proteins in spermatozoa. Sci. Rep., 2015, 5(1), 9169.
[http://dx.doi.org/10.1038/srep09169] [PMID: 25772901]
[141]
Zhang, T.; Zhou, Y.; Li, L.; Zhao, Y.; De Felici, M.; Reiter, R.J.; Shen, W. Melatonin protects prepuberal testis from deleterious effects of bisphenol A or diethylhexyl phthalate by preserving H3K9 methylation. J. Pineal Res., 2018, 65(2), e12497.
[http://dx.doi.org/10.1111/jpi.12497] [PMID: 29655234]
[142]
Yang, Q.; Zhu, L.; Jin, L. Human Follicle in vitro Culture Including Activation, Growth, and Maturation: A Review of Research Progress. Front. Endocrinol. (Lausanne), 2020, 11, 548.
[http://dx.doi.org/10.3389/fendo.2020.00548] [PMID: 32849312]
[143]
Telfer, E.E.; Zelinski, M.B. Ovarian follicle culture: Advances and challenges for human and nonhuman primates. Fertil. Steril., 2013, 99(6), 1523-1533.
[http://dx.doi.org/10.1016/j.fertnstert.2013.03.043] [PMID: 23635350]
[144]
Cao, Y.; Shen, M.; Jiang, Y.; Sun, S.; Liu, H. Melatonin reduces oxidative damage in mouse granulosa cells via restraining JNK-dependent autophagy. Reproduction, 2018, 155(3), 307-319.
[http://dx.doi.org/10.1530/REP-18-0002] [PMID: 29363570]
[145]
Zou, H.; Chen, B.; Ding, D.; Gao, M.; Chen, D.; Liu, Y.; Hao, Y.; Zou, W.; Ji, D.; Zhou, P.; Wei, Z.; Cao, Y.; Zhang, Z. Melatonin promotes the development of immature oocytes from the COH cycle into healthy offspring by protecting mitochondrial function. J. Pineal Res., 2020, 68(1), e12621.
[http://dx.doi.org/10.1111/jpi.12621] [PMID: 31714635]
[146]
Manca, M.E.; Manunta, M.L.; Spezzigu, A.; Torres-Rovira, L.; Gonzalez-Bulnes, A.; Pasciu, V.; Piu, P.; Leoni, G.G.; Succu, S.; Chesneau, D.; Naitana, S.; Berlinguer, F. Melatonin deprival modifies follicular and corpus luteal growth dynamics in a sheep model. Reproduction, 2014, 147(6), 885-895.
[http://dx.doi.org/10.1530/REP-13-0405] [PMID: 24570480]
[147]
Tao, J.; Zhang, L.; Zhang, X.; Chen, Y.; Chen, Q.; Shen, M.; Liu, H.; Deng, S. Effect of exogenous melatonin on the development of mice ovarian follicles and follicular angiogenesis. Int. J. Mol. Sci., 2021, 22(20), 11262.
[http://dx.doi.org/10.3390/ijms222011262] [PMID: 34681919]
[148]
Nakamura, Y.; Tamura, H.; Takayama, H.; Kato, H. Increased endogenous level of melatonin in preovulatory human follicles does not directly influence progesterone production. Fertil. Steril., 2003, 80(4), 1012-1016.
[http://dx.doi.org/10.1016/S0015-0282(03)01008-2] [PMID: 14556825]
[149]
Wang, L.; Tang, J.; Wang, L.; Tan, F.; Song, H.; Zhou, J.; Li, F. Oxidative stress in oocyte aging and female reproduction. J. Cell. Physiol., 2021, 236(12), 7966-7983.
[http://dx.doi.org/10.1002/jcp.30468] [PMID: 34121193]
[150]
Nakamura, Y.; Smith, M.; Krishna, A.; Terranova, P.F. Increased number of mast cells in the dominant follicle of the cow: Relationships among luteal, stromal, and hilar regions. Biol. Reprod., 1987, 37(3), 546-549.
[http://dx.doi.org/10.1095/biolreprod37.3.546] [PMID: 3676403]
[151]
Brännström, M.; Mayrhofer, G.; Robertson, S.A. Localization of leukocyte subsets in the rat ovary during the periovulatory period. Biol. Reprod., 1993, 48(2), 277-286.
[http://dx.doi.org/10.1095/biolreprod48.2.277] [PMID: 8439617]
[152]
Gupta, R.K.; Miller, K.P.; Babus, J.K.; Flaws, J.A. Methoxychlor inhibits growth and induces atresia of antral follicles through an oxidative stress pathway. Toxicol. Sci., 2006, 93(2), 382-389.
[http://dx.doi.org/10.1093/toxsci/kfl052] [PMID: 16807286]
[153]
Korzekwa, A.J.; Okuda, K.; Woclawek-Potocka, I.; Murakami, S.; Skarzynski, D.J. Nitric oxide induces apoptosis in bovine luteal cells. J. Reprod. Dev., 2006, 52(3), 353-361.
[http://dx.doi.org/10.1262/jrd.17092] [PMID: 16493180]
[154]
Reiter, R.J.; Tan, D.X.; Gitto, E.; Sainz, R.M.; Mayo, J.C.; Leon, J.; Manchester, L.C.; Vijayalaxmi; Kilic, E.; Kilic, U. Pharmacological utility of melatonin in reducing oxidative cellular and molecular damage. Pol. J. Pharmacol., 2004, 56(2), 159-170.
[PMID: 15156066]
[155]
Tan, D.X.; Manchester, L.C.; Terron, M.P.; Flores, L.J.; Reiter, R.J. One molecule, many derivatives: A never-ending interaction of melatonin with reactive oxygen and nitrogen species? J. Pineal Res., 2007, 42(1), 28-42.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00407.x] [PMID: 17198536]
[156]
Deng, S.L.; Sun, T.C.; Yu, K.; Wang, Z.P.; Zhang, B.L.; Zhang, Y.; Wang, X.X.; Lian, Z.X.; Liu, Y.X. Melatonin reduces oxidative damage and upregulates heat shock protein 90 expression in cryopreserved human semen. Free Radic. Biol. Med., 2017, 113, 347-354.
[http://dx.doi.org/10.1016/j.freeradbiomed.2017.10.342] [PMID: 29051117]
[157]
Frungieri, M.; Calandra, R.; Rossi, S. Local actions of melatonin in somatic cells of the testis. Int. J. Mol. Sci., 2017, 18(6), 1170.
[http://dx.doi.org/10.3390/ijms18061170] [PMID: 28561756]
[158]
Gholami, M.; Saki, G.; Hemadi, M.; Khodadadi, A.; Mohammadi-Asl, J. Melatonin improves spermatogonial stem cells transplantation efficiency in azoospermic mice. Iran. J. Basic Med. Sci., 2014, 17(2), 93-99.
[PMID: 24711891]
[159]
Sharbatoghli, M.; Rezazadeh Valojerdi, M.; Bahadori, M.H.; Salman Yazdi, R.; Ghaleno, L.R. The Relationship between seminal melatonin with sperm parameters, DNA fragmentation and nuclear maturity in intra-cytoplasmic sperm injection candidates. Cell J., 2015, 17(3), 547-553.
[http://dx.doi.org/10.22074/cellj.2015.15] [PMID: 26464827]
[160]
Pant, N.; Upadhyay, G.; Pandey, S.; Mathur, N.; Saxena, D.K.; Srivastava, S.P. Lead and cadmium concentration in the seminal plasma of men in the general population: Correlation with sperm quality. Reprod. Toxicol., 2003, 17(4), 447-450.
[http://dx.doi.org/10.1016/S0890-6238(03)00036-4] [PMID: 12849856]
[161]
Kaur, F.; Sangha, G.K.; Bilaspuri, G.S. Cyclophosphamide-induced structural and biochemical changes in testis and epididymidis of rats. Indian J. Exp. Biol., 1997, 35(7), 771-775.
[PMID: 9418379]
[162]
Anjum, S.; Rahman, S.; Kaur, M.; Ahmad, F.; Rashid, H.; Ansari, R.A.; Raisuddin, S. Melatonin ameliorates bisphenol A-induced biochemical toxicity in testicular mitochondria of mouse. Food Chem. Toxicol., 2011, 49(11), 2849-2854.
[http://dx.doi.org/10.1016/j.fct.2011.07.062] [PMID: 21840368]
[163]
Deng, S.; Wang, X.; Wang, Z.; Chen, S.; Wang, Y.; Hao, X.; Sun, T.; Zhang, Y.; Lian, Z.; Liu, Y. In vitro production of functional haploid sperm cells from male germ cells of Saanen dairy goat. Theriogenology, 2017, 90, 120-128.
[http://dx.doi.org/10.1016/j.theriogenology.2016.12.002] [PMID: 28166958]
[164]
Vriend, J.; Reiter, R.J. Breast cancer cells: Modulation by melatonin and the ubiquitin-proteasome system – A review. Mol. Cell. Endocrinol., 2015, 417, 1-9.
[http://dx.doi.org/10.1016/j.mce.2015.09.001] [PMID: 26363225]
[165]
Letellier, K.; Azeddine, B.; Parent, S.; Labelle, H.; Rompré, P.H.; Moreau, A.; Moldovan, F. Estrogen cross-talk with the melatonin signaling pathway in human osteoblasts derived from adolescent idiopathic scoliosis patients. J. Pineal Res., 2008, 45(4), 383-393.
[http://dx.doi.org/10.1111/j.1600-079X.2008.00603.x] [PMID: 18507714]
[166]
Boekelheide, K.; Darney, S.P.; Daston, G.P.; David, R.M.; Luderer, U.; Olshan, A.F.; Sanderson, W.T.; Willhite, C.C.; Woskie, S. NTP-CERHR Expert Panel Report on the reproductive and developmental toxicity of 2-bromopropane. Reprod. Toxicol., 2004, 18(2), 189-217.
[http://dx.doi.org/10.1016/j.reprotox.2003.10.003] [PMID: 15019719]
[167]
Huang, F.; Ning, H.; Xin, Q.Q.; Huang, Y.; Wang, H.; Zhang, Z.H.; Xu, D.X.; Ichihara, G.; Ye, D.Q. Melatonin pretreatment attenuates 2-bromopropane-induced testicular toxicity in rats. Toxicology, 2009, 256(1-2), 75-82.
[http://dx.doi.org/10.1016/j.tox.2008.11.005] [PMID: 19061934]
[168]
Pool, K.R.; Rickard, J.P.; de Graaf, S.P. Melatonin improves the motility and DNA integrity of frozen-thawed ram spermatozoa likely via suppression of mitochondrial superoxide production. Domest. Anim. Endocrinol., 2021, 74, 106516.
[http://dx.doi.org/10.1016/j.domaniend.2020.106516] [PMID: 32712540]
[169]
Tamura, H.; Jozaki, M.; Tanabe, M.; Shirafuta, Y.; Mihara, Y.; Shinagawa, M.; Tamura, I.; Maekawa, R.; Sato, S.; Taketani, T.; Takasaki, A.; Reiter, R.J.; Sugino, N. Importance of melatonin in assisted reproductive technology and ovarian aging. Int. J. Mol. Sci., 2020, 21(3), 1135.
[http://dx.doi.org/10.3390/ijms21031135] [PMID: 32046301]
[170]
Moss, J.L.; Choi, A.W.; Fitzgerald Keeter, M.K.; Brannigan, R.E. Male adolescent fertility preservation. Fertil. Steril., 2016, 105(2), 267-273.
[http://dx.doi.org/10.1016/j.fertnstert.2015.12.002] [PMID: 26707904]
[171]
Medrano, J.V.; Andrés, M.M.; García, S.; Herraiz, S.; Vilanova-Pérez, T.; Goossens, E.; Pellicer, A. Basic and clinical approaches for fertility preservation and restoration in cancer patients. Trends Biotechnol., 2018, 36(2), 199-215.
[http://dx.doi.org/10.1016/j.tibtech.2017.10.010] [PMID: 29153762]
[172]
Miguel-Jiménez, S.; Pina-Beltrán, B.; Gimeno-Martos, S.; Carvajal-Serna, M.; Casao, A.; Pérez-Pe, R. NADPH Oxidase 5 and melatonin: Involvement in ram sperm capacitation. Front. Cell Dev. Biol., 2021, 9, 655794.
[http://dx.doi.org/10.3389/fcell.2021.655794] [PMID: 34026754]
[173]
Gimeno-Martos, S.; Casao, A.; Yeste, M.; Cebrián-Pérez, J.A.; Muiño-Blanco, T.; Pérez-Pé, R. Melatonin reduces cAMP-stimulated capacitation of ram spermatozoa. Reprod. Fertil. Dev., 2019, 31(2), 420-431.
[http://dx.doi.org/10.1071/RD18087] [PMID: 30209004]
[174]
Li, C.Y.; Hao, H.S.; Zhao, Y.H.; Zhang, P.P.; Wang, H.Y.; Pang, Y.W.; Du, W.H.; Zhao, S.J.; Liu, Y.; Huang, J.M.; Wang, J.J.; Ruan, W.M.; Hao, T.; Reiter, R.J.; Zhu, H.B.; Zhao, X.M. Melatonin improves the fertilization capacity of sex-sorted bull sperm by inhibiting apoptosis and increasing fertilization capacitation via MT1. Int. J. Mol. Sci., 2019, 20(16), 3921.
[http://dx.doi.org/10.3390/ijms20163921] [PMID: 31409031]
[175]
Alagbonsi, I.A.; Olayaki, L.A. Melatonin attenuates Δ9-tetrahydrocannabinol-induced reduction in rat sperm motility and kinematics in-vitro. Reprod. Toxicol., 2018, 77, 62-69.
[http://dx.doi.org/10.1016/j.reprotox.2018.02.005] [PMID: 29454037]
[176]
Fujinoki, M.; Takei, G.L. Estrogen suppresses melatonin-enhanced hyperactivation of hamster spermatozoa. J. Reprod. Dev., 2015, 61(4), 287-295.
[http://dx.doi.org/10.1262/jrd.2014-116] [PMID: 25959801]
[177]
Wang, Z.; Teng, Z.; Wang, Z.; Song, Z.; Zhu, P.; Li, N.; Zhang, Y.; Liu, X.; Liu, F. Melatonin ameliorates paclitaxel‐induced mice spermatogenesis and fertility defects. J. Cell. Mol. Med., 2022, 26(4), 1219-1228.
[http://dx.doi.org/10.1111/jcmm.17177] [PMID: 35001532]
[178]
Rateb, S.A.; Khalifa, M.A.; Abd El-Hamid, I.S.; Shedeed, H.A. Enhancing liquid-chilled storage and cryopreservation capacities of ram spermatozoa by supplementing the diluent with different additives. Asian-Australas. J. Anim. Sci., 2020, 33(7), 1068-1076.
[http://dx.doi.org/10.5713/ajas.19.0338] [PMID: 32054222]
[179]
Riviere, E.; Rossi, S.P.; Tavalieri, Y.E.; Muñoz de Toro, M.M.; Ponzio, R.; Puigdomenech, E.; Levalle, O.; Martinez, G.; Terradas, C.; Calandra, R.S.; Matzkin, M.E.; Frungieri, M.B. Melatonin daily oral supplementation attenuates inflammation and oxidative stress in testes of men with altered spermatogenesis of unknown aetiology. Mol. Cell. Endocrinol., 2020, 515, 110889.
[http://dx.doi.org/10.1016/j.mce.2020.110889] [PMID: 32622722]
[180]
Pandey, N.; Giri, S. Melatonin attenuates radiofrequency radiation (900 MHz)-induced oxidative stress, DNA damage and cell cycle arrest in germ cells of male Swiss albino mice. Toxicol. Ind. Health, 2018, 34(5), 315-327.
[http://dx.doi.org/10.1177/0748233718758092] [PMID: 29562845]
[181]
Kurcer, Z.; Hekimoglu, A.; Aral, F.; Baba, F.; Sahna, E. Effect of melatonin on epididymal sperm quality after testicular ischemia/reperfusion in rats. Fertil. Steril., 2010, 93(5), 1545.
[http://dx.doi.org/10.1016/j.fertnstert.2009.01.146] [PMID: 19328481]
[182]
Gupta, S.; Agarwal, A.; Krajcir, N.; Alvarez, J.G. Role of oxidative stress in endometriosis. Reprod. Biomed., 2006, 13(1), 126-134.
[http://dx.doi.org/10.1016/S1472-6483(10)62026-3] [PMID: 16820124]
[183]
Weber, M.L.; Germeyer, A. Endometriosis and Menopause. Ther. Umsch., 2021, 78(8), 441-446.
[http://dx.doi.org/10.1024/0040-5930/a001295] [PMID: 34555977]
[184]
Van Langendonckt, A.; Casanas-Roux, F.; Donnez, J. Oxidative stress and peritoneal endometriosis. Fertil. Steril., 2002, 77(5), 861-870.
[http://dx.doi.org/10.1016/S0015-0282(02)02959-X] [PMID: 12009336]
[185]
Zeller, J.M.; Henig, I.; Radwanska, E.; Dmowski, W.P. Enhancement of human monocyte and peritoneal macrophage chemiluminescence activities in women with endometriosis. Am. J. Reprod. Immunol. Microbiol., 1987, 13(3), 78-82.
[http://dx.doi.org/10.1111/j.1600-0897.1987.tb00097.x] [PMID: 3605484]
[186]
Lin, X.; Dai, Y.; Tong, X.; Xu, W.; Huang, Q.; Jin, X.; Li, C.; Zhou, F.; Zhou, H.; Lin, X.; Huang, D.; Zhang, S. Excessive oxidative stress in cumulus granulosa cells induced cell senescence contributes to endometriosis-associated infertility. Redox Biol., 2020, 30, 101431.
[http://dx.doi.org/10.1016/j.redox.2020.101431] [PMID: 31972508]
[187]
Harlev, A.; Gupta, S.; Agarwal, A. Targeting oxidative stress to treat endometriosis. Expert Opin. Ther. Targets, 2015, 19(11), 1447-1464.
[http://dx.doi.org/10.1517/14728222.2015.1077226] [PMID: 26256952]
[188]
Güney, M.; Oral, B.; Karahan, N.; Mungan, T. Regression of endometrial explants in a rat model of endometriosis treated with melatonin. Fertil. Steril., 2008, 89(4), 934-942.
[http://dx.doi.org/10.1016/j.fertnstert.2007.04.023] [PMID: 17582405]
[189]
Schwertner, A.; Conceição dos Santos, C.C.; Costa, G.D.; Deitos, A.; de Souza, A.; de Souza, I.C.C.; Torres, I.L.S.; da Cunha Filho, J.S.L.; Caumo, W. Efficacy of melatonin in the treatment of endometriosis: A phase II, randomized, double-blind, placebo-controlled trial. Pain, 2013, 154(6), 874-881.
[http://dx.doi.org/10.1016/j.pain.2013.02.025] [PMID: 23602498]
[190]
Lin, Q.D.; Qiu, L.H. Pathogenesis, diagnosis, and treatment of recurrent spontaneous abortion with immune type. Front. Med. China, 2010, 4(3), 275-279.
[http://dx.doi.org/10.1007/s11684-010-0101-y] [PMID: 21191831]
[191]
Magnus, M.C.; Wilcox, A.J.; Morken, N.H.; Weinberg, C.R.; Håberg, S.E. Role of maternal age and pregnancy history in risk of miscarriage: Prospective register based study. BMJ, 2019, 364, l869.
[http://dx.doi.org/10.1136/bmj.l869] [PMID: 30894356]
[192]
Dimitriadis, E.; Menkhorst, E.; Saito, S.; Kutteh, W.H.; Brosens, J.J. Recurrent pregnancy loss. Nat. Rev. Dis. Primers, 2020, 6(1), 98.
[http://dx.doi.org/10.1038/s41572-020-00228-z] [PMID: 33303732]
[193]
Larsen, E.C.; Christiansen, O.B.; Kolte, A.M.; Macklon, N. New insights into mechanisms behind miscarriage. BMC Med., 2013, 11(1), 154.
[http://dx.doi.org/10.1186/1741-7015-11-154] [PMID: 23803387]
[194]
Yiyenoğlu, Ö.B.; Uğur, M.G.; Özcan, H.Ç.; Can, G.; Öztürk, E.; Balat, Ö.; Erel, Ö. Assessment of oxidative stress markers in recurrent pregnancy loss: A prospective study. Arch. Gynecol. Obstet., 2014, 289(6), 1337-1340.
[http://dx.doi.org/10.1007/s00404-013-3113-4] [PMID: 24297302]
[195]
Gupta, S.; Agarwal, A.; Banerjee, J.; Alvarez, J.G. The role of oxidative stress in spontaneous abortion and recurrent pregnancy loss: A systematic review. Obstet. Gynecol. Surv., 2007, 62(5), 335-347.
[http://dx.doi.org/10.1097/01.ogx.0000261644.89300.df] [PMID: 17425812]
[196]
Agarwal, A.; Gupta, S.; Sekhon, L.; Shah, R. Redox considerations in female reproductive function and assisted reproduction: From molecular mechanisms to health implications. Antioxid. Redox Signal., 2008, 10(8), 1375-1404.
[http://dx.doi.org/10.1089/ars.2007.1964] [PMID: 18402550]
[197]
Tan, D.X.; Manchester, L.; Qin, L.; Reiter, R. Melatonin: A mitochondrial targeting molecule involving mitochondrial protection and dynamics. Int. J. Mol. Sci., 2016, 17(12), 2124.
[http://dx.doi.org/10.3390/ijms17122124] [PMID: 27999288]
[198]
Zisapel, N. Melatonin-dopamine interactions: From basic neurochemistry to a clinical setting. Cell. Mol. Neurobiol., 2001, 21(6), 605-616.
[http://dx.doi.org/10.1023/A:1015187601628] [PMID: 12043836]
[199]
Juszczak, M.; Stempniak, B. Melatonin inhibits the substance P-induced secretion of vasopressin and oxytocin from the rat hypothalamo-neurohypophysial system: In vitro studies. Brain Res. Bull., 2003, 59(5), 393-397.
[http://dx.doi.org/10.1016/S0361-9230(02)00942-5] [PMID: 12507691]
[200]
Jones, M.R.; Goodarzi, M.O. Genetic determinants of polycystic ovary syndrome: Progress and future directions. Fertil. Steril., 2016, 106(1), 25-32.
[http://dx.doi.org/10.1016/j.fertnstert.2016.04.040] [PMID: 27179787]
[201]
Rotterdam, E.A-S.P. Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome (PCOS). Hum. Reprod., 2004, 19(1), 41-47.
[http://dx.doi.org/10.1093/humrep/deh098] [PMID: 14688154]
[202]
Patel, S. Polycystic ovary syndrome (PCOS), an inflammatory, systemic, lifestyle endocrinopathy. J. Steroid Biochem. Mol. Biol., 2018, 182, 27-36.
[http://dx.doi.org/10.1016/j.jsbmb.2018.04.008] [PMID: 29678491]
[203]
Asghari, M.H.; Moloudizargari, M.; Baeeri, M.; Baghaei, A.; Rahimifard, M.; Solgi, R.; Jafari, A.; Aminjan, H.H.; Hassani, S.; Moghadamnia, A.A.; Ostad, S.N.; Abdollahi, M. On the mechanisms of melatonin in protection of aluminum phosphide cardiotoxicity. Arch. Toxicol., 2017, 91(9), 3109-3120.
[http://dx.doi.org/10.1007/s00204-017-1998-6] [PMID: 28551710]
[204]
Johansson, J.; Stener-Victorin, E. Polycystic ovary syndrome: Effect and mechanisms of acupuncture for ovulation induction. Evid. Based Complement. Alternat. Med., 2013, 2013, 762615.
[http://dx.doi.org/10.1155/2013/762615] [PMID: 24073009]
[205]
Kruijver, F.P.M.; Swaab, D.F. Sex hormone receptors are present in the human suprachiasmatic nucleus. Neuroendocrinology, 2002, 75(5), 296-305.
[http://dx.doi.org/10.1159/000057339] [PMID: 12006783]
[206]
Luboshitzky, R.; Qupti, G.; Ishay, A.; Shen-Orr, Z.; Futerman, B.; Linn, S. Increased 6-sulfatoxymelatonin excretion in women with polycystic ovary syndrome. Fertil. Steril., 2001, 76(3), 506-510.
[http://dx.doi.org/10.1016/S0015-0282(01)01930-6] [PMID: 11532473]
[207]
Jain, M.; Jain, S.; Singh, T.B.; Haldar, C.; Jain, P. Melatonin and its correlation with testosterone in polycystic ovarian syndrome. J. Hum. Reprod. Sci., 2013, 6(4), 253-258.
[http://dx.doi.org/10.4103/0974-1208.126295] [PMID: 24672165]
[208]
Li, C.; Shi, Y.; You, L.; Wang, L.; Chen, Z.J. Melatonin receptor 1A gene polymorphism associated with polycystic ovary syndrome. Gynecol. Obstet. Invest., 2011, 72(2), 130-134.
[http://dx.doi.org/10.1159/000323542] [PMID: 21474908]
[209]
Peschke, E.; Frese, T.; Chankiewitz, E.; Peschke, D.; Preiss, U.; Schneyer, U.; Spessert, R.; Mühlbauer, E. Diabetic Goto Kakizaki rats as well as type 2 diabetic patients show a decreased diurnal serum melatonin level and an increased pancreatic melatonin-receptor status. J. Pineal Res., 2006, 40(2), 135-143.
[http://dx.doi.org/10.1111/j.1600-079X.2005.00287.x] [PMID: 16441550]
[210]
Pai, S.A.; Majumdar, A.S. Protective effects of melatonin against metabolic and reproductive disturbances in polycystic ovary syndrome in rats. J. Pharm. Pharmacol., 2014, 66(12), 1710-1721.
[http://dx.doi.org/10.1111/jphp.12297] [PMID: 25176048]
[211]
Li, Y.; Liu, H.; Wu, K.; Liu, H.; Huang, T.; Chen, Z.J.; Zhao, S.; Ma, J.; Zhao, H. Melatonin promotes human oocyte maturation and early embryo development by enhancing clathrin‐mediated endocytosis. J. Pineal Res., 2019, 67(3), e12601.
[http://dx.doi.org/10.1111/jpi.12601] [PMID: 31361919]
[212]
Yang, Q.; Dai, S.; Luo, X.; Zhu, J.; Li, F.; Liu, J.; Yao, G.; Sun, Y. Melatonin attenuates postovulatory oocyte dysfunction by regulating SIRT1 expression. Reproduction, 2018, 156(1), 81-92.
[http://dx.doi.org/10.1530/REP-18-0211] [PMID: 29752296]
[213]
Fernando, S.; Wallace, E.M.; Vollenhoven, B.; Lolatgis, N.; Hope, N.; Wong, M.; Lawrence, M.; Lawrence, A.; Russell, C.; Leong, K.; Thomas, P.; Rombauts, L. Melatonin in assisted reproductive technology: A pilot double-blind randomized placebo-controlled clinical trial. Front. Endocrinol. (Lausanne), 2018, 9, 545.
[http://dx.doi.org/10.3389/fendo.2018.00545] [PMID: 30283403]
[214]
Roussev, R.G.; Kaider, B.D.; Price, D.E.; Coulam, C.B. Laboratory evaluation of women experiencing reproductive failure. Am. J. Reprod. Immunol., 1996, 35(4), 415-420.
[http://dx.doi.org/10.1111/j.1600-0897.1996.tb00503.x] [PMID: 8739463]
[215]
Ebrahimi, M.; Akbari Asbagh, F. Pathogenesis and causes of premature ovarian failure: An update. Int. J. Fertil. Steril., 2011, 5(2), 54-65.
[PMID: 24963360]
[216]
Larsen, E.C.; Müller, J.; Schmiegelow, K.; Rechnitzer, C.; Andersen, A.N. Reduced ovarian function in long-term survivors of radiation- and chemotherapy-treated childhood cancer. J. Clin. Endocrinol. Metab., 2003, 88(11), 5307-5314.
[http://dx.doi.org/10.1210/jc.2003-030352] [PMID: 14602766]
[217]
Vijayalaxmi; Reiter, R.J.; Tan, D.X.; Herman, T.S.; Thomas, C.R., Jr Melatonin as a radioprotective agent: A review. Int. J. Radiat. Oncol. Biol. Phys., 2004, 59(3), 639-653.
[http://dx.doi.org/10.1016/j.ijrobp.2004.02.006] [PMID: 15183467]
[218]
Koc, M.; Taysi, S.; Emin Buyukokuroglu, M.; Bakan, N. The effect of melatonin against oxidative damage during total-body irradiation in rats. Radiat. Res., 2003, 160(2), 251-255.
[http://dx.doi.org/10.1667/3034] [PMID: 12859237]
[219]
Familiari, G.; Caggiati, A.; Nottola, S.A.; Ermini, M.; Benedetto, M.R.D.; Motta, P.M. Infertility: Ultrastructure of human ovarian primordial follicles after combination chemotherapy for Hodgkin’s disease. Hum. Reprod., 1993, 8(12), 2080-2087.
[http://dx.doi.org/10.1093/oxfordjournals.humrep.a137985] [PMID: 8150906]
[220]
Reiter, R.J.; Tan, D.; Sainz, R.M.; Mayo, J.C.; Lopez-Burillo, S. Melatonin: Reducing the toxicity and increasing the efficacy of drugs. J. Pharm. Pharmacol., 2010, 54(10), 1299-1321.
[http://dx.doi.org/10.1211/002235702760345374] [PMID: 12396291]
[221]
Huang, J.; Shan, W.; Li, N.; Zhou, B.; Guo, E.; Xia, M.; Lu, H.; Wu, Y.; Chen, J.; Wang, B.; Xi, L.; Ma, D.; Chen, G.; Li, K.; Sun, C. Melatonin provides protection against cisplatin-induced ovarian damage and loss of fertility in mice. Reprod. Biomed., 2021, 42(3), 505-519.
[http://dx.doi.org/10.1016/j.rbmo.2020.10.001] [PMID: 33388265]
[222]
Conway, G.S. Clinical manifestations of genetic defects affecting gonadotrophins and their receptors Clin. Endocrinol. (Oxf.), 1996, 45(6), 657-663.
[http://dx.doi.org/10.1046/j.1365-2265.1996.8680879.x] [PMID: 9039330]
[223]
Monnier-Barbarino, P.; Forges, T.; Faure, G.C.; Béné, M.C. Gonadal antibodies interfering with female reproduction. Best Pract. Res. Clin. Endocrinol. Metab., 2005, 19(1), 135-148.
[http://dx.doi.org/10.1016/j.beem.2004.11.011] [PMID: 15826927]
[224]
Gleicher, N.; Weghofer, A.; Barad, D.H. A pilot study of premature ovarian senescence: II. Different genotype and phenotype for genetic and autoimmune etiologies. Fertil. Steril., 2009, 91(5), 1707-1711.
[http://dx.doi.org/10.1016/j.fertnstert.2008.01.099] [PMID: 18384784]
[225]
Bondy, S.C.; Campbell, A. Melatonin and regulation of immune function: Impact on numerous diseases. Curr. Aging Sci., 2020, 13(2), 92-101.
[http://dx.doi.org/10.2174/1874609813666200711153223] [PMID: 32651969]
[226]
Voznesenskaya, T.; Makogon, N.; Bryzgina, T.; Sukhina, V.; Grushka, N.; Alexeyeva, I. Melatonin protects against experimental immune ovarian failure in mice. Reprod. Biol., 2007, 7(3), 207-220.
[PMID: 18059973]
[227]
Li, Y.; Liu, H.; Sun, J.; Tian, Y.; Li, C. Effect of melatonin on the peripheral T lymphocyte cell cycle and levels of reactive oxygen species in patients with premature ovarian failure. Exp. Ther. Med., 2016, 12(6), 3589-3594.
[http://dx.doi.org/10.3892/etm.2016.3833] [PMID: 28105091]
[228]
Song, Y.; Wu, H.; Wang, X.; Haire, A.; Zhang, X.; Zhang, J.; Wu, Y.; Lian, Z.; Fu, J.; Liu, G.; Wusiman, A. Melatonin improves the efficiency of super-ovulation and timed artificial insemination in sheep. PeerJ, 2019, 7, e6750.
[http://dx.doi.org/10.7717/peerj.6750] [PMID: 31086729]
[229]
Abdelnaby, E.A.; Abo El-Maaty, A.M. Melatonin and CIDR improved the follicular and luteal haemodynamics, uterine and ovarian arteries vascular perfusion, ovarian hormones and nitric oxide in cyclic cows. Reprod. Domest. Anim., 2021, 56(3), 498-510.
[http://dx.doi.org/10.1111/rda.13888] [PMID: 33403762]
[230]
Ogiwara, K.; Takahashi, T. A dual role for melatonin in medaka ovulation: Ensuring prostaglandin synthesis and actin cytoskeleton rearrangement in follicular cells1. Biol. Reprod., 2016, 94(3), 64.
[http://dx.doi.org/10.1095/biolreprod.115.133827] [PMID: 26864196]
[231]
Paul, S.; Sharma, A.V.; Mahapatra, P.D.; Bhattacharya, P.; Reiter, R.J.; Swarnakar, S. Role of melatonin in regulating matrix metalloproteinase-9 via tissue inhibitors of metalloproteinase-1 during protection against endometriosis. J. Pineal Res., 2008, 44(4), 439-449.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00547.x] [PMID: 18298469]
[232]
Badr, F.M.; El Habit, O.H.M.; Harraz, M.M. Radioprotective effect of melatonin assessed by measuring chromosomal damage in mitotic and meiotic cells. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 1999, 444(2), 367-372.
[http://dx.doi.org/10.1016/S1383-5718(99)00103-5] [PMID: 10521676]
[233]
Tamura, H.; Takasaki, A.; Miwa, I.; Taniguchi, K.; Maekawa, R.; Asada, H.; Taketani, T.; Matsuoka, A.; Yamagata, Y.; Shimamura, K.; Morioka, H.; Ishikawa, H.; Reiter, R.J.; Sugino, N. Oxidative stress impairs oocyte quality and melatonin protects oocytes from free radical damage and improves fertilization rate. J. Pineal Res., 2008, 44(3), 280-287.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00524.x] [PMID: 18339123]
[234]
Tamura, H.; Takasaki, A.; Taketani, T.; Tanabe, M.; Kizuka, F.; Lee, L.; Tamura, I.; Maekawa, R.; Aasada, H.; Yamagata, Y.; Sugino, N. The role of melatonin as an antioxidant in the follicle. J. Ovarian Res., 2012, 5(1), 5.
[http://dx.doi.org/10.1186/1757-2215-5-5] [PMID: 22277103]
[235]
Gutiérrez-Añez, J.C.; Henning, H.; Lucas-Hahn, A.; Baulain, U.; Aldag, P.; Sieg, B.; Hensel, V.; Herrmann, D.; Niemann, H. Melatonin improves rate of monospermic fertilization and early embryo development in a bovine IVF system. PLoS One, 2021, 16(9), e0256701.
[http://dx.doi.org/10.1371/journal.pone.0256701] [PMID: 34473747]
[236]
Barker, D.J. The fetal and infant origins of adult disease. BMJ, 1990, 301(6761), 1111.
[http://dx.doi.org/10.1136/bmj.301.6761.1111] [PMID: 2252919]
[237]
Conradt, E.; Adkins, D.E.; Crowell, S.E.; Raby, K.L.; Diamond, L.M.; Ellis, B. Incorporating epigenetic mechanisms to advance fetal programming theories. Dev. Psychopathol., 2018, 30(3), 807-824.
[http://dx.doi.org/10.1017/S0954579418000469] [PMID: 30068415]
[238]
Schlotz, W.; Phillips, D.I.W. Fetal origins of mental health: Evidence and mechanisms. Brain Behav. Immun., 2009, 23(7), 905-916.
[http://dx.doi.org/10.1016/j.bbi.2009.02.001] [PMID: 19217937]
[239]
Limesand, S.W.; Thornburg, K.L.; Harding, J.E. 30th anniversary for the developmental origins of endocrinology. J. Endocrinol., 2019, 242(1), E1-E4.
[http://dx.doi.org/10.1530/JOE-19-0227] [PMID: 31125977]
[240]
Van den Bergh, B.R.H.; van den Heuvel, M.I.; Lahti, M.; Braeken, M.; de Rooij, S.R.; Entringer, S.; Hoyer, D.; Roseboom, T.; Räikkönen, K.; King, S.; Schwab, M. Prenatal developmental origins of behavior and mental health: The influence of maternal stress in pregnancy. Neurosci. Biobehav. Rev., 2020, 117, 26-64.
[http://dx.doi.org/10.1016/j.neubiorev.2017.07.003] [PMID: 28757456]
[241]
Itani, N.; Salinas, C.E.; Villena, M.; Skeffington, K.L.; Beck, C.; Villamor, E.; Blanco, C.E.; Giussani, D.A. The highs and lows of programmed cardiovascular disease by developmental hypoxia: Studies in the chicken embryo. J. Physiol., 2018, 596(15), 2991-3006.
[http://dx.doi.org/10.1113/JP274111] [PMID: 28983923]
[242]
Vázquez, M.I.; Forcada, F.; Sosa, C.; Casao, A.; Sartore, I.; Fernández-Foren, A.; Meikle, A.; Abecia, J.A. Effect of exogenous melatonin on embryo viability and uterine environment in undernourished ewes. Anim. Reprod. Sci., 2013, 141(1-2), 52-61.
[http://dx.doi.org/10.1016/j.anireprosci.2013.07.007] [PMID: 23948208]
[243]
Lui, C.C.; Hsu, M.H.; Kuo, H.C.; Chen, C.C.; Sheen, J.M.; Yu, H.R.; Tiao, M.M.; Tain, Y.L.; Chang, K.A.; Huang, L.T. Effects of melatonin on prenatal dexamethasone-induced epigenetic alterations in hippocampal morphology and reelin and glutamic acid decarboxylase 67 levels. Dev. Neurosci., 2015, 37(2), 105-114.
[http://dx.doi.org/10.1159/000368768] [PMID: 25720733]
[244]
Baydas, G.; Koz, S.T.; Tuzcu, M.; Nedzvetsky, V.S. Melatonin prevents gestational hyperhomocysteinemia-associated alterations in neurobehavioral developments in rats. J. Pineal Res., 2008, 44(2), 181-188.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00506.x] [PMID: 18289170]
[245]
Sagrillo-Fagundes, L.; Maria Assuncao Salustiano, E.; Wong Yen, P.; Soliman, A.; Vaillancourt, C. Melatonin in pregnancy: Effects on brain development and cns programming disorders. Curr. Pharm. Des., 2016, 22(8), 978-986.
[http://dx.doi.org/10.2174/1381612822666151214104624] [PMID: 26654775]
[246]
Baydas, G.; Koz, S.T.; Tuzcu, M.; Etem, E.; Nedzvetsky, V.S. Melatonin inhibits oxidative stress and apoptosis in fetal brains of hyperhomocysteinemic rat dams. J. Pineal Res., 2007, 43(3), 225-231.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00465.x] [PMID: 17803518]
[247]
Tain, Y.L.; Lee, C.T.; Chan, J.Y.; Hsu, C.N. Maternal melatonin or N-acetylcysteine therapy regulates hydrogen sulfide-generating pathway and renal transcriptome to prevent prenatal N(G)-Nitro-L-arginine-methyl ester (L-NAME)-induced fetal programming of hypertension in adult male offspring. Am. J. Obstet. Gynecol., 2016, 215(5), e631-636.
[http://dx.doi.org/10.1016/j.ajog.2016.07.036]
[248]
Tain, Y.L.; Leu, S.; Wu, K.L.H.; Lee, W.C.; Chan, J.Y.H. Melatonin prevents maternal fructose intake-induced programmed hypertension in the offspring: Roles of nitric oxide and arachidonic acid metabolites. J. Pineal Res., 2014, 57(1), 80-89.
[http://dx.doi.org/10.1111/jpi.12145] [PMID: 24867192]
[249]
Rhind, S.M. Effects of maternal nutrition on fetal and neonatal reproductive development and function. Anim. Reprod. Sci., 2004, 82-83, 169-181.
[http://dx.doi.org/10.1016/j.anireprosci.2004.04.003] [PMID: 15271451]
[250]
Toppari, J.; Larsen, J.C.; Christiansen, P.; Giwercman, A.; Grandjean, P.; Guillette, L.J., Jr; Jégou, B.; Jensen, T.K.; Jouannet, P.; Keiding, N.; Leffers, H.; McLachlan, J.A.; Meyer, O.; Müller, J.; Rajpert-De Meyts, E.; Scheike, T.; Sharpe, R.; Sumpter, J.; Skakkebaek, N.E. Male reproductive health and environmental xenoestrogens. Environ. Health Perspect., 1996, 104(Suppl. 4), 741-803.
[http://dx.doi.org/10.1289/ehp.96104s4741] [PMID: 8880001]
[251]
Jensen, T.K.; Jørgensen, N.; Punab, M.; Haugen, T.B.; Suominen, J.; Zilaitiene, B.; Horte, A.; Andersen, A.G.; Carlsen, E.; Magnus, Ø.; Matulevicius, V.; Nermoen, I.; Vierula, M.; Keiding, N.; Toppari, J.; Skakkebaek, N.E. Association of in utero exposure to maternal smoking with reduced semen quality and testis size in adulthood: A cross-sectional study of 1,770 young men from the general population in five European countries. Am. J. Epidemiol., 2004, 159(1), 49-58.
[http://dx.doi.org/10.1093/aje/kwh002] [PMID: 14693659]
[252]
Damgaard, I.N.; Jensen, T.K.; Petersen, J.H.; Skakkebæk, N.E.; Toppari, J.; Main, K.M. Cryptorchidism and maternal alcohol consumption during pregnancy. Environ. Health Perspect., 2007, 115(2), 272-277.
[http://dx.doi.org/10.1289/ehp.9608] [PMID: 17384777]
[253]
Padmanabhan, V.; Sarma, H.N.; Savabieasfahani, M.; Steckler, T.L.; Veiga-Lopez, A. Developmental reprogramming of reproductive and metabolic dysfunction in sheep: Native steroids vs. environmental steroid receptor modulators. Int. J. Androl., 2010, 33(2), 394-404.
[http://dx.doi.org/10.1111/j.1365-2605.2009.01024.x] [PMID: 20070410]
[254]
Juul, A.; Almstrup, K.; Andersson, A.M.; Jensen, T.K.; Jørgensen, N.; Main, K.M.; Meyts, E.R-D.; Toppari, J.; Skakkebæk, N.E. Possible fetal determinants of male infertility. Nat. Rev. Endocrinol., 2014, 10(9), 553-562.
[http://dx.doi.org/10.1038/nrendo.2014.97] [PMID: 24935122]
[255]
Wohlfahrt-Veje, C.; Main, K.M.; Skakkebaek, N.E. Testicular dysgenesis syndrome: Foetal origin of adult reproductive problems. Clin. Endocrinol. (Oxf.), 2009, 71(4), 459-465.
[http://dx.doi.org/10.1111/j.1365-2265.2009.03545.x] [PMID: 19222487]
[256]
Skakkebaek, N.E. A brief review of the link between environment and male reproductive health: Lessons from studies of testicular germ cell cancer. Horm. Res. Paediatr., 2016, 86(4), 240-246.
[http://dx.doi.org/10.1159/000443400] [PMID: 26871895]
[257]
Abd-Allah, A.; El-Sayed, S.M.; Abdel-Wahab, M.H.; Hamada, F.M. Effect of melatonin on estrogen and progesterone receptors in relation to uterine contraction in rats. Pharmacol. Res., 2003, 47(4), 349-354.
[http://dx.doi.org/10.1016/S1043-6618(03)00014-8] [PMID: 12644393]
[258]
Olukole, S.G.; Lanipekun, D.O.; Ola-Davies, E.O.; Oke, B.O. Maternal exposure to environmentally relevant doses of bisphenol A causes reproductive dysfunction in F1 adult male rats: Protective role of melatonin. Environ. Sci. Pollut. Res. Int., 2019, 26(28), 28940-28950.
[http://dx.doi.org/10.1007/s11356-019-06153-3] [PMID: 31388950]
[259]
Abdel-Wahab, A.; Hassanin, K.M.A.; Ibrahim, S.S.; El-Kossi, D.M.M.H.; Abdel-Razik, A.R.H. Developmental programming: Physiological impacts of prenatal melatonin administration on reproductive capacity and serum triiodothyronine of adult female offspring rat born to moms exposed to bisphenol a during pregnancy. Reprod. Sci., 2021, 28(7), 1956-1966.
[http://dx.doi.org/10.1007/s43032-020-00452-8] [PMID: 33469879]
[260]
Sun, Z.Y.; Zhang, P.; Wang, J.J.; Liu, J.C.; Li, L.; Shen, W.; Zhai, Q.Y. Melatonin alleviates meiotic defects in fetal mouse oocytes induced by Di (2-ethylhexyl) phthalate in vitro. Aging (Albany NY), 2018, 10(12), 4175-4187.
[http://dx.doi.org/10.18632/aging.101715] [PMID: 30591620]
[261]
Díaz, E.; Castrillón, P.O.; Esquifino, A.I.; Marín, B.; Díaz, B. Prenatal melatonin exposure influences the maturation of gonadotropin and prolactin estradiol-benzoate feedback system. J. Steroid Biochem. Mol. Biol., 1999, 70(1-3), 81-88.
[http://dx.doi.org/10.1016/S0960-0760(99)00091-6] [PMID: 10529005]
[262]
Sebastiani, G.; Borrás-Novell, C.; Casanova, M.A.; Pascual Tutusaus, M.; Ferrero Martínez, S.; Gómez Roig, M.D.; García-Algar, O. The effects of alcohol and drugs of abuse on maternal nutritional profile during pregnancy. Nutrients, 2018, 10(8), 1008.
[http://dx.doi.org/10.3390/nu10081008] [PMID: 30072661]
[263]
Main, K.M.; Jensen, R.B.; Asklund, C.; Høi-Hansen, C.E.; Skakkebaek, N.E. Low birth weight and male reproductive function. Horm. Res. Paediatr., 2006, 65(Suppl. 3), 116-122.
[http://dx.doi.org/10.1159/000091516] [PMID: 16612124]
[264]
Langston-Cox, A.; Marshall, S.A.; Lu, D.; Palmer, K.R.; Wallace, E.M. Melatonin for the management of preeclampsia: A review. Antioxidants, 2021, 10(3), 376.
[http://dx.doi.org/10.3390/antiox10030376] [PMID: 33802558]
[265]
Dou, Y.; Lin, B.; Cheng, H.; Wang, C.; Zhao, M.; Zhang, J.; Wu, J. The reduction of melatonin levels is associated with the development of preeclampsia: A meta-analysis. Hypertens. Pregnancy, 2019, 38(2), 65-72.
[http://dx.doi.org/10.1080/10641955.2019.1581215] [PMID: 30794002]
[266]
Hardeland, R. Melatonin and inflammation-Story of a double-edged blade. J. Pineal Res., 2018, 65(4), e12525.
[http://dx.doi.org/10.1111/jpi.12525] [PMID: 30242884]
[267]
Tain, Y.L.; Huang, L.T.; Chan, J. Transcriptional regulation of programmed hypertension by melatonin: An epigenetic perspective. Int. J. Mol. Sci., 2014, 15(10), 18484-18495.
[http://dx.doi.org/10.3390/ijms151018484] [PMID: 25318052]
[268]
Korkmaz, A.; Reiter, R.J. Epigenetic regulation: A new research area for melatonin? J. Pineal Res., 2008, 44(1), 41-44.
[http://dx.doi.org/10.1111/j.1600-079X.2007.00509.x] [PMID: 18078446]
[269]
Wu, T.H.; Kuo, H.C.; Lin, I.C.; Chien, S.J.; Huang, L.T.; Tain, Y.L. Melatonin prevents neonatal dexamethasone induced programmed hypertension: Histone deacetylase inhibition. J. Steroid. Biochem. Mol. Biol., 2014, 144(Pt B), 253-259.
[http://dx.doi.org/10.1016/j.jsbmb.2014.07.008]
[270]
Rexhaj, E.; Pireva, A.; Paoloni-Giacobino, A.; Allemann, Y.; Cerny, D.; Dessen, P.; Sartori, C.; Scherrer, U.; Rimoldi, S.F. Prevention of vascular dysfunction and arterial hypertension in mice generated by assisted reproductive technologies by addition of melatonin to culture media. Am. J. Physiol. Heart Circ. Physiol., 2015, 309(7), H1151-H1156.
[http://dx.doi.org/10.1152/ajpheart.00621.2014] [PMID: 26276822]
[271]
Qu, P.; Shen, C.; Du, Y.; Qin, H.; Luo, S.; Fu, S.; Dong, Y.; Guo, S.; Hu, F.; Xue, Y.; Liu, E. Melatonin protects rabbit Somatic Cell Nuclear Transfer (SCNT) embryos from electrofusion damage. Sci. Rep., 2020, 10(1), 2186.
[http://dx.doi.org/10.1038/s41598-020-59161-6] [PMID: 32042116]
[272]
Su, J.; Wang, Y.; Xing, X.; Zhang, L.; Sun, H.; Zhang, Y. Melatonin significantly improves the developmental competence of bovine somatic cell nuclear transfer embryos. J. Pineal Res., 2015, 59(4), 455-468.
[http://dx.doi.org/10.1111/jpi.12275] [PMID: 26331949]
[273]
Sorlí, J.V.; Barragán, R.; Coltell, O.; Portolés, O.; Pascual, E.C.; Ortega-Azorín, C.; González, J.I.; Estruch, R.; Saiz, C.; Pérez-Fidalgo, A.; Ordovas, J.M.; Corella, D. Chronological age interacts with the circadian melatonin receptor 1B gene variation, determining fasting glucose concentrations in mediterranean populations. additional analyses on type-2 diabetes risk. Nutrients, 2020, 12(11), 3323.
[http://dx.doi.org/10.3390/nu12113323] [PMID: 33138317]
[274]
Tain, Y.L.; Huang, L.T.; Hsu, C.N. Developmental programming of adult disease: Reprogramming by melatonin? Int. J. Mol. Sci., 2017, 18(2), 426.
[http://dx.doi.org/10.3390/ijms18020426] [PMID: 28212315]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy