General Review Article

COVID-19 和阿尔茨海默病:神经炎症、氧化应激、铁死亡和所涉及的机制

卷 30, 期 35, 2023

发表于: 23 November, 2022

页: [3993 - 4031] 页: 39

弟呕挨: 10.2174/0929867329666221003101548

价格: $65

Open Access Journals Promotions 2
摘要

阿尔茨海默病(AD)是一种进行性神经退行性疾病,其特征是明显的认知能力下降,记忆力减退和时空问题,在严重的情况下,缺乏对家庭成员的认可。神经系统症状、认知障碍和 COVID-19 引起的炎症框架,以及长期影响,激发了人们对基于类似损害的 AD 的新兴趣。COVID-19 还导致 AD 症状发作加速。在这方面,据报道,由于多种病理变化,例如病毒受体血管紧张素转换酶 2 (ACE2) 的过度表达、接受多药治疗的患者出现糖尿病、高血压或药物相互作用等合并症以及促炎分子的高度存在,AD 患者的 COVID-19 发病率和死亡率增加。此外,两种疾病中细胞因子、神经炎症、氧化应激和铁死亡的释放显示出共同的潜在机制,这些机制共同恶化了这些患者的临床表现和预后。

关键词: COVID-19,阿尔茨海默病,神经变性,细胞因子,神经炎症,氧化应激,铁死亡,机制。

[1]
Vitale, A.A.; Ciprian-Ollivier, J.; Vitale, M.G.; Romero, E.; Pomilio, A.B. Clinical studies of markers of the indolic hypermethylation in human perception alterations. Acta Bioquim. Clin. Latinoam., 2010, 44(4), 627-642.
[2]
Vitale, A.A.; Pomilio, A.B.; Cañellas, C.O.; Vitale, M.G.; Putz, E.M.; Ciprian-Ollivier, J. In vivo long-term kinetics of radiolabeled n,n-dimethyltryptamine and tryptamine. J. Nucl. Med., 2011, 52(6), 970-977.
[http://dx.doi.org/10.2967/jnumed.110.083246] [PMID: 21622895]
[3]
Pomilio, A.B.; Vitale, A.A.; Ciprian Ollivier, J. Clinical and radiolabeled studies of biomarkers of the indolic hypermethylation in human perception alterations. Annales. Soc. Ci. Argent., 2017, 259(3)
[4]
Merelli, A.; Repetto, M.; Lazarowski, A.; Auzmendi, J. Hypoxia, oxidative stress, and inflammation: Three faces of neurodegenerative diseases. J. Alzheimers Dis., 2021, 82(s1), S109-S126.
[http://dx.doi.org/10.3233/JAD-201074] [PMID: 33325385]
[5]
Merelli, A.; Ramos, A.J.; Lazarowski, A.; Auzmendi, J. Convulsive stress mimics brain hypoxia and promotes the P-glycoprotein (P-gp) and erythropoietin receptor overexpression. Recombinant human erythropoietin effect on P-gp activity. Front. Neurosci., 2019, 13, 750.
[http://dx.doi.org/10.3389/fnins.2019.00750] [PMID: 31379495]
[6]
Merelli, A.; Rodríguez, J.C.G.; Folch, J.; Regueiro, M.R.; Camins, A.; Lazarowski, A. Understanding the role of hypoxia inducible factor during neurodegeneration for new therapeutics opportunities. Curr. Neuropharmacol., 2018, 16(10), 1484-1498.
[http://dx.doi.org/10.2174/1570159X16666180110130253] [PMID: 29318974]
[7]
Pomilio, A.B.; Vitale, A.A.; Lazarowski, A.J. Neuroproteomics chip-based mass spectrometry and other techniques for Alzheimer’s disease biomarkers – update. Curr. Pharm. Des., 2022, 28(14), 1124-1151.
[http://dx.doi.org/10.2174/1381612828666220413094918] [PMID: 35422204]
[8]
Pomilio, A.B.; Vitale, A.A.; Lazarowski, A.J. Uncommon noninvasive biomarkers for the evaluation and monitoring of the etiopathogenesis of Alzheimer’s disease. Curr. Pharm. Des., 2022, 28(14), 1152-1169.
[http://dx.doi.org/10.2174/1381612828666220413101929] [PMID: 35422205]
[9]
Iadecola, C.; Anrather, J.; Kamel, H. Effects of COVID-19 on the nervous system. Cell, 2020, 183(1), 16-27.e1.
[http://dx.doi.org/10.1016/j.cell.2020.08.028] [PMID: 32882182]
[10]
Ciaccio, M.; Lo Sasso, B.; Scazzone, C.; Gambino, C.M.; Ciaccio, A.M.; Bivona, G.; Piccoli, T.; Giglio, R.V.; Agnello, L. COVID-19 and Alzheimer’s disease. Brain Sci., 2021, 11(3), 305.
[http://dx.doi.org/10.3390/brainsci11030305] [PMID: 33673697]
[11]
Rahman, M.A.; Islam, K.; Rahman, S.; Alamin, M. Neurobiochemical cross-talk between COVID-19 and Alzheimer’s disease. Mol. Neurobiol., 2021, 58(3), 1017-1023.
[http://dx.doi.org/10.1007/s12035-020-02177-w] [PMID: 33078369]
[12]
Xiong, N.; Schiller, M.R.; Li, J.; Chen, X.; Lin, Z. Severe COVID-19 in Alzheimer’s disease: APOE4’s fault again? Alzheimers Res. Ther., 2021, 13(1), 111.
[http://dx.doi.org/10.1186/s13195-021-00858-9] [PMID: 34118974]
[13]
Alomari, S.O.; Abou-Mrad, Z.; Bydon, A. COVID-19 and the central nervous system. Clin. Neurol. Neurosurg., 2020, 198, 106116.
[http://dx.doi.org/10.1016/j.clineuro.2020.106116] [PMID: 32828027]
[14]
Ferini-Strambi, L.; Salsone, M. COVID-19 and neurological disorders: Are neurodegenerative or neuroimmunological diseases more vulnerable? J. Neurol., 2021, 268(2), 409-419.
[http://dx.doi.org/10.1007/s00415-020-10070-8] [PMID: 32696341]
[15]
Sirin, S.; Nigdelioglu Dolanbay, S.; Aslim, B. The relationship of early- and late-onset Alzheimer’s disease genes with COVID-19. J. Neural Transm. (Vienna), 2022, 129(7), 847-859.
[http://dx.doi.org/10.1007/s00702-022-02499-0] [PMID: 35429259]
[16]
Villa, C.; Rivellini, E.; Lavitrano, M.; Combi, R. Can SARS-CoV-2 infection exacerbate Alzheimer’s disease? An overview of shared risk factors and pathogenetic mechanisms. J. Pers. Med., 2022, 12(1), 29.
[http://dx.doi.org/10.3390/jpm12010029] [PMID: 35055344]
[17]
Pimentel, G.A.; Guimarães, T.G.; Silva, G.D.; Scaff, M. Case report: Neurodegenerative diseases after severe acute respiratory syndrome coronavirus 2 infection, a report of three cases: Creutzfeldt-Jakob disease, rapidly progressive Alzheimer’s disease, and frontotemporal dementia. Front. Neurol., 2022, 13, 731369.
[http://dx.doi.org/10.3389/fneur.2022.731369] [PMID: 35197920]
[18]
Wang, Y.; Li, M.; Kazis, L.E.; Xia, W. Clinical outcomes of COVID-19 infection among patients with Alzheimer’s disease or mild cognitive impairment. Alzheimers Dement., 2022, 18(5), 911-923.
[http://dx.doi.org/10.1002/alz.12665] [PMID: 35377523]
[19]
Alavi Naini, S.M.; Soussi-Yanicostas, N. Tau hyperphosphorylation and oxidative stress, a critical vicious circle in neurodegenerative tauopathies? Oxid. Med. Cell. Longev., 2015, 2015, 151979.
[http://dx.doi.org/10.1155/2015/151979] [PMID: 26576216]
[20]
Barbier, P.; Zejneli, O.; Martinho, M.; Lasorsa, A.; Belle, V.; Smet-Nocca, C.; Tsvetkov, P.O.; Devred, F.; Landrieu, I. Role of tau as a microtubule-associated protein: Structural and functional aspects. Front. Aging Neurosci., 2019, 11, 204.
[http://dx.doi.org/10.3389/fnagi.2019.00204] [PMID: 31447664]
[21]
Alzheimer’s Association. 2020 Alzheimer’s disease facts and figures. Alzheimers Dement., 2020, 16(3), 391-460.
[http://dx.doi.org/10.1002/alz.12068]
[22]
Ashraf, A.; Jeandriens, J.; Parkes, H.G.; So, P.W. Iron dyshomeostasis, lipid peroxidation and perturbed expression of cystine/glutamate antiporter in Alzheimer’s disease: Evidence of ferroptosis. Redox Biol., 2020, 32, 101494.
[http://dx.doi.org/10.1016/j.redox.2020.101494] [PMID: 32199332]
[23]
Nir, T.M.; Jahanshad, N.; Villalon-Reina, J.E.; Toga, A.W.; Jack, C.R.; Weiner, M.W.; Thompson, P.M. Effectiveness of regional DTI measures in distinguishing Alzheimer’s disease, MCI, and normal aging. Neuroimage Clin., 2013, 3, 180-195.
[http://dx.doi.org/10.1016/j.nicl.2013.07.006] [PMID: 24179862]
[24]
Bergamino, M.; Schiavi, S.; Daducci, A.; Walsh, R.R.; Stokes, A.M. Analysis of brain structural connectivity networks and white matter integrity in patients with mild cognitive impairment. Front. Aging Neurosci., 2022, 14, 793991.
[http://dx.doi.org/10.3389/fnagi.2022.793991] [PMID: 35173605]
[25]
Stages of Alzheimer’s Disease. U.S. Alzheimer Association, 2022. Available from: https://www.alz.org/alzheimers-dementia/stages?lang=en-US
[26]
Narayanaswami, V.; Dahl, K.; Bernard-Gauthier, V.; Josephson, L.; Cumming, P.; Vasdev, N. Emerging PET radiotracers and targets for imaging of neuroinflammation in neurodegenerative diseases: Outlook beyond TSPO. Mol. Imaging, 2018, 17, 1536012118792317.
[http://dx.doi.org/10.1177/1536012118792317] [PMID: 30203712]
[27]
Fleeman, R.M.; Proctor, E.A. Astrocytic propagation of tau in the context of Alzheimer’s disease. Front. Cell. Neurosci., 2021, 15, 645233.
[http://dx.doi.org/10.3389/fncel.2021.645233] [PMID: 33815065]
[28]
Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; Liu, E.; Molinuevo, J.L.; Montine, T.; Phelps, C.; Rankin, K.P.; Rowe, C.C.; Scheltens, P.; Siemers, E.; Snyder, H.M.; Sperling, R.; Elliott, C.; Masliah, E.; Ryan, L.; Silverberg, N. NIA-AA research framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement., 2018, 14(4), 535-562.
[http://dx.doi.org/10.1016/j.jalz.2018.02.018] [PMID: 29653606]
[29]
Reitz, C.; Rogaeva, E.; Beecham, G.W. Late-onset vs. nonmendelian early-onset Alzheimer disease. Neurol. Genet., 2020, 6(5), e512.
[http://dx.doi.org/10.1212/NXG.0000000000000512] [PMID: 33225065]
[30]
Seto, M.; Weiner, R.L.; Dumitrescu, L.; Hohman, T.J. Protective genes and pathways in Alzheimer’s disease: Moving towards precision interventions. Mol. Neurodegener., 2021, 16(1), 29.
[http://dx.doi.org/10.1186/s13024-021-00452-5] [PMID: 33926499]
[31]
D’Argenio, V.; Sarnataro, D. New insights into the molecular bases of familial Alzheimer’s disease. J. Pers. Med., 2020, 10(2), 26.
[http://dx.doi.org/10.3390/jpm10020026] [PMID: 32325882]
[32]
Baker, E.; Escott-Price, V. Polygenic risk scores in Alzheimer’s disease: Current applications and future directions. Frontiers in Digital Health, 2020, 2, 14.
[http://dx.doi.org/10.3389/fdgth.2020.00014] [PMID: 34713027]
[33]
Zhou, X.; Li, Y.Y.T.; Fu, A.K.Y.; Ip, N.Y. Polygenic score models for Alzheimer’s disease: From research to clinical applications. Front. Neurosci., 2021, 15, 650220.
[http://dx.doi.org/10.3389/fnins.2021.650220] [PMID: 33854414]
[34]
Rabinovici, G.D. Late-onset Alzheimer disease. Continuum (Minneap. Minn.), 2019, 25(1), 14-33.
[http://dx.doi.org/10.1212/CON.0000000000000700] [PMID: 30707185]
[35]
Centers for Disease Control and Prevention (CDC). Coronavirus disease. 2019. Available from: https://www.cdc.gov/dotw/covid-19/index.html
[36]
New coronavirus COVID-19: Information, recommendations and prevention measures from the Ministry of Health of the Nation. Available from: https://www.argentina.gob.ar/salud/coronavirus-COVID-19
[37]
WHO. Coronavirus disease (COVID-19): How is it transmitted? Available from: https://www.who.int/news-room/q-a-detail/coronavirus-disease-covid-19-how-is-it-transmitted (Accessed on April 5th, 2022).
[38]
WHO. Coronavirus disease (COVID-19) pandemic. WHO, 2022. Available from: https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (Accessed on April 5th, 2022).
[39]
Worldometers.info. COVID-19 Coronavirus Pandemic. Statistics. 2022. Available from: https://www.worldometers.info/coronavirus/ (Accessed June 25th, 2022).
[40]
Kim, D.; Lee, J.Y.; Yang, J.S.; Kim, J.W.; Kim, V.N.; Chang, H. The architecture of SARS-CoV-2 transcriptome. Cell, 2020, 181(4), 914-921.e10.
[http://dx.doi.org/10.1016/j.cell.2020.04.011] [PMID: 32330414]
[41]
Ugurel, O.M.; Mutlu, O.; Sariyer, E.; Kocer, S.; Ugurel, E.; Inci, T.G.; Ata, O.; Turgut-Balik, D. Evaluation of the potency of FDA-approved drugs on wild type and mutant SARS-CoV-2 helicase (Nsp13). Int. J. Biol. Macromol., 2020, 163, 1687-1696.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.138] [PMID: 32980406]
[42]
Wu, C.; Yin, W.; Jiang, Y.; Xu, H.E. Structure genomics of SARS-CoV-2 and its Omicron variant: Drug design templates for COVID-19. Acta Pharmacol. Sin., 2022. [Epub ahead of print].
[http://dx.doi.org/10.1038/s41401-021-00851-w] [PMID: 35058587]
[43]
Yan, W.; Zheng, Y.; Zeng, X.; He, B.; Cheng, W. Structural biology of SARS-CoV-2: Open the door for novel therapies. Signal Transduct. Target. Ther., 2022, 7(1), 26.
[http://dx.doi.org/10.1038/s41392-022-00884-5] [PMID: 35087058]
[44]
Du, X.; Tang, H.; Gao, L.; Wu, Z.; Meng, F.; Yan, R.; Qiao, S.; An, J.; Wang, C.; Qin, F.X.F. Omicron adopts a different strategy from Delta and other variants to adapt to host. Signal Transduct. Target. Ther., 2022, 7(1), 45.
[http://dx.doi.org/10.1038/s41392-022-00903-5] [PMID: 35145066]
[45]
Xu, X.; Chen, P.; Wang, J.; Feng, J.; Zhou, H.; Li, X.; Zhong, W.; Hao, P. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Sci. China Life Sci., 2020, 63(3), 457-460.
[http://dx.doi.org/10.1007/s11427-020-1637-5] [PMID: 32009228]
[46]
Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T.S.; Herrler, G.; Wu, N.H.; Nitsche, A.; Müller, M.A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell, 2020, 181(2), 271-280.e8.
[http://dx.doi.org/10.1016/j.cell.2020.02.052] [PMID: 32142651]
[47]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[48]
Ziegler, C.G.K.; Allon, S.J.; Nyquist, S.K.; Mbano, I.M.; Miao, V.N.; Tzouanas, C.N.; Cao, Y.; Yousif, A.S.; Bals, J.; Hauser, B.M.; Feldman, J.; Muus, C.; Wadsworth, M.H., II; Kazer, S.W.; Hughes, T.K.; Doran, B.; Gatter, G.J.; Vukovic, M.; Taliaferro, F.; Mead, B.E.; Guo, Z.; Wang, J.P.; Gras, D.; Plaisant, M.; Ansari, M.; Angelidis, I.; Adler, H.; Sucre, J.M.S.; Taylor, C.J.; Lin, B.; Waghray, A.; Mitsialis, V.; Dwyer, D.F.; Buchheit, K.M.; Boyce, J.A.; Barrett, N.A.; Laidlaw, T.M.; Carroll, S.L.; Colonna, L.; Tkachev, V.; Peterson, C.W.; Yu, A.; Zheng, H.B.; Gideon, H.P.; Winchell, C.G.; Lin, P.L.; Bingle, C.D.; Snapper, S.B.; Kropski, J.A.; Theis, F.J.; Schiller, H.B.; Zaragosi, L.E.; Barbry, P.; Leslie, A.; Kiem, H.P.; Flynn, J.L.; Fortune, S.M.; Berger, B.; Finberg, R.W.; Kean, L.S.; Garber, M.; Schmidt, A.G.; Lingwood, D.; Shalek, A.K.; Ordovas-Montanes, J.; Banovich, N.; Barbry, P.; Brazma, A.; Desai, T.; Duong, T.E.; Eickelberg, O.; Falk, C.; Farzan, M.; Glass, I.; Haniffa, M.; Horvath, P.; Hung, D.; Kaminski, N.; Krasnow, M.; Kropski, J.A.; Kuhnemund, M.; Lafyatis, R.; Lee, H.; Leroy, S.; Linnarson, S.; Lundeberg, J.; Meyer, K.; Misharin, A.; Nawijn, M.; Nikolic, M.Z.; Ordovas-Montanes, J.; Pe’er, D.; Powell, J.; Quake, S.; Rajagopal, J.; Tata, P.R.; Rawlins, E.L.; Regev, A.; Reyfman, P.A.; Rojas, M.; Rosen, O.; Saeb-Parsy, K.; Samakovlis, C.; Schiller, H.; Schultze, J.L.; Seibold, M.A.; Shalek, A.K.; Shepherd, D.; Spence, J.; Spira, A.; Sun, X.; Teichmann, S.; Theis, F.; Tsankov, A.; van den Berge, M.; von Papen, M.; Whitsett, J.; Xavier, R.; Xu, Y.; Zaragosi, L-E.; Zhang, K. SARS-CoV-2 receptor ACE2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell, 2020, 181(5), 1016-1035.e19.
[http://dx.doi.org/10.1016/j.cell.2020.04.035] [PMID: 32413319]
[49]
Chen, L.; Li, X.; Chen, M.; Feng, Y.; Xiong, C. The ACE2 expression in human heart indicates new potential mechanism of heart injury among patients infected with SARS-CoV-2. Cardiovasc. Res., 2020, 116(6), 1097-1100.
[http://dx.doi.org/10.1093/cvr/cvaa078] [PMID: 32227090]
[50]
Bilinska, K.; Jakubowska, P.; Von Bartheld, C.S.; Butowt, R. Expression of the SARS-CoV-2 entry proteins, ACE2 and TMPRSS2, in cells of the olfactory epithelium: Identification of cell types and trends with age. ACS Chem. Neurosci., 2020, 11(11), 1555-1562.
[http://dx.doi.org/10.1021/acschemneuro.0c00210] [PMID: 32379417]
[51]
Oz, M.; Lorke, D.E. Multifunctional angiotensin converting enzyme 2, the SARS-CoV-2 entry receptor, and critical appraisal of its role in acute lung injury. Biomed. Pharmacother., 2021, 136, 111193.
[http://dx.doi.org/10.1016/j.biopha.2020.111193] [PMID: 33461019]
[52]
Gusev, E.; Sarapultsev, A.; Solomatina, L.; Chereshnev, V. SARS-CoV-2-specific immune response and the pathogenesis of COVID-19. Int. J. Mol. Sci., 2022, 23(3), 1716.
[http://dx.doi.org/10.3390/ijms23031716] [PMID: 35163638]
[53]
Drayman, N.; DeMarco, J.K.; Jones, K.A.; Azizi, S.A.; Froggatt, H.M.; Tan, K.; Maltseva, N.I.; Chen, S.; Nicolaescu, V.; Dvorkin, S.; Furlong, K.; Kathayat, R.S.; Firpo, M.R.; Mastrodomenico, V.; Bruce, E.A.; Schmidt, M.M.; Jedrzejczak, R.; Muñoz-Alía, M.Á.; Schuster, B.; Nair, V.; Han, K.; O’Brien, A.; Tomatsidou, A.; Meyer, B.; Vignuzzi, M.; Missiakas, D.; Botten, J.W.; Brooke, C.B.; Lee, H.; Baker, S.C.; Mounce, B.C.; Heaton, N.S.; Severson, W.E.; Palmer, K.E.; Dickinson, B.C.; Joachimiak, A.; Randall, G.; Tay, S. Masitinib is a broad coronavirus 3CL inhibitor that blocks replication of SARS-CoV-2. Science, 2021, 373(6557), 931-936.
[http://dx.doi.org/10.1126/science.abg5827] [PMID: 34285133]
[54]
Folch, J.; Petrov, D.; Ettcheto, M.; Pedrós, I.; Abad, S.; Beas-Zarate, C.; Lazarowski, A.; Marin, M.; Olloquequi, J.; Auladell, C.; Camins, A. Masitinib for the treatment of mild to moderate Alzheimer’s disease. Expert Rev. Neurother., 2015, 15(6), 587-596.
[http://dx.doi.org/10.1586/14737175.2015.1045419] [PMID: 25961655]
[55]
Zhang, L.; Jackson, C.B.; Mou, H.; Ojha, A.; Rangarajan, E.S.; Izard, T.; Farzan, M.; Choe, H. The D614G mutation in the SARS-CoV-2 spike protein reduces S1 shedding and increases infectivity. BioRxiv, 2020, 2020, 148726.
[http://dx.doi.org/10.1101/2020.06.12.148726]
[56]
Korber, B.; Fischer, W.M.; Gnanakaran, S.; Yoon, H.; Theiler, J.; Abfalterer, W.; Hengartner, N.; Giorgi, E.E.; Bhattacharya, T.; Foley, B.; Hastie, K.M.; Parker, M.D.; Partridge, D.G.; Evans, C.M.; Freeman, T.M.; de Silva, T.I.; McDanal, C.; Perez, L.G.; Tang, H.; Moon-Walker, A.; Whelan, S.P.; LaBranche, C.C.; Saphire, E.O.; Montefiori, D.C.; Angyal, A.; Brown, R.L.; Carrilero, L.; Green, L.R.; Groves, D.C.; Johnson, K.J.; Keeley, A.J.; Lindsey, B.B.; Parsons, P.J.; Raza, M.; Rowland-Jones, S.; Smith, N.; Tucker, R.M.; Wang, D.; Wyles, M.D. Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell, 2020, 182(4), 812-827.e19.
[http://dx.doi.org/10.1016/j.cell.2020.06.043] [PMID: 32697968]
[57]
Castonguay, N.; Zhang, W.; Langlois, M.A. Meta-analysis and structural dynamics of the emergence of genetic variants of SARS-CoV-2. Front. Microbiol., 2021, 12, 676314.
[http://dx.doi.org/10.3389/fmicb.2021.676314] [PMID: 34267735]
[58]
Scott, L.; Hsiao, N.; Moyo, S.; Singh, L.; Tegally, H.; Dor, G.; Maes, P.; Pybus, O.G.; Kraemer, M.U.G.; Semenova, E.; Bhatt, S.; Flaxman, S.; Faria, N.R.; de Oliveira, T. Track Omicron’s spread with molecular data. Science, 2021, 374(6574), 1454-1455.
[http://dx.doi.org/10.1126/science.abn4543] [PMID: 34882437]
[59]
Pulliam, J.R.C.; van Schalkwyk, C.; Govender, N.; von Gottberg, A.; Cohen, C.; Groome, M.J.; Dushoff, J.; Mlisana, K.; Moultrie, H. SARS-CoV-2 reinfection trends in South Africa: Analysis of routine surveillance data. MedRχiv, 2021, 2021, 21266068.
[http://dx.doi.org/10.1101/2021.11.11.21266068]
[60]
Viana, R.; Moyo, S.; Amoako, D.G.; Tegally, H.; Scheepers, C.; Althaus, C.L.; Anyaneji, U.J.; Bester, P.A.; Boni, M.F.; Chand, M.; Choga, W.T.; Colquhoun, R.; Davids, M.; Deforche, K.; Doolabh, D.; du Plessis, L.; Engelbrecht, S.; Everatt, J.; Giandhari, J.; Giovanetti, M.; Hardie, D.; Hill, V.; Hsiao, N.Y.; Iranzadeh, A.; Ismail, A.; Joseph, C.; Joseph, R.; Koopile, L.; Kosakovsky Pond, S.L.; Kraemer, M.U.G.; Kuate-Lere, L.; Laguda-Akingba, O.; Lesetedi-Mafoko, O.; Lessells, R.J.; Lockman, S.; Lucaci, A.G.; Maharaj, A.; Mahlangu, B.; Maponga, T.; Mahlakwane, K.; Makatini, Z.; Marais, G.; Maruapula, D.; Masupu, K.; Matshaba, M.; Mayaphi, S.; Mbhele, N.; Mbulawa, M.B.; Mendes, A.; Mlisana, K.; Mnguni, A.; Mohale, T.; Moir, M.; Moruisi, K.; Mosepele, M.; Motsatsi, G.; Motswaledi, M.S.; Mphoyakgosi, T.; Msomi, N.; Mwangi, P.N.; Naidoo, Y.; Ntuli, N.; Nyaga, M.; Olubayo, L.; Pillay, S.; Radibe, B.; Ramphal, Y.; Ramphal, U.; San, J.E.; Scott, L.; Shapiro, R.; Singh, L.; Smith-Lawrence, P.; Stevens, W.; Strydom, A.; Subramoney, K.; Tebeila, N.; Tshiabuila, D.; Tsui, J.; van Wyk, S.; Weaver, S.; Wibmer, C.K.; Wilkinson, E.; Wolter, N.; Zarebski, A.E.; Zuze, B.; Goedhals, D.; Preiser, W.; Treurnicht, F.; Venter, M.; Williamson, C.; Pybus, O.G.; Bhiman, J.; Glass, A.; Martin, D.P.; Rambaut, A.; Gaseitsiwe, S.; von Gottberg, A.; de Oliveira, T. Rapid epidemic expansion of the SARS-CoV-2 Omicron variant in southern Africa. Nature, 2022, 603(7902), 679-686.
[http://dx.doi.org/10.1038/s41586-022-04411-y] [PMID: 35042229]
[61]
WHO. Update on Omicron. 2021. Available from: https://www.who.int/news/item/28-11-2021-update-on-omicron (Accessed on April 5th, 2022).
[62]
WHO. The effects of virus variants on COVID-19 vaccines. 2021. Available from: https://www.who.int/news-room/feature-stories/detail/the-effects-of-virus-variants-on-covid-19-vaccines (Accessed on: April 6th, 2022).
[63]
Simon-Loriere, E.; Schwartz, O. Towards SARS-CoV-2 serotypes? Nat. Rev. Microbiol., 2022, 20(4), 187-188.
[http://dx.doi.org/10.1038/s41579-022-00708-x] [PMID: 35181769]
[64]
Hadfield, J.; Megill, C.; Bell, S.M.; Huddleston, J.; Potter, B.; Callender, C.; Sagulenko, P.; Bedford, T.; Neher, R.A. Nextstrain: Real-time tracking of pathogen evolution. Bioinformatics, 2018, 34(23), 4121-4123.
[http://dx.doi.org/10.1093/bioinformatics/bty407] [PMID: 29790939]
[65]
Nextrain. Nextclade: Analysis of viral genetic sequences. Available from: https://docs.nextstrain.org/projects/nextclade/en/latest/index.html (Accessed on: March 12th, 2022).
[66]
Nextrain. Clade assignment. Available from: https://docs.nextstrain.org/projects/nextclade/en/latest/user/algorithm/06-clade-assignment.html (Accessed on: March 12th, 2022).
[67]
Yu, J.; Collier, A.Y.; Rowe, M.; Mardas, F.; Ventura, J.D.; Wan, H.; Miller, J.; Powers, O.; Chung, B.; Siamatu, M.; Hachmann, N.P.; Surve, N.; Nampanya, F.; Chandrashekar, A.; Barouch, D.H. Comparable neutralization of the SARS-CoV-2 omicron BA.1 and BA.2 variants. N. Engl. J. Med., 2022, 386(16), 1579-1580.
[http://dx.doi.org/10.1056/NEJMc2201849]
[68]
WHO. Statement on Omicron sublineage BA.2 Available from: https://www.who.int/news/item/22-02-2022-statement-on-omicron-sublineage-ba.2 (Accessed on: March 12th, 2022).
[69]
SARS-CoV-2 variant classifications and definitions. 2022. Available from: https://www.cdc.gov/coronavirus/2019-ncov/variants/variant-classifications.html#interest
[70]
WHO. Tracking SARS-CoV-2 variants. Tracking SARS-CoV-2 variants, 2022. Available from: https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/ (Accessed on: April 6th, 2022).
[71]
Kupferschmidt, K. New coronavirus variants could cause more reinfections, require updated vaccines. Science Magazine, Available from: https://www.sciencemag.org/news/ 2021/01/new-coronavirus-variants-could-cause-more-reinfections-require-updated-vaccines (Accessed on: April 6th, 2022).
[http://dx.doi.org/10.1126/science.abg6028]
[72]
Sabino, E.C.; Buss, L.F.; Carvalho, M.P.S.; Prete, C.A., Jr; Crispim, M.A.E.; Fraiji, N.A.; Pereira, R.H.M.; Parag, K.V.; da Silva Peixoto, P.; Kraemer, M.U.G.; Oikawa, M.K.; Salomon, T.; Cucunuba, Z.M.; Castro, M.C.; de Souza Santos, A.A.; Nascimento, V.H.; Pereira, H.S.; Ferguson, N.M.; Pybus, O.G.; Kucharski, A.; Busch, M.P.; Dye, C.; Faria, N.R. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet, 2021, 397(10273), 452-455.
[http://dx.doi.org/10.1016/S0140-6736(21)00183-5] [PMID: 33515491]
[73]
Maslo, C.; Friedland, R.; Toubkin, M.; Laubscher, A.; Akaloo, T.; Kama, B. Characteristics and outcomes of hospitalized patients in South Africa during the COVID-19 omicron wave compared with previous waves. JAMA, 2022, 327(6), 583-584.
[http://dx.doi.org/10.1001/jama.2021.24868] [PMID: 34967859]
[74]
Hastie, K.M.; Li, H.; Bedinger, D.; Schendel, S.L.; Dennison, S.M.; Li, K.; Rayaprolu, V.; Yu, X.; Mann, C.; Zandonatti, M.; Diaz Avalos, R.; Zyla, D.; Buck, T.; Hui, S.; Shaffer, K.; Hariharan, C.; Yin, J.; Olmedillas, E.; Enriquez, A.; Parekh, D.; Abraha, M.; Feeney, E.; Horn, G.Q.; Aldon, Y.; Ali, H.; Aracic, S.; Cobb, R.R.; Federman, R.S.; Fernandez, J.M.; Glanville, J.; Green, R.; Grigoryan, G.; Lujan Hernandez, A.G.; Ho, D.D.; Huang, K.Y.A.; Ingraham, J.; Jiang, W.; Kellam, P.; Kim, C.; Kim, M.; Kim, H.M.; Kong, C.; Krebs, S.J.; Lan, F.; Lang, G.; Lee, S.; Leung, C.L.; Liu, J.; Lu, Y.; MacCamy, A.; McGuire, A.T.; Palser, A.L.; Rabbitts, T.H.; Rikhtegaran Tehrani, Z.; Sajadi, M.M.; Sanders, R.W.; Sato, A.K.; Schweizer, L.; Seo, J.; Shen, B.; Snitselaar, J.L.; Stamatatos, L.; Tan, Y.; Tomic, M.T.; van Gils, M.J.; Youssef, S.; Yu, J.; Yuan, T.Z.; Zhang, Q.; Peters, B.; Tomaras, G.D.; Germann, T.; Saphire, E.O. Defining variant-resistant epitopes targeted by SARS-CoV-2 antibodies: A global consortium study. Science, 2021, 374(6566), 472-478.
[http://dx.doi.org/10.1126/science.abh2315] [PMID: 34554826]
[75]
Darif, D.; Hammi, I.; Kihel, A.; El Idrissi Saik, I.; Guessous, F.; Akarid, K. The pro-inflammatory cytokines in COVID-19 pathogenesis: What goes wrong? Microb. Pathog., 2021, 153, 104799.
[http://dx.doi.org/10.1016/j.micpath.2021.104799] [PMID: 33609650]
[76]
Morgan, B.P. Complement in the pathogenesis of Alzheimer’s disease. Semin. Immunopathol., 2018, 40(1), 113-124.
[http://dx.doi.org/10.1007/s00281-017-0662-9] [PMID: 29134267]
[77]
Veerhuis, R. Histological and direct evidence for the role of complement in the neuroinflammation of AD. Curr. Alzheimer Res., 2011, 8(1), 34-58.
[http://dx.doi.org/10.2174/156720511794604589] [PMID: 21143154]
[78]
Györffy, B.A.; Tóth, V.; Török, G.; Gulyássy, P.; Kovács, R.Á.; Vadászi, H.; Micsonai, A.; Tóth, M.E.; Sántha, M.; Homolya, L.; Drahos, L.; Juhász, G.; Kékesi, K.A.; Kardos, J. Synaptic mitochondrial dysfunction and septin accumulation are linked to complement-mediated synapse loss in an Alzheimer’s disease animal model. Cell. Mol. Life Sci., 2020, 77(24), 5243-5258.
[http://dx.doi.org/10.1007/s00018-020-03468-0] [PMID: 32034429]
[79]
Lazarowski, A. Possible use of Eculizumab in critically III patients infected with Covid-19 role of complement C5, neutrophils, and NETs in the induction DIC, sepsis, and MOF. Front. Clin. Drug Res.-Hematol., 2022, 5, 168-191.
[http://dx.doi.org/10.2174/9789815039535122050008]
[80]
Conti, P.; Ronconi, G.; Caraffa, A.; Gallenga, C.E.; Ross, R.; Frydas, I.; Kritas, S.K. Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J. Biol. Regul. Homeost. Agents, 2020, 34(2), 327-331.
[http://dx.doi.org/10.23812/CONTI-E] [PMID: 32171193]
[81]
Herold, T.; Jurinovic, V.; Arnreich, C.; Lipworth, B.J.; Hellmuth, J.C.; von Bergwelt-Baildon, M.; Klein, M.; Weinberger, T. Elevated levels of IL-6 and CRP predict the need for mechanical ventilation in COVID-19. J. Allergy Clin. Immunol., 2020, 146(1), 128-136.e4.
[http://dx.doi.org/10.1016/j.jaci.2020.05.008] [PMID: 32425269]
[82]
Huang, C.; Wang, Y.; Li, X.; Ren, L.; Zhao, J.; Hu, Y.; Zhang, L.; Fan, G.; Xu, J.; Gu, X.; Cheng, Z.; Yu, T.; Xia, J.; Wei, Y.; Wu, W.; Xie, X.; Yin, W.; Li, H.; Liu, M.; Xiao, Y.; Gao, H.; Guo, L.; Xie, J.; Wang, G.; Jiang, R.; Gao, Z.; Jin, Q.; Wang, J.; Cao, B. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, 395(10223), 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[83]
Mao, L.; Jin, H.; Wang, M.; Hu, Y.; Chen, S.; He, Q.; Chang, J.; Hong, C.; Zhou, Y.; Wang, D.; Miao, X.; Li, Y.; Hu, B. Neurologic manifestations of hospitalized patients with Coronavirus disease 2019 in Wuhan, China. JAMA Neurol., 2020, 77(6), 683-690.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[84]
Vaninov, N. In the eye of the COVID-19 cytokine storm. Nat. Rev. Immunol., 2020, 20(5), 277.
[http://dx.doi.org/10.1038/s41577-020-0305-6] [PMID: 32249847]
[85]
Zhang, Y.; Xiao, M.; Zhang, S.; Xia, P.; Cao, W.; Jiang, W.; Chen, H.; Ding, X.; Zhao, H.; Zhang, H.; Wang, C.; Zhao, J.; Sun, X.; Tian, R.; Wu, W.; Wu, D.; Ma, J.; Chen, Y.; Zhang, D.; Xie, J.; Yan, X.; Zhou, X.; Liu, Z.; Wang, J.; Du, B.; Qin, Y.; Gao, P.; Qin, X.; Xu, Y.; Zhang, W.; Li, T.; Zhang, F.; Zhao, Y.; Li, Y.; Zhang, S. Coagulopathy and antiphospholipid antibodies in patients with COVID-19. N. Engl. J. Med., 2020, 382(17), e38.
[http://dx.doi.org/10.1056/NEJMc2007575] [PMID: 32268022]
[86]
Schett, G.; Sticherling, M.; Neurath, M.F. COVID-19: Risk for cytokine targeting in chronic inflammatory diseases? Nat. Rev. Immunol., 2020, 20(5), 271-272.
[http://dx.doi.org/10.1038/s41577-020-0312-7] [PMID: 32296135]
[87]
Lundström, A.; Ziegler, L.; Havervall, S.; Rudberg, A.S.; Meijenfeldt, F.; Lisman, T.; Mackman, N.; Sandén, P.; Thålin, C. Soluble angiotensin-converting enzyme 2 is transiently elevated in COVID-19 and correlates with specific inflammatory and endothelial markers. J. Med. Virol., 2021, 93(10), 5908-5916.
[http://dx.doi.org/10.1002/jmv.27144] [PMID: 34138483]
[88]
Farrer, L.A.; Sherbatich, T.; Keryanov, S.A.; Korovaitseva, G.I.; Rogaeva, E.A.; Petruk, S.; Premkumar, S.; Moliaka, Y.; Song, Y.Q.; Pei, Y.; Sato, C.; Selezneva, N.D.; Voskresenskaya, S.; Golimbet, V.; Sorbi, S.; Duara, R.; Gavrilova, S.; St George-Hyslop, P.H.; Rogaev, E.I. Association between angiotensin-converting enzyme and Alzheimer disease. Arch. Neurol., 2000, 57(2), 210-214.
[http://dx.doi.org/10.1001/archneur.57.2.210] [PMID: 10681079]
[89]
Kunkle, B.W.; Grenier-Boley, B.; Sims, R.; Bis, J.C.; Damotte, V.; Naj, A.C.; Boland, A.; Vronskaya, M.; van der Lee, S.J.; Amlie-Wolf, A.; Bellenguez, C.; Frizatti, A.; Chouraki, V.; Martin, E.R.; Sleegers, K.; Badarinarayan, N.; Jakobsdottir, J.; Hamilton-Nelson, K.L.; Moreno-Grau, S.; Olaso, R.; Raybould, R.; Chen, Y.; Kuzma, A.B.; Hiltunen, M.; Morgan, T.; Ahmad, S.; Vardarajan, B.N.; Epelbaum, J.; Hoffmann, P.; Boada, M.; Beecham, G.W.; Garnier, J.G.; Harold, D.; Fitzpatrick, A.L.; Valladares, O.; Moutet, M.L.; Gerrish, A.; Smith, A.V.; Qu, L.; Bacq, D.; Denning, N.; Jian, X.; Zhao, Y.; Del Zompo, M.; Fox, N.C.; Choi, S.H.; Mateo, I.; Hughes, J.T.; Adams, H.H.; Malamon, J.; Sanchez-Garcia, F.; Patel, Y.; Brody, J.A.; Dombroski, B.A.; Naranjo, M.C.D.; Daniilidou, M.; Eiriksdottir, G.; Mukherjee, S.; Wallon, D.; Uphill, J.; Aspelund, T.; Cantwell, L.B.; Garzia, F.; Galimberti, D.; Hofer, E.; Butkiewicz, M.; Fin, B.; Scarpini, E.; Sarnowski, C.; Bush, W.S.; Meslage, S.; Kornhuber, J.; White, C.C.; Song, Y.; Barber, R.C.; Engelborghs, S.; Sordon, S.; Voijnovic, D.; Adams, P.M.; Vandenberghe, R.; Mayhaus, M.; Cupples, L.A.; Albert, M.S.; De Deyn, P.P.; Gu, W.; Himali, J.J.; Beekly, D.; Squassina, A.; Hartmann, A.M.; Orellana, A.; Blacker, D.; Rodriguez-Rodriguez, E.; Lovestone, S.; Garcia, M.E.; Doody, R.S.; Munoz-Fernadez, C.; Sussams, R.; Lin, H.; Fairchild, T.J.; Benito, Y.A.; Holmes, C.; Karamujić-Čomić, H.; Frosch, M.P.; Thonberg, H.; Maier, W.; Roshchupkin, G.; Ghetti, B.; Giedraitis, V.; Kawalia, A.; Li, S.; Huebinger, R.M.; Kilander, L.; Moebus, S.; Hernández, I.; Kamboh, M.I.; Brundin, R.; Turton, J.; Yang, Q.; Katz, M.J.; Concari, L.; Lord, J.; Beiser, A.S.; Keene, C.D.; Helisalmi, S.; Kloszewska, I.; Kukull, W.A.; Koivisto, A.M.; Lynch, A.; Tarraga, L.; Larson, E.B.; Haapasalo, A.; Lawlor, B.; Mosley, T.H.; Lipton, R.B.; Solfrizzi, V.; Gill, M.; Longstreth, W.T., Jr; Montine, T.J.; Frisardi, V.; Diez-Fairen, M.; Rivadeneira, F.; Petersen, R.C.; Deramecourt, V.; Alvarez, I.; Salani, F.; Ciaramella, A.; Boerwinkle, E.; Reiman, E.M.; Fievet, N.; Rotter, J.I.; Reisch, J.S.; Hanon, O.; Cupidi, C.; Andre Uitterlinden, A.G.; Royall, D.R.; Dufouil, C.; Maletta, R.G.; de Rojas, I.; Sano, M.; Brice, A.; Cecchetti, R.; George-Hyslop, P.S.; Ritchie, K.; Tsolaki, M.; Tsuang, D.W.; Dubois, B.; Craig, D.; Wu, C.K.; Soininen, H.; Avramidou, D.; Albin, R.L.; Fratiglioni, L.; Germanou, A.; Apostolova, L.G.; Keller, L.; Koutroumani, M.; Arnold, S.E.; Panza, F.; Gkatzima, O.; Asthana, S.; Hannequin, D.; Whitehead, P.; Atwood, C.S.; Caffarra, P.; Hampel, H.; Quintela, I.; Carracedo, Á.; Lannfelt, L.; Rubinsztein, D.C.; Barnes, L.L.; Pasquier, F.; Frölich, L.; Barral, S.; McGuinness, B.; Beach, T.G.; Johnston, J.A.; Becker, J.T.; Passmore, P.; Bigio, E.H.; Schott, J.M.; Bird, T.D.; Warren, J.D.; Boeve, B.F.; Lupton, M.K.; Bowen, J.D.; Proitsi, P.; Boxer, A.; Powell, J.F.; Burke, J.R.; Kauwe, J.S.K.; Burns, J.M.; Mancuso, M.; Buxbaum, J.D.; Bonuccelli, U.; Cairns, N.J.; McQuillin, A.; Cao, C.; Livingston, G.; Carlson, C.S.; Bass, N.J.; Carlsson, C.M.; Hardy, J.; Carney, R.M.; Bras, J.; Carrasquillo, M.M.; Guerreiro, R.; Allen, M.; Chui, H.C.; Fisher, E.; Masullo, C.; Crocco, E.A.; DeCarli, C.; Bisceglio, G.; Dick, M.; Ma, L.; Duara, R.; Graff-Radford, N.R.; Evans, D.A.; Hodges, A.; Faber, K.M.; Scherer, M.; Fallon, K.B.; Riemenschneider, M.; Fardo, D.W.; Heun, R.; Farlow, M.R.; Kölsch, H.; Ferris, S.; Leber, M.; Foroud, T.M.; Heuser, I.; Galasko, D.R.; Giegling, I.; Gearing, M.; Hüll, M.; Geschwind, D.H.; Gilbert, J.R.; Morris, J.; Green, R.C.; Mayo, K.; Growdon, J.H.; Feulner, T.; Hamilton, R.L.; Harrell, L.E.; Drichel, D.; Honig, L.S.; Cushion, T.D.; Huentelman, M.J.; Hollingworth, P.; Hulette, C.M.; Hyman, B.T.; Marshall, R.; Jarvik, G.P.; Meggy, A.; Abner, E.; Menzies, G.E.; Jin, L.W.; Leonenko, G.; Real, L.M.; Jun, G.R.; Baldwin, C.T.; Grozeva, D.; Karydas, A.; Russo, G.; Kaye, J.A.; Kim, R.; Jessen, F.; Kowall, N.W.; Vellas, B.; Kramer, J.H.; Vardy, E.; LaFerla, F.M.; Jöckel, K.H.; Lah, J.J.; Dichgans, M.; Leverenz, J.B.; Mann, D.; Levey, A.I.; Pickering-Brown, S.; Lieberman, A.P.; Klopp, N.; Lunetta, K.L.; Wichmann, H.E.; Lyketsos, C.G.; Morgan, K.; Marson, D.C.; Brown, K.; Martiniuk, F.; Medway, C.; Mash, D.C.; Nöthen, M.M.; Masliah, E.; Hooper, N.M.; McCormick, W.C.; Daniele, A.; McCurry, S.M.; Bayer, A.; McDavid, A.N.; Gallacher, J.; McKee, A.C.; van den Bussche, H.; Mesulam, M.; Brayne, C.; Miller, B.L.; Riedel-Heller, S.; Miller, C.A.; Miller, J.W.; Al-Chalabi, A.; Morris, J.C.; Shaw, C.E.; Myers, A.J.; Wiltfang, J.; O’Bryant, S.; Olichney, J.M.; Alvarez, V.; Parisi, J.E.; Singleton, A.B.; Paulson, H.L.; Collinge, J.; Perry, W.R.; Mead, S.; Peskind, E.; Cribbs, D.H.; Rossor, M.; Pierce, A.; Ryan, N.S.; Poon, W.W.; Nacmias, B.; Potter, H.; Sorbi, S.; Quinn, J.F.; Sacchinelli, E.; Raj, A.; Spalletta, G.; Raskind, M.; Caltagirone, C.; Bossù, P.; Orfei, M.D.; Reisberg, B.; Clarke, R.; Reitz, C.; Smith, A.D.; Ringman, J.M.; Warden, D.; Roberson, E.D.; Wilcock, G.; Rogaeva, E.; Bruni, A.C.; Rosen, H.J.; Gallo, M.; Rosenberg, R.N.; Ben-Shlomo, Y.; Sager, M.A.; Mecocci, P.; Saykin, A.J.; Pastor, P.; Cuccaro, M.L.; Vance, J.M.; Schneider, J.A.; Schneider, L.S.; Slifer, S.; Seeley, W.W.; Smith, A.G.; Sonnen, J.A.; Spina, S.; Stern, R.A.; Swerdlow, R.H.; Tang, M.; Tanzi, R.E.; Trojanowski, J.Q.; Troncoso, J.C.; Van Deerlin, V.M.; Van Eldik, L.J.; Vinters, H.V.; Vonsattel, J.P.; Weintraub, S.; Welsh-Bohmer, K.A.; Wilhelmsen, K.C.; Williamson, J.; Wingo, T.S.; Woltjer, R.L.; Wright, C.B.; Yu, C.E.; Yu, L.; Saba, Y.; Pilotto, A.; Bullido, M.J.; Peters, O.; Crane, P.K.; Bennett, D.; Bosco, P.; Coto, E.; Boccardi, V.; De Jager, P.L.; Lleo, A.; Warner, N.; Lopez, O.L.; Ingelsson, M.; Deloukas, P.; Cruchaga, C.; Graff, C.; Gwilliam, R.; Fornage, M.; Goate, A.M.; Sanchez-Juan, P.; Kehoe, P.G.; Amin, N.; Ertekin-Taner, N.; Berr, C.; Debette, S.; Love, S.; Launer, L.J.; Younkin, S.G.; Dartigues, J.F.; Corcoran, C.; Ikram, M.A.; Dickson, D.W.; Nicolas, G.; Campion, D.; Tschanz, J.; Schmidt, H.; Hakonarson, H.; Clarimon, J.; Munger, R.; Schmidt, R.; Farrer, L.A.; Van Broeckhoven, C.; C O’Donovan, M.; DeStefano, A.L.; Jones, L.; Haines, J.L.; Deleuze, J.F.; Owen, M.J.; Gudnason, V.; Mayeux, R.; Escott-Price, V.; Psaty, B.M.; Ramirez, A.; Wang, L.S.; Ruiz, A.; van Duijn, C.M.; Holmans, P.A.; Seshadri, S.; Williams, J.; Amouyel, P.; Schellenberg, G.D.; Lambert, J.C.; Pericak-Vance, M.A. Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Aβ, tau, immunity and lipid processing. Nat. Genet., 2019, 51(3), 414-430.
[http://dx.doi.org/10.1038/s41588-019-0358-2] [PMID: 30820047]
[90]
Haghighi, M.M.; Kakhki, E.G.; Sato, C.; Ghani, M.; Rogaeva, E. The intersection between COVID-19, the gene family of ACE2 and Alzheimer’s disease. Neurosci. Insights, 2020, 15, 2633105520975743.
[http://dx.doi.org/10.1177/2633105520975743] [PMID: 33283188]
[91]
Almutlaq, M.; Alamro, A.A.; Alroqi, F.; Barhoumi, T. Classical and counter-regulatory renin-angiotensin system: Potential key roles in COVID-19 pathophysiology. CJC Open, 2021, 3(8), 1060-1074.
[http://dx.doi.org/10.1016/j.cjco.2021.04.004] [PMID: 33875979]
[92]
Divani, A.A.; Andalib, S.; Di Napoli, M.; Lattanzi, S.; Hussain, M.S.; Biller, J.; McCullough, L.D.; Azarpazhooh, M.R.; Seletska, A.; Mayer, S.A.; Torbey, M. Coronavirus disease 2019 and stroke: Clinical manifestations and pathophysiological insights. J. Stroke Cerebrovasc. Dis., 2020, 29(8), 104941.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2020.104941] [PMID: 32689643]
[93]
Zhao, Y.; Shang, Y.; Song, W.; Li, Q.; Xie, H.; Xu, Q.; Jia, J.; Li, L.; Mao, H.; Zhou, X.; Luo, H.; Gao, Y.; Xu, A. Follow-up study of the pulmonary function and related physiological characteristics of COVID-19 survivors three months after recovery. EClin. Med., 2020, 25, 100463.
[http://dx.doi.org/10.1016/j.eclinm.2020.100463] [PMID: 32838236]
[94]
Sweeney, M.D.; Sagare, A.P.; Zlokovic, B.V. Blood–brain barrier breakdown in Alzheimer disease and other neurodegenerative disorders. Nat. Rev. Neurol., 2018, 14(3), 133-150.
[http://dx.doi.org/10.1038/nrneurol.2017.188] [PMID: 29377008]
[95]
Wang, Q.; Davis, P.B.; Gurney, M.E.; Xu, R. COVID-19 and dementia: Analyses of risk, disparity, and outcomes from electronic health records in the US. Alzheimers Dement., 2021, 17(8), 1297-1306.
[http://dx.doi.org/10.1002/alz.12296] [PMID: 33559975]
[96]
Li, J.; Long, X.; Huang, H.; Tang, J.; Zhu, C.; Hu, S.; Wu, J.; Li, J.; Lin, Z.; Xiong, N. Resilience of Alzheimer’s disease to COVID-19. J. Alzheimers Dis., 2020, 77(1), 67-73.
[http://dx.doi.org/10.3233/JAD-200649] [PMID: 32804094]
[97]
Isaia, G.; Marinello, R.; Tibaldi, V.; Tamone, C.; Bo, M. Atypical presentation of COVID-19 in an older adult with severe Alzheimer disease. Am. J. Geriatr. Psychiatry, 2020, 28(7), 790-791.
[http://dx.doi.org/10.1016/j.jagp.2020.04.018] [PMID: 32381283]
[98]
Cosarderelioglu, C.; Nidadavolu, L.S.; George, C.J.; Oh, E.S.; Bennett, D.A.; Walston, J.D.; Abadir, P.M. Brain renin-angiotensin system at the intersect of physical and cognitive frailty. Front. Neurosci., 2020, 14, 586314.
[http://dx.doi.org/10.3389/fnins.2020.586314] [PMID: 33117127]
[99]
Kehoe, P.G.; Wong, S.; AL Mulhim, N.; Palmer, L.E.; Miners, J.S. Angiotensin-converting enzyme 2 is reduced in Alzheimer’s disease in association with increasing amyloid-β and tau pathology. Alzheimers Res. Ther., 2016, 8(1), 50.
[http://dx.doi.org/10.1186/s13195-016-0217-7] [PMID: 27884212]
[100]
Kehoe, P.G.; Al Mulhim, N.; Zetterberg, H.; Blennow, K.; Miners, J.S. Cerebrospinal fluid changes in the renin-angiotensin system in Alzheimer’s disease. J. Alzheimers Dis., 2019, 72(2), 525-535.
[http://dx.doi.org/10.3233/JAD-190721] [PMID: 31594235]
[101]
Bianchetti, A.; Rozzini, R.; Guerini, F.; Boffelli, S.; Ranieri, P.; Minelli, G.; Bianchetti, L.; Trabucchi, M. Clinical presentation of COVID19 in dementia patients. J. Nutr. Health Aging, 2020, 24(6), 560-562.
[http://dx.doi.org/10.1007/s12603-020-1389-1] [PMID: 32510106]
[102]
Medoro, A.; Bartollino, S.; Mignogna, D.; Marziliano, N.; Porcile, C.; Nizzari, M.; Florio, T.; Pagano, A.; Raimo, G.; Intrieri, M.; Russo, C. Proteases upregulation in sporadic Alzheimer’s disease brain. J. Alzheimers Dis., 2019, 68(3), 931-938.
[http://dx.doi.org/10.3233/JAD-181284] [PMID: 30814362]
[103]
Lanfranco, M.F.; Ng, C.A.; Rebeck, G.W. ApoE lipidation as a therapeutic target in Alzheimer’s disease. Int. J. Mol. Sci., 2020, 21(17), 6336.
[http://dx.doi.org/10.3390/ijms21176336] [PMID: 32882843]
[104]
Wang, H.; Eckel, R.H. What are lipoproteins doing in the brain? Trends Endocrinol. Metab., 2014, 25(1), 8-14.
[http://dx.doi.org/10.1016/j.tem.2013.10.003] [PMID: 24189266]
[105]
Flowers, S.A.; Rebeck, G.W. APOE in the normal brain. Neurobiol. Dis., 2020, 136, 104724.
[http://dx.doi.org/10.1016/j.nbd.2019.104724] [PMID: 31911114]
[106]
Xu, P.T.; Gilbert, J.R.; Qiu, H.L.; Ervin, J.; Rothrock-Christian, T.R.; Hulette, C.; Schmechel, D.E. Specific regional transcription of apolipoprotein E in human brain neurons. Am. J. Pathol., 1999, 154(2), 601-611.
[http://dx.doi.org/10.1016/S0002-9440(10)65305-9] [PMID: 10027417]
[107]
Xu, Q.; Bernardo, A.; Walker, D.; Kanegawa, T.; Mahley, R.W.; Huang, Y. Profile and regulation of apolipoprotein E (ApoE) expression in the CNS in mice with targeting of green fluorescent protein gene to the ApoE locus. J. Neurosci., 2006, 26(19), 4985-4994.
[http://dx.doi.org/10.1523/JNEUROSCI.5476-05.2006] [PMID: 16687490]
[108]
Wang, C.; Najm, R.; Xu, Q.; Jeong, D.; Walker, D.; Balestra, M.E.; Yoon, S.Y.; Yuan, H.; Li, G.; Miller, Z.A.; Miller, B.L.; Malloy, M.J.; Huang, Y. Gain of toxic apolipoprotein E4 effects in human iPSC-derived neurons is ameliorated by a small-molecule structure corrector. Nat. Med., 2018, 24(5), 647-657.
[http://dx.doi.org/10.1038/s41591-018-0004-z] [PMID: 29632371]
[109]
Liu, C.C.; Kanekiyo, T.; Xu, H.; Bu, G.; Bu, G. Apolipoprotein E and Alzheimer disease: Risk, mechanisms and therapy. Nat. Rev. Neurol., 2013, 9(2), 106-118.
[http://dx.doi.org/10.1038/nrneurol.2012.263] [PMID: 23296339]
[110]
Drouet, B.; Fifre, A.; Pinçon-Raymond, M.; Vandekerckhove, J.; Rosseneu, M.; Guéant, J.L.; Chambaz, J.; Pillot, T. ApoE protects cortical neurones against neurotoxicity induced by the non-fibrillar C-terminal domain of the amyloid-beta peptide. J. Neurochem., 2001, 76(1), 117-127.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00047.x] [PMID: 11145984]
[111]
Polazzi, E.; Mengoni, I.; Peña-Altamira, E.; Massenzio, F.; Virgili, M.; Petralla, S.; Monti, B. Neuronal regulation of neuroprotective microglial Apolipoprotein E secretion in rat in vitro models of brain pathophysiology. J. Neuropathol. Exp. Neurol., 2015, 74(8), 818-834.
[http://dx.doi.org/10.1097/NEN.0000000000000222] [PMID: 26185969]
[112]
Shi, Y.; Manis, M.; Long, J.; Wang, K.; Sullivan, P.M.; Remolina Serrano, J.; Hoyle, R.; Holtzman, D.M. Microglia drive APOE-dependent neurodegeneration in a tauopathy mouse model. J. Exp. Med., 2019, 216(11), 2546-2561.
[http://dx.doi.org/10.1084/jem.20190980] [PMID: 31601677]
[113]
Fernandez, C.G.; Hamby, M.E.; McReynolds, M.L.; Ray, W.J. The role of APOE4 in disrupting the homeostatic functions of astrocytes and microglia in aging and Alzheimer’s disease. Front. Aging Neurosci., 2019, 11, 14.
[http://dx.doi.org/10.3389/fnagi.2019.00014] [PMID: 30804776]
[114]
Abondio, P.; Sazzini, M.; Garagnani, P.; Boattini, A.; Monti, D.; Franceschi, C.; Luiselli, D.; Giuliani, C. The genetic variability of APOE in different human populations and its implications for longevity. Genes (Basel), 2019, 10(3), 222.
[http://dx.doi.org/10.3390/genes10030222] [PMID: 30884759]
[115]
Auton, A.; Abecasis, G.R.; Altshuler, D.M.; Durbin, R.M.; Abecasis, G.R.; Bentley, D.R.; Chakravarti, A.; Clark, A.G.; Donnelly, P.; Eichler, E.E.; Flicek, P.; Gabriel, S.B.; Gibbs, R.A.; Green, E.D.; Hurles, M.E.; Knoppers, B.M.; Korbel, J.O.; Lander, E.S.; Lee, C.; Lehrach, H.; Mardis, E.R.; Marth, G.T.; McVean, G.A.; Nickerson, D.A.; Schmidt, J.P.; Sherry, S.T.; Wang, J.; Wilson, R.K.; Gibbs, R.A.; Boerwinkle, E.; Doddapaneni, H.; Han, Y.; Korchina, V.; Kovar, C.; Lee, S.; Muzny, D.; Reid, J.G.; Zhu, Y.; Wang, J.; Chang, Y.; Feng, Q.; Fang, X.; Guo, X.; Jian, M.; Jiang, H.; Jin, X.; Lan, T.; Li, G.; Li, J.; Li, Y.; Liu, S.; Liu, X.; Lu, Y.; Ma, X.; Tang, M.; Wang, B.; Wang, G.; Wu, H.; Wu, R.; Xu, X.; Yin, Y.; Zhang, D.; Zhang, W.; Zhao, J.; Zhao, M.; Zheng, X.; Lander, E.S.; Altshuler, D.M.; Gabriel, S.B.; Gupta, N.; Gharani, N.; Toji, L.H.; Gerry, N.P.; Resch, A.M.; Flicek, P.; Barker, J.; Clarke, L.; Gil, L.; Hunt, S.E.; Kelman, G.; Kulesha, E.; Leinonen, R.; McLaren, W.M.; Radhakrishnan, R.; Roa, A.; Smirnov, D.; Smith, R.E.; Streeter, I.; Thormann, A.; Toneva, I.; Vaughan, B.; Zheng-Bradley, X.; Bentley, D.R.; Grocock, R.; Humphray, S.; James, T.; Kingsbury, Z.; Lehrach, H.; Sudbrak, R.; Albrecht, M.W.; Amstislavskiy, V.S.; Borodina, T.A.; Lienhard, M.; Mertes, F.; Sultan, M.; Timmermann, B.; Yaspo, M-L.; Mardis, E.R.; Wilson, R.K.; Fulton, L.; Fulton, R.; Sherry, S.T.; Ananiev, V.; Belaia, Z.; Beloslyudtsev, D.; Bouk, N.; Chen, C.; Church, D.; Cohen, R.; Cook, C.; Garner, J.; Hefferon, T.; Kimelman, M.; Liu, C.; Lopez, J.; Meric, P.; O’Sullivan, C.; Ostapchuk, Y.; Phan, L.; Ponomarov, S.; Schneider, V.; Shekhtman, E.; Sirotkin, K.; Slotta, D.; Zhang, H.; McVean, G.A.; Durbin, R.M.; Balasubramaniam, S.; Burton, J.; Danecek, P.; Keane, T.M.; Kolb-Kokocinski, A.; McCarthy, S.; Stalker, J.; Quail, M.; Schmidt, J.P.; Davies, C.J.; Gollub, J.; Webster, T.; Wong, B.; Zhan, Y.; Auton, A.; Campbell, C.L.; Kong, Y.; Marcketta, A.; Gibbs, R.A.; Yu, F.; Antunes, L.; Bainbridge, M.; Muzny, D.; Sabo, A.; Huang, Z.; Wang, J.; Coin, L.J.M.; Fang, L.; Guo, X.; Jin, X.; Li, G.; Li, Q.; Li, Y.; Li, Z.; Lin, H.; Liu, B.; Luo, R.; Shao, H.; Xie, Y.; Ye, C.; Yu, C.; Zhang, F.; Zheng, H.; Zhu, H.; Alkan, C.; Dal, E.; Kahveci, F.; Marth, G.T.; Garrison, E.P.; Kural, D.; Lee, W-P.; Fung Leong, W.; Stromberg, M.; Ward, A.N.; Wu, J.; Zhang, M.; Daly, M.J.; DePristo, M.A.; Handsaker, R.E.; Altshuler, D.M.; Banks, E.; Bhatia, G.; del Angel, G.; Gabriel, S.B.; Genovese, G.; Gupta, N.; Li, H.; Kashin, S.; Lander, E.S.; McCarroll, S.A.; Nemesh, J.C.; Poplin, R.E.; Yoon, S.C.; Lihm, J.; Makarov, V.; Clark, A.G.; Gottipati, S.; Keinan, A.; Rodriguez-Flores, J.L.; Korbel, J.O.; Rausch, T.; Fritz, M.H.; Stütz, A.M.; Flicek, P.; Beal, K.; Clarke, L.; Datta, A.; Herrero, J.; McLaren, W.M.; Ritchie, G.R.S.; Smith, R.E.; Zerbino, D.; Zheng-Bradley, X.; Sabeti, P.C.; Shlyakhter, I.; Schaffner, S.F.; Vitti, J.; Cooper, D.N.; Ball, E.V.; Stenson, P.D.; Bentley, D.R.; Barnes, B.; Bauer, M.; Keira Cheetham, R.; Cox, A.; Eberle, M.; Humphray, S.; Kahn, S.; Murray, L.; Peden, J.; Shaw, R.; Kenny, E.E.; Batzer, M.A.; Konkel, M.K.; Walker, J.A.; MacArthur, D.G.; Lek, M.; Sudbrak, R.; Amstislavskiy, V.S.; Herwig, R.; Mardis, E.R.; Ding, L.; Koboldt, D.C.; Larson, D.; Ye, K.; Gravel, S.; Swaroop, A.; Chew, E.; Lappalainen, T.; Erlich, Y.; Gymrek, M.; Frederick Willems, T.; Simpson, J.T.; Shriver, M.D.; Rosenfeld, J.A.; Bustamante, C.D.; Montgomery, S.B.; De La Vega, F.M.; Byrnes, J.K.; Carroll, A.W.; DeGorter, M.K.; Lacroute, P.; Maples, B.K.; Martin, A.R.; Moreno-Estrada, A.; Shringarpure, S.S.; Zakharia, F.; Halperin, E.; Baran, Y.; Lee, C.; Cerveira, E.; Hwang, J.; Malhotra, A.; Plewczynski, D.; Radew, K.; Romanovitch, M.; Zhang, C.; Hyland, F.C.L.; Craig, D.W.; Christoforides, A.; Homer, N.; Izatt, T.; Kurdoglu, A.A.; Sinari, S.A.; Squire, K.; Sherry, S.T.; Xiao, C.; Sebat, J.; Antaki, D.; Gujral, M.; Noor, A.; Ye, K.; Burchard, E.G.; Hernandez, R.D.; Gignoux, C.R.; Haussler, D.; Katzman, S.J.; James Kent, W.; Howie, B.; Ruiz-Linares, A.; Dermitzakis, E.T.; Devine, S.E.; Abecasis, G.R.; Min Kang, H.; Kidd, J.M.; Blackwell, T.; Caron, S.; Chen, W.; Emery, S.; Fritsche, L.; Fuchsberger, C.; Jun, G.; Li, B.; Lyons, R.; Scheller, C.; Sidore, C.; Song, S.; Sliwerska, E.; Taliun, D.; Tan, A.; Welch, R.; Kate Wing, M.; Zhan, X.; Awadalla, P.; Hodgkinson, A.; Li, Y.; Shi, X.; Quitadamo, A.; Lunter, G.; McVean, G.A.; Marchini, J.L.; Myers, S.; Churchhouse, C.; Delaneau, O.; Gupta-Hinch, A.; Kretzschmar, W.; Iqbal, Z.; Mathieson, I.; Menelaou, A.; Rimmer, A.; Xifara, D.K.; Oleksyk, T.K.; Fu, Y.; Liu, X.; Xiong, M.; Jorde, L.; Witherspoon, D.; Xing, J.; Eichler, E.E.; Browning, B.L.; Browning, S.R.; Hormozdiari, F.; Sudmant, P.H.; Khurana, E.; Durbin, R.M.; Hurles, M.E.; Tyler-Smith, C.; Albers, C.A.; Ayub, Q.; Balasubramaniam, S.; Chen, Y.; Colonna, V.; Danecek, P.; Jostins, L.; Keane, T.M.; McCarthy, S.; Walter, K.; Xue, Y.; Gerstein, M.B.; Abyzov, A.; Balasubramanian, S.; Chen, J.; Clarke, D.; Fu, Y.; Harmanci, A.O.; Jin, M.; Lee, D.; Liu, J.; Jasmine Mu, X.; Zhang, J.; Zhang, Y.; Li, Y.; Luo, R.; Zhu, H.; Alkan, C.; Dal, E.; Kahveci, F.; Marth, G.T.; Garrison, E.P.; Kural, D.; Lee, W-P.; Ward, A.N.; Wu, J.; Zhang, M.; McCarroll, S.A.; Handsaker, R.E.; Altshuler, D.M.; Banks, E.; del Angel, G.; Genovese, G.; Hartl, C.; Li, H.; Kashin, S.; Nemesh, J.C.; Shakir, K.; Yoon, S.C.; Lihm, J.; Makarov, V.; Degenhardt, J.; Korbel, J.O.; Fritz, M.H.; Meiers, S.; Raeder, B.; Rausch, T.; Stütz, A.M.; Flicek, P.; Paolo Casale, F.; Clarke, L.; Smith, R.E.; Stegle, O.; Zheng-Bradley, X.; Bentley, D.R.; Barnes, B.; Keira Cheetham, R.; Eberle, M.; Humphray, S.; Kahn, S.; Murray, L.; Shaw, R.; Lameijer, E-W.; Batzer, M.A.; Konkel, M.K.; Walker, J.A.; Ding, L.; Hall, I.; Ye, K.; Lacroute, P.; Lee, C.; Cerveira, E.; Malhotra, A.; Hwang, J.; Plewczynski, D.; Radew, K.; Romanovitch, M.; Zhang, C.; Craig, D.W.; Homer, N.; Church, D.; Xiao, C.; Sebat, J.; Antaki, D.; Bafna, V.; Michaelson, J.; Ye, K.; Devine, S.E.; Gardner, E.J.; Abecasis, G.R.; Kidd, J.M.; Mills, R.E.; Dayama, G.; Emery, S.; Jun, G.; Shi, X.; Quitadamo, A.; Lunter, G.; McVean, G.A.; Chen, K.; Fan, X.; Chong, Z.; Chen, T.; Witherspoon, D.; Xing, J.; Eichler, E.E.; Chaisson, M.J.; Hormozdiari, F.; Huddleston, J.; Malig, M.; Nelson, B.J.; Sudmant, P.H.; Parrish, N.F.; Khurana, E.; Hurles, M.E.; Blackburne, B.; Lindsay, S.J.; Ning, Z.; Walter, K.; Zhang, Y.; Gerstein, M.B.; Abyzov, A.; Chen, J.; Clarke, D.; Lam, H.; Jasmine Mu, X.; Sisu, C.; Zhang, J.; Zhang, Y.; Gibbs, R.A.; Yu, F.; Bainbridge, M.; Challis, D.; Evani, U.S.; Kovar, C.; Lu, J.; Muzny, D.; Nagaswamy, U.; Reid, J.G.; Sabo, A.; Yu, J.; Guo, X.; Li, W.; Li, Y.; Wu, R.; Marth, G.T.; Garrison, E.P.; Fung Leong, W.; Ward, A.N.; del Angel, G.; DePristo, M.A.; Gabriel, S.B.; Gupta, N.; Hartl, C.; Poplin, R.E.; Clark, A.G.; Rodriguez-Flores, J.L.; Flicek, P.; Clarke, L.; Smith, R.E.; Zheng-Bradley, X.; MacArthur, D.G.; Mardis, E.R.; Fulton, R.; Koboldt, D.C.; Gravel, S.; Bustamante, C.D.; Craig, D.W.; Christoforides, A.; Homer, N.; Izatt, T.; Sherry, S.T.; Xiao, C.; Dermitzakis, E.T.; Abecasis, G.R.; Min Kang, H.; McVean, G.A.; Gerstein, M.B.; Balasubramanian, S.; Habegger, L.; Yu, H.; Flicek, P.; Clarke, L.; Cunningham, F.; Dunham, I.; Zerbino, D.; Zheng-Bradley, X.; Lage, K.; Berg Jespersen, J.; Horn, H.; Montgomery, S.B.; DeGorter, M.K.; Khurana, E.; Tyler-Smith, C.; Chen, Y.; Colonna, V.; Xue, Y.; Gerstein, M.B.; Balasubramanian, S.; Fu, Y.; Kim, D.; Auton, A.; Marcketta, A.; Desalle, R.; Narechania, A.; Wilson Sayres, M.A.; Garrison, E.P.; Handsaker, R.E.; Kashin, S.; McCarroll, S.A.; Rodriguez-Flores, J.L.; Flicek, P.; Clarke, L.; Zheng-Bradley, X.; Erlich, Y.; Gymrek, M.; Frederick Willems, T.; Bustamante, C.D.; Mendez, F.L.; David Poznik, G.; Underhill, P.A.; Lee, C.; Cerveira, E.; Malhotra, A.; Romanovitch, M.; Zhang, C.; Abecasis, G.R.; Coin, L.; Shao, H.; Mittelman, D.; Tyler-Smith, C.; Ayub, Q.; Banerjee, R.; Cerezo, M.; Chen, Y.; Fitzgerald, T.W.; Louzada, S.; Massaia, A.; McCarthy, S.; Ritchie, G.R.; Xue, Y.; Yang, F.; Gibbs, R.A.; Kovar, C.; Kalra, D.; Hale, W.; Muzny, D.; Reid, J.G.; Wang, J.; Dan, X.; Guo, X.; Li, G.; Li, Y.; Ye, C.; Zheng, X.; Altshuler, D.M.; Flicek, P.; Clarke, L.; Zheng-Bradley, X.; Bentley, D.R.; Cox, A.; Humphray, S.; Kahn, S.; Sudbrak, R.; Albrecht, M.W.; Lienhard, M.; Larson, D.; Craig, D.W.; Izatt, T.; Kurdoglu, A.A.; Sherry, S.T.; Xiao, C.; Haussler, D.; Abecasis, G.R.; McVean, G.A.; Durbin, R.M.; Balasubramaniam, S.; Keane, T.M.; McCarthy, S.; Stalker, J.; Chakravarti, A.; Knoppers, B.M.; Abecasis, G.R.; Barnes, K.C.; Beiswanger, C.; Burchard, E.G.; Bustamante, C.D.; Cai, H.; Cao, H.; Durbin, R.M.; Gerry, N.P.; Gharani, N.; Gibbs, R.A.; Gignoux, C.R.; Gravel, S.; Henn, B.; Jones, D.; Jorde, L.; Kaye, J.S.; Keinan, A.; Kent, A.; Kerasidou, A.; Li, Y.; Mathias, R.; McVean, G.A.; Moreno-Estrada, A.; Ossorio, P.N.; Parker, M.; Resch, A.M.; Rotimi, C.N.; Royal, C.D.; Sandoval, K.; Su, Y.; Sudbrak, R.; Tian, Z.; Tishkoff, S.; Toji, L.H.; Tyler-Smith, C.; Via, M.; Wang, Y.; Yang, H.; Yang, L.; Zhu, J.; Bodmer, W.; Bedoya, G.; Ruiz-Linares, A.; Cai, Z.; Gao, Y.; Chu, J.; Peltonen, L.; Garcia-Montero, A.; Orfao, A.; Dutil, J.; Martinez-Cruzado, J.C.; Oleksyk, T.K.; Barnes, K.C.; Mathias, R.A.; Hennis, A.; Watson, H.; McKenzie, C.; Qadri, F.; LaRocque, R.; Sabeti, P.C.; Zhu, J.; Deng, X.; Sabeti, P.C.; Asogun, D.; Folarin, O.; Happi, C.; Omoniwa, O.; Stremlau, M.; Tariyal, R.; Jallow, M.; Sisay Joof, F.; Corrah, T.; Rockett, K.; Kwiatkowski, D.; Kooner, J.; Tịnh Hiê’n, T.; Dunstan, S.J.; Thuy Hang, N.; Fonnie, R.; Garry, R.; Kanneh, L.; Moses, L.; Sabeti, P.C.; Schieffelin, J.; Grant, D.S.; Gallo, C.; Poletti, G.; Saleheen, D.; Rasheed, A.; Brooks, L.D.; Felsenfeld, A.L.; McEwen, J.E.; Vaydylevich, Y.; Green, E.D.; Duncanson, A.; Dunn, M.; Schloss, J.A.; Wang, J.; Yang, H.; Auton, A.; Brooks, L.D.; Durbin, R.M.; Garrison, E.P.; Min Kang, H.; Korbel, J.O.; Marchini, J.L.; McCarthy, S.; McVean, G.A.; Abecasis, G.R. A global reference for human genetic variation. Nature, 2015, 526(7571), 68-74.
[http://dx.doi.org/10.1038/nature15393] [PMID: 26432245]
[116]
Kloske, C.M.; Wilcock, D.M. The important interface between apolipoprotein E and neuroinflammation in Alzheimer’s disease. Front. Immunol., 2020, 11, 754.
[http://dx.doi.org/10.3389/fimmu.2020.00754] [PMID: 32425941]
[117]
Bertram, L.; Tanzi, R.E. Thirty years of Alzheimer’s disease genetics: The implications of systematic meta-analyses. Nat. Rev. Neurosci., 2008, 9(10), 768-778.
[http://dx.doi.org/10.1038/nrn2494] [PMID: 18802446]
[118]
Wang, H.; Yuan, Z.; Pavel, M.A.; Jablonski, S.M.; Jablonski, J.; Hobson, R.; Valente, S.; Reddy, C.B.; Hansen, S.B. The role of high cholesterol in age-related COVID19 lethality. bioRxiv, 2021, 2021, 086249.
[http://dx.doi.org/10.1101/2020.05.09.086249]
[119]
Liu, N.; Sun, J.; Wang, X.; Zhao, M.; Huang, Q.; Li, H. The impact of dementia on the clinical outcome of COVID-19: A systematic review and meta-analysis. J. Alzheimers Dis., 2020, 78(4), 1775-1782.
[http://dx.doi.org/10.3233/JAD-201016] [PMID: 33285638]
[120]
Finch, C.E.; Kulminski, A.M. The ApoE locus and COVID-19: Are we going where we have been? J. Gerontol. A Biol. Sci. Med. Sci., 2021, 76(2), e1-e3.
[http://dx.doi.org/10.1093/gerona/glaa200] [PMID: 32777042]
[121]
Atkins, J.L.; Masoli, J.A.H.; Delgado, J.; Pilling, L.C.; Kuo, C.L.; Kuchel, G.A.; Melzer, D. Preexisting comorbidities predicting COVID-19 and mortality in the UK Biobank community cohort. J. Gerontol. A Biol. Sci. Med. Sci., 2020, 75(11), 2224-2230.
[http://dx.doi.org/10.1093/gerona/glaa183] [PMID: 32687551]
[122]
Mao, X.Y.; Jin, W.L. The COVID-19 pandemic: Consideration for brain infection. Neuroscience, 2020, 437, 130-131.
[http://dx.doi.org/10.1016/j.neuroscience.2020.04.044] [PMID: 32380269]
[123]
Farrer, L.A.; Cupples, L.A.; Haines, J.L.; Hyman, B.; Kukull, W.A.; Mayeux, R.; Myers, R.H.; Pericak-Vance, M.A.; Risch, N.; van Duijn, C.M. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. JAMA, 1997, 278(16), 1349-1356.
[http://dx.doi.org/10.1001/jama.1997.03550160069041] [PMID: 9343467]
[124]
Emrani, S.; Arain, H.A.; DeMarshall, C.; Nuriel, T. APOE4 is associated with cognitive and pathological heterogeneity in patients with Alzheimer’s disease: A systematic review. Alzheimers Res. Ther., 2020, 12(1), 141.
[http://dx.doi.org/10.1186/s13195-020-00712-4] [PMID: 33148345]
[125]
Kuo, C.L.; Pilling, L.C.; Atkins, J.L.; Masoli, J.A.H.; Delgado, J.; Kuchel, G.A.; Melzer, D. APOE e4 genotype predicts severe COVID-19 in the UK Biobank community cohort. J. Gerontol. A Biol. Sci. Med. Sci., 2020, 75(11), 2231-2232.
[http://dx.doi.org/10.1093/gerona/glaa131] [PMID: 32451547]
[126]
Keng, A.; Brown, E.E.; Rostas, A.; Rajji, T.K.; Pollock, B.G.; Mulsant, B.H.; Kumar, S. Effectively caring for individuals with behavioral and psychological symptoms of dementia during the COVID-19 pandemic. Front. Psychiatry, 2020, 11, 573367.
[http://dx.doi.org/10.3389/fpsyt.2020.573367] [PMID: 33132936]
[127]
Kurki, S.N.; Kantonen, J.; Kaivola, K.; Hokkanen, L.; Mäyränpää, M.I.; Puttonen, H.; Martola, J.; Pöyhönen, M.; Kero, M.; Tuimala, J.; Carpén, O.; Kantele, A.; Vapalahti, O.; Tiainen, M.; Tienari, P.J.; Kaila, K.; Hästbacka, J.; Myllykangas, L. APOE ε4 associates with increased risk of severe COVID-19, cerebral microhaemorrhages and post-COVID mental fatigue: A Finnish biobank, autopsy and clinical study. Acta Neuropathol. Commun., 2021, 9(1), 199.
[http://dx.doi.org/10.1186/s40478-021-01302-7] [PMID: 34949230]
[128]
Wang, C.; Zhang, M.; Garcia, G., Jr; Tian, E.; Cui, Q.; Chen, X.; Sun, G.; Wang, J.; Arumugaswami, V.; Shi, Y. ApoE-isoform-dependent SARS-CoV-2 neurotropism and cellular response. Cell Stem Cell, 2021, 28(2), 331-342.e5.
[http://dx.doi.org/10.1016/j.stem.2020.12.018] [PMID: 33450186]
[129]
Riedel, B.C.; Thompson, P.M.; Brinton, R.D. Age, APOE and sex: Triad of risk of Alzheimer’s disease. J. Steroid Biochem. Mol. Biol., 2016, 160, 134-147.
[http://dx.doi.org/10.1016/j.jsbmb.2016.03.012] [PMID: 26969397]
[130]
Docherty, A.B.; Harrison, E.M.; Green, C.A.; Hardwick, H.E.; Pius, R.; Norman, L.; Holden, K.A.; Read, J.M.; Dondelinger, F.; Carson, G.; Merson, L.; Lee, J.; Plotkin, D.; Sigfrid, L.; Halpin, S.; Jackson, C.; Gamble, C.; Horby, P.W.; Nguyen-Van-Tam, J.S.; Ho, A.; Russell, C.D.; Dunning, J.; Openshaw, P.J.M.; Baillie, J.K.; Semple, M.G. Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO clinical characterisation protocol: Prospective observational cohort study. BMJ, 2020, 369, m1985.
[http://dx.doi.org/10.1136/bmj.m1985] [PMID: 32444460]
[131]
Kuo, C.L.; Pilling, L.C.; Atkins, J.L.; Kuchel, G.A.; Melzer, D. ApoE e2 and aging-related outcomes in 379,000 UK Biobank participants. Aging (Albany NY), 2020, 12(12), 12222-12233.
[http://dx.doi.org/10.18632/aging.103405] [PMID: 32511104]
[132]
Tudorache, I.F.; Trusca, V.G.; Gafencu, A.V.; Apolipoprotein, E. A multifunctional protein with implications in various pathologies as a result of its structural features. Comput. Struct. Biotechnol. J., 2017, 15, 359-365.
[http://dx.doi.org/10.1016/j.csbj.2017.05.003] [PMID: 28660014]
[133]
Kuo, C.L.; Pilling, L.C.; Atkins, J.L.; Masoli, J.A.H.; Delgado, J.; Kuchel, G.A.; Melzer, D. ApoE e4e4 genotype and mortality with COVID-19 in UK Biobank. J. Gerontol. A Biol. Sci. Med. Sci., 2020, 75(9), 1801-1803.
[http://dx.doi.org/10.1093/gerona/glaa169] [PMID: 32623451]
[134]
Kasparian, K.; Graykowski, D.; Cudaback, E. Commentary: APOE e4 genotype predicts severe COVID-19 in the UK Biobank Community cohort. Front. Immunol., 2020, 11, 1939.
[http://dx.doi.org/10.3389/fimmu.2020.01939] [PMID: 33042114]
[135]
Nikogosov, D.A.; Shevlyakov, A.D.; Baranova, A.V. Comment on “ApoE e4e4 Genotype and Mortality With COVID-19 in UK Biobank” by Kuo et al. J. Gerontol. A Biol. Sci. Med. Sci., 2020, 75(11), 2233-2234.
[http://dx.doi.org/10.1093/gerona/glaa202] [PMID: 32803253]
[136]
Kuo, C.L.; Melzer, D. Response to comment on “ApoE e4e4 genotype and mortality with COVID-19 in UK biobank” by Kuo et al. J. Gerontol. A Biol. Sci. Med. Sci., 2020, 75(11), 2235-2236.
[http://dx.doi.org/10.1093/gerona/glaa198] [PMID: 32797154]
[137]
Felsenstein, S.; Herbert, J.A.; McNamara, P.S.; Hedrich, C.M. COVID-19: Immunology and treatment options. Clin. Immunol., 2020, 215, 108448.
[http://dx.doi.org/10.1016/j.clim.2020.108448] [PMID: 32353634]
[138]
Yao, X.; Gordon, E.M.; Figueroa, D.M.; Barochia, A.V.; Levine, S.J. Emerging roles of apolipoprotein E and apolipoprotein A-I in the pathogenesis and treatment of lung disease. Am. J. Respir. Cell Mol. Biol., 2016, 55(2), 159-169.
[http://dx.doi.org/10.1165/rcmb.2016-0060TR] [PMID: 27073971]
[139]
Martínez-Martínez, A.B.; Torres-Perez, E.; Devanney, N.; Del Moral, R.; Johnson, L.A.; Arbones-Mainar, J.M. Beyond the CNS: The many peripheral roles of APOE. Neurobiol. Dis., 2020, 138, 104809.
[http://dx.doi.org/10.1016/j.nbd.2020.104809] [PMID: 32087284]
[140]
Cantuti-Castelvetri, L.; Ojha, R.; Pedro, L.D.; Djannatian, M.; Franz, J.; Kuivanen, S.; van der Meer, F.; Kallio, K.; Kaya, T.; Anastasina, M.; Smura, T.; Levanov, L.; Szirovicza, L.; Tobi, A.; Kallio-Kokko, H.; Österlund, P.; Joensuu, M.; Meunier, F.A.; Butcher, S.J.; Winkler, M.S.; Mollenhauer, B.; Helenius, A.; Gokce, O.; Teesalu, T.; Hepojoki, J.; Vapalahti, O.; Stadelmann, C.; Balistreri, G.; Simons, M. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity. Science, 2020, 370(6518), 856-860.
[http://dx.doi.org/10.1126/science.abd2985] [PMID: 33082293]
[141]
Ellinghaus, D.; Degenhardt, F.; Bujanda, L.; Buti, M.; Albillos, A.; Invernizzi, P.; Fernández, J.; Prati, D.; Baselli, G.; Asselta, R.; Grimsrud, M.M.; Milani, C.; Aziz, F.; Kässens, J.; May, S.; Wendorff, M.; Wienbrandt, L.; Uellendahl-Werth, F.; Zheng, T.; Yi, X.; de Pablo, R.; Chercoles, A.G.; Palom, A.; Garcia-Fernandez, A.E.; Rodriguez-Frias, F.; Zanella, A.; Bandera, A.; Protti, A.; Aghemo, A.; Lleo, A.; Biondi, A.; Caballero-Garralda, A.; Gori, A.; Tanck, A.; Carreras Nolla, A.; Latiano, A.; Fracanzani, A.L.; Peschuck, A.; Julià, A.; Pesenti, A.; Voza, A.; Jiménez, D.; Mateos, B.; Nafria Jimenez, B.; Quereda, C.; Paccapelo, C.; Gassner, C.; Angelini, C.; Cea, C.; Solier, A.; Pestaña, D.; Muñiz-Diaz, E.; Sandoval, E.; Paraboschi, E.M.; Navas, E.; García Sánchez, F.; Ceriotti, F.; Martinelli-Boneschi, F.; Peyvandi, F.; Blasi, F.; Téllez, L.; Blanco-Grau, A.; Hemmrich-Stanisak, G.; Grasselli, G.; Costantino, G.; Cardamone, G.; Foti, G.; Aneli, S.; Kurihara, H.; ElAbd, H.; My, I.; Galván-Femenia, I.; Martín, J.; Erdmann, J.; Ferrusquía-Acosta, J.; Garcia-Etxebarria, K.; Izquierdo-Sanchez, L.; Bettini, L.R.; Sumoy, L.; Terranova, L.; Moreira, L.; Santoro, L.; Scudeller, L.; Mesonero, F.; Roade, L.; Rühlemann, M.C.; Schaefer, M.; Carrabba, M.; Riveiro-Barciela, M.; Figuera Basso, M.E.; Valsecchi, M.G.; Hernandez-Tejero, M.; Acosta-Herrera, M.; D’Angiò, M.; Baldini, M.; Cazzaniga, M.; Schulzky, M.; Cecconi, M.; Wittig, M.; Ciccarelli, M.; Rodríguez-Gandía, M.; Bocciolone, M.; Miozzo, M.; Montano, N.; Braun, N.; Sacchi, N.; Martínez, N.; Özer, O.; Palmieri, O.; Faverio, P.; Preatoni, P.; Bonfanti, P.; Omodei, P.; Tentorio, P.; Castro, P.; Rodrigues, P.M.; Blandino Ortiz, A.; de Cid, R.; Ferrer, R.; Gualtierotti, R.; Nieto, R.; Goerg, S.; Badalamenti, S.; Marsal, S.; Matullo, G.; Pelusi, S.; Juzenas, S.; Aliberti, S.; Monzani, V.; Moreno, V.; Wesse, T.; Lenz, T.L.; Pumarola, T.; Rimoldi, V.; Bosari, S.; Albrecht, W.; Peter, W.; Romero-Gómez, M.; D’Amato, M.; Duga, S.; Banales, J.M.; Hov, J.R.; Folseraas, T.; Valenti, L.; Franke, A.; Karlsen, T.H. Genomewide association study of severe covid-19 with respiratory failure. N. Engl. J. Med., 2020, 383(16), 1522-1534.
[http://dx.doi.org/10.1056/NEJMoa2020283] [PMID: 32558485]
[142]
Pairo-Castineira, E.; Clohisey, S.; Klaric, L.; Bretherick, A.D.; Rawlik, K.; Pasko, D.; Walker, S.; Parkinson, N.; Fourman, M.H.; Russell, C.D.; Furniss, J.; Richmond, A.; Gountouna, E.; Wrobel, N.; Harrison, D.; Wang, B.; Wu, Y.; Meynert, A.; Griffiths, F.; Oosthuyzen, W.; Kousathanas, A.; Moutsianas, L.; Yang, Z.; Zhai, R.; Zheng, C.; Grimes, G.; Beale, R.; Millar, J.; Shih, B.; Keating, S.; Zechner, M.; Haley, C.; Porteous, D.J.; Hayward, C.; Yang, J.; Knight, J.; Summers, C.; Shankar-Hari, M.; Klenerman, P.; Turtle, L.; Ho, A.; Moore, S.C.; Hinds, C.; Horby, P.; Nichol, A.; Maslove, D.; Ling, L.; McAuley, D.; Montgomery, H.; Walsh, T.; Pereira, A.C.; Renieri, A.; Shen, X.; Ponting, C.P.; Fawkes, A.; Tenesa, A.; Caulfield, M.; Scott, R.; Rowan, K.; Murphy, L.; Openshaw, P.J.M.; Semple, M.G.; Law, A.; Vitart, V.; Wilson, J.F.; Baillie, J.K. Genetic mechanisms of critical illness in COVID-19. Nature, 2021, 591(7848), 92-98.
[http://dx.doi.org/10.1038/s41586-020-03065-y] [PMID: 33307546]
[143]
Murgolo, N.; Therien, A.G.; Howell, B.; Klein, D.; Koeplinger, K.; Lieberman, L.A.; Adam, G.C.; Flynn, J.; McKenna, P.; Swaminathan, G.; Hazuda, D.J.; Olsen, D.B. SARS-CoV-2 tropism, entry, replication, and propagation: Considerations for drug discovery and development. PLoS Pathog., 2021, 17(2), e1009225.
[http://dx.doi.org/10.1371/journal.ppat.1009225] [PMID: 33596266]
[144]
Baggen, J.; Persoons, L.; Vanstreels, E.; Jansen, S.; Van Looveren, D.; Boeckx, B.; Geudens, V.; De Man, J.; Jochmans, D.; Wauters, J.; Wauters, E.; Vanaudenaerde, B.M.; Lambrechts, D.; Neyts, J.; Dallmeier, K.; Thibaut, H.J.; Jacquemyn, M.; Maes, P.; Daelemans, D. Genome-wide CRISPR screening identifies TMEM106B as a proviral host factor for SARS-CoV-2. Nat. Genet., 2021, 53(4), 435-444.
[http://dx.doi.org/10.1038/s41588-021-00805-2] [PMID: 33686287]
[145]
Van Gool, B.; Storck, S.E.; Reekmans, S.M.; Lechat, B.; Gordts, P.L.S.M.; Pradier, L.; Pietrzik, C.U.; Roebroek, A.J.M. LRP1 has a predominant role in production over clearance of Aβ in a mouse model of Alzheimer’s disease. Mol. Neurobiol., 2019, 56(10), 7234-7245.
[http://dx.doi.org/10.1007/s12035-019-1594-2] [PMID: 31004319]
[146]
Salech, F.; Ponce, D.P.; Paula-Lima, A.C.; SanMartin, C.D.; Behrens, M.I. Nicotinamide, a poly [ADP-ribose] polymerase 1 (PARP-1) inhibitor, as an adjunctive therapy for the treatment of Alzheimer’s disease. Front. Aging Neurosci., 2020, 12, 255.
[http://dx.doi.org/10.3389/fnagi.2020.00255] [PMID: 32903806]
[147]
Tai, L.M.; Ghura, S.; Koster, K.P.; Liakaite, V.; Maienschein-Cline, M.; Kanabar, P.; Collins, N.; Ben-Aissa, M.; Lei, A.Z.; Bahroos, N.; Green, S.J.; Hendrickson, B.; Van Eldik, L.J.; LaDu, M.J. APOE -modulated Aβ-induced neuroinflammation in Alzheimer’s disease: Current landscape, novel data, and future perspective. J. Neurochem., 2015, 133(4), 465-488.
[http://dx.doi.org/10.1111/jnc.13072] [PMID: 25689586]
[148]
Tai, L.M.; Thomas, R.; Marottoli, F.M.; Koster, K.P.; Kanekiyo, T.; Morris, A.W.J.; Bu, G. The role of APOE in cerebrovascular dysfunction. Acta Neuropathol., 2016, 131(5), 709-723.
[http://dx.doi.org/10.1007/s00401-016-1547-z] [PMID: 26884068]
[149]
Xu, H.; Perreau, V.M.; Dent, K.A.; Bush, A.I.; Finkelstein, D.I.; Adlard, P.A. Iron regulates Apolipoprotein E expression and secretion in neurons and astrocytes. J. Alzheimers Dis., 2016, 51(2), 471-487.
[http://dx.doi.org/10.3233/JAD-150797] [PMID: 26890748]
[150]
Ayton, S.; Faux, N.G.; Bush, A.I. Ferritin levels in the cerebrospinal fluid predict Alzheimer’s disease outcomes and are regulated by APOE. Nat. Commun., 2015, 6(1), 6760.
[http://dx.doi.org/10.1038/ncomms7760] [PMID: 25988319]
[151]
Ayton, S.; Faux, N.G.; Bush, A.I. Association of cerebrospinal fluid ferritin level with preclinical cognitive decline in APOE-ε4 carriers. JAMA Neurol., 2017, 74(1), 122-125.
[http://dx.doi.org/10.1001/jamaneurol.2016.4406] [PMID: 27893873]
[152]
Wood, H. Iron—the missing link between ApoE and Alzheimer disease? Nat. Rev. Neurol., 2015, 11(7), 369.
[http://dx.doi.org/10.1038/nrneurol.2015.96] [PMID: 26055466]
[153]
Wang, F.; Wang, J.; Shen, Y.; Li, H.; Rausch, W.D.; Huang, X. Iron dyshomeostasis and ferroptosis: A new Alzheimer’s disease hypothesis? Front. Aging Neurosci., 2022, 14, 830569.
[http://dx.doi.org/10.3389/fnagi.2022.830569] [PMID: 35391749]
[154]
Dixon, S.J.; Lemberg, K.M.; Lamprecht, M.R.; Skouta, R.; Zaitsev, E.M.; Gleason, C.E.; Patel, D.N.; Bauer, A.J.; Cantley, A.M.; Yang, W.S.; Morrison, B., III; Stockwell, B.R. Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[http://dx.doi.org/10.1016/j.cell.2012.03.042] [PMID: 22632970]
[155]
Peng, Y.; Chang, X.; Lang, M. Iron homeostasis disorder and Alzheimer’s disease. Int. J. Mol. Sci., 2021, 22(22), 12442.
[http://dx.doi.org/10.3390/ijms222212442] [PMID: 34830326]
[156]
Tan, Q.; Fang, Y.; Gu, Q. Mechanisms of modulation of ferroptosis and its role in central nervous system diseases. Front. Pharmacol., 2021, 12, 657033.
[http://dx.doi.org/10.3389/fphar.2021.657033] [PMID: 34149412]
[157]
Zimmer, T.S.; David, B.; Broekaart, D.W.M.; Schidlowski, M.; Ruffolo, G.; Korotkov, A.; van der Wel, N.N.; van Rijen, P.C.; Mühlebner, A.; van Hecke, W.; Baayen, J.C.; Idema, S.; François, L.; van Eyll, J.; Dedeurwaerdere, S.; Kessels, H.W.; Surges, R.; Rüber, T.; Gorter, J.A.; Mills, J.D.; van Vliet, E.A.; Aronica, E. Seizure-mediated iron accumulation and dysregulated iron metabolism after status epilepticus and in temporal lobe epilepsy. Acta Neuropathol., 2021, 142(4), 729-759.
[http://dx.doi.org/10.1007/s00401-021-02348-6] [PMID: 34292399]
[158]
Connor, J.R.; Snyder, B.S.; Arosio, P.; Loeffler, D.A.; LeWitt, P. A quantitative analysis of isoferritins in select regions of aged, parkinsonian, and Alzheimer’s diseased brains. J. Neurochem., 1995, 65(2), 717-724.
[http://dx.doi.org/10.1046/j.1471-4159.1995.65020717.x] [PMID: 7616228]
[159]
Ramos, P.; Santos, A.; Pinto, N.R.; Mendes, R.; Magalhães, T.; Almeida, A. Iron levels in the human brain: A post-mortem study of anatomical region differences and age-related changes. J. Trace Elem. Med. Biol., 2014, 28(1), 13-17.
[http://dx.doi.org/10.1016/j.jtemb.2013.08.001] [PMID: 24075790]
[160]
Xiong, H.; Tuo, Q.; Guo, Y.; Lei, P. Diagnostics and treatments of iron-related CNS diseases. Adv. Exp. Med. Biol., 2019, 1173, 179-194.
[http://dx.doi.org/10.1007/978-981-13-9589-5_10] [PMID: 31456211]
[161]
Cassidy, L.; Fernandez, F.; Johnson, J.B.; Naiker, M.; Owoola, A.G.; Broszczak, D.A. Oxidative stress in Alzheimer’s disease: A review on emergent natural polyphenolic therapeutics. Complement. Ther. Med., 2020, 49, 102294.
[http://dx.doi.org/10.1016/j.ctim.2019.102294] [PMID: 32147039]
[162]
Li, J.; Zhang, Q.; Che, Y.; Zhang, N.; Guo, L. Iron deposition characteristics of deep gray matter in elderly individuals in the community revealed by quantitative susceptibility mapping and multiple factor analysis. Front. Aging Neurosci., 2021, 13, 611891.
[http://dx.doi.org/10.3389/fnagi.2021.611891] [PMID: 33935681]
[163]
Vitale, A.A.; Bernatene, E.A.; Vitale, M.G.; Pomilio, A.B. New insights of the Fenton reaction using glycerol as experimental model. Effect of O2, inhibition by Mg2+, and oxidation state of Fe. J. Phys. Chem. A, 2016, 120(28), 5435-5445.
[http://dx.doi.org/10.1021/acs.jpca.6b03805] [PMID: 27340836]
[164]
Vitale, A.A.; Bernatene, E.A.; Pomilio, A.B. Inhibition of Fenton reaction of glucose by alcohols and tetrahydrofuran in catalytic concentrations: Calculation of the stability constants of ROH/Fe2+ complexes. Curr. Phys. Chem., 2022, 12(1), 76-87.
[http://dx.doi.org/10.2174/1877946812666211217152703]
[165]
Liu, J.L.; Fan, Y.G.; Yang, Z.S.; Wang, Z.Y.; Guo, C. Iron and Alzheimer’s disease: From pathogenesis to therapeutic implications. Front. Neurosci., 2018, 12, 632.
[http://dx.doi.org/10.3389/fnins.2018.00632] [PMID: 30250423]
[166]
Piacentini, R.; Centi, L.; Miotto, M.; Milanetti, E.; Di Rienzo, L.; Pitea, M.; Piazza, P.; Ruocco, G.; Boffi, A.; Parisi, G. Lactoferrin inhibition of the complex formation between ACE2 Receptor and SARS CoV-2 Recognition Binding Domain. Int. J. Mol. Sci., 2022, 23(10), 5436.
[http://dx.doi.org/10.3390/ijms23105436] [PMID: 35628247]
[167]
Damulina, A.; Pirpamer, L.; Soellradl, M.; Sackl, M.; Tinauer, C.; Hofer, E.; Enzinger, C.; Gesierich, B.; Duering, M.; Ropele, S.; Schmidt, R.; Langkammer, C. Cross-sectional and longitudinal assessment of brain iron level in Alzheimer disease using 3-T MRI. Radiology, 2020, 296(3), 619-626.
[http://dx.doi.org/10.1148/radiol.2020192541] [PMID: 32602825]
[168]
You, P.; Li, X.; Wang, Z.; Wang, H.; Dong, B.; Li, Q. Characterization of brain iron deposition pattern and its association with genetic risk factor in Alzheimer’s disease using susceptibility-weighted imaging. Front. Hum. Neurosci., 2021, 15, 654381.
[http://dx.doi.org/10.3389/fnhum.2021.654381] [PMID: 34163341]
[169]
Cucos, C.A.; Cracana, I.; Dobre, M.; Popescu, B.O.; Tudose, C.; Spiru, L.; Manda, G.; Niculescu, G.; Milanesi, E. SRXN1 blood levels negatively correlate with hippocampal atrophy and cognitive decline. F1000 Res., 2022, 11, 114.
[http://dx.doi.org/10.12688/f1000research.76191.1] [PMID: 35242306]
[170]
Yan, N.; Zhang, J. Iron metabolism, ferroptosis, and the links with Alzheimer’s disease. Front. Neurosci., 2020, 13, 1443.
[http://dx.doi.org/10.3389/fnins.2019.01443] [PMID: 32063824]
[171]
Duce, J.A.; Tsatsanis, A.; Cater, M.A.; James, S.A.; Robb, E.; Wikhe, K.; Leong, S.L.; Perez, K.; Johanssen, T.; Greenough, M.A.; Cho, H.H.; Galatis, D.; Moir, R.D.; Masters, C.L.; McLean, C.; Tanzi, R.E.; Cappai, R.; Barnham, K.J.; Ciccotosto, G.D.; Rogers, J.T.; Bush, A.I. Iron-export ferroxidase activity of β-amyloid precursor protein is inhibited by zinc in Alzheimer’s disease. Cell, 2010, 142(6), 857-867.
[http://dx.doi.org/10.1016/j.cell.2010.08.014] [PMID: 20817278]
[172]
Lei, P.; Ayton, S.; Finkelstein, D.I.; Spoerri, L.; Ciccotosto, G.D.; Wright, D.K.; Wong, B.X.W.; Adlard, P.A.; Cherny, R.A.; Lam, L.Q.; Roberts, B.R.; Volitakis, I.; Egan, G.F.; McLean, C.A.; Cappai, R.; Duce, J.A.; Bush, A.I. Tau deficiency induces parkinsonism with dementia by impairing APP-mediated iron export. Nat. Med., 2012, 18(2), 291-295.
[http://dx.doi.org/10.1038/nm.2613] [PMID: 22286308]
[173]
Chen, K.; Jiang, X.; Wu, M.; Cao, X.; Bao, W.; Zhu, L.Q. Ferroptosis, a potential therapeutic target in Alzheimer’s disease. Front. Cell Dev. Biol., 2021, 9, 704298.
[http://dx.doi.org/10.3389/fcell.2021.704298] [PMID: 34422824]
[174]
Tuo, Q.; Lei, P.; Jackman, K.A.; Li, X.; Xiong, H.; Li, X.; Liuyang, Z.; Roisman, L.; Zhang, S.; Ayton, S.; Wang, Q.; Crouch, P.J.; Ganio, K.; Wang, X.; Pei, L.; Adlard, P.A.; Lu, Y.; Cappai, R.; Wang, J.; Liu, R.; Bush, A.I. Tau-mediated iron export prevents ferroptotic damage after ischemic stroke. Mol. Psychiatry, 2017, 22(11), 1520-1530.
[http://dx.doi.org/10.1038/mp.2017.171] [PMID: 28886009]
[175]
Alonso, A.D.; Cohen, L.S.; Corbo, C.; Morozova, V.; ElIdrissi, A.; Phillips, G.; Kleiman, F.E. Hyperphosphorylation of tau associates with changes in its function beyond microtubule stability. Front. Cell. Neurosci., 2018, 12, 338.
[http://dx.doi.org/10.3389/fncel.2018.00338] [PMID: 30356756]
[176]
Wong, B.X.; Tsatsanis, A.; Lim, L.Q.; Adlard, P.A.; Bush, A.I.; Duce, J.A. β-Amyloid precursor protein does not possess ferroxidase activity but does stabilize the cell surface ferrous iron exporter ferroportin. PLoS One, 2014, 9(12), e114174.
[http://dx.doi.org/10.1371/journal.pone.0114174] [PMID: 25464026]
[177]
McCarthy, R.C.; Park, Y.H.; Kosman, D.J. sAPP modulates iron efflux from brain microvascular endothelial cells by stabilizing the ferrous iron exporter ferroportin. EMBO Rep., 2014, 15(7), 809-815.
[http://dx.doi.org/10.15252/embr.201338064] [PMID: 24867889]
[178]
Ji, C.; Steimle, B.L.; Bailey, D.K.; Kosman, D.J. The Ferroxidase hephaestin but not amyloid precursor protein is required for ferroportin-supported iron efflux in primary hippocampal neurons. Cell. Mol. Neurobiol., 2018, 38(4), 941-954.
[http://dx.doi.org/10.1007/s10571-017-0568-z] [PMID: 29177638]
[179]
Lane, D.J.R.; Ayton, S.; Bush, A.I. Iron and Alzheimer’s disease: An update on emerging mechanisms. J. Alzheimers Dis., 2018, 64(s1), S379-S395.
[http://dx.doi.org/10.3233/JAD-179944] [PMID: 29865061]
[180]
Lane, D.J.R.; Metselaar, B.; Greenough, M.; Bush, A.I.; Ayton, S.J. Ferroptosis and NRF2: An emerging battlefield in the neurodegeneration of Alzheimer’s disease. Essays Biochem., 2021, 65(7), 925-940.
[http://dx.doi.org/10.1042/EBC20210017] [PMID: 34623415]
[181]
Kopacz, A.; Kloska, D.; Forman, H.J.; Jozkowicz, A.; Grochot-Przeczek, A. Beyond repression of Nrf2: An update on Keap1. Free Radic. Biol. Med., 2020, 157, 63-74.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.03.023] [PMID: 32234331]
[182]
Kerins, M.J.; Ooi, A. The roles of NRF2 in modulating cellular iron homeostasis. Antioxid. Redox Signal., 2018, 29(17), 1756-1773.
[http://dx.doi.org/10.1089/ars.2017.7176] [PMID: 28793787]
[183]
Greenough, M.A.; Lane, D.J.R.; Balez, R.; Anastacio, H.T.D.; Zeng, Z.; Ganio, K.; McDevitt, C.A.; Acevedo, K.; Belaidi, A.A.; Koistinaho, J.; Ooi, L.; Ayton, S.; Bush, A.I. Selective ferroptosis vulnerability due to familial Alzheimer’s disease presenilin mutations. Cell Death Differ., 2022, 29, 2123-2136.
[http://dx.doi.org/10.1038/s41418-022-01003-1] [PMID: 35449212]
[184]
Dang, X.; Huan, X.; Du, X.; Chen, X.; Bi, M.; Yan, C.; Jiao, Q.; Jiang, H. Correlation of ferroptosis and other types of cell death in neurodegenerative diseases. Neurosci. Bull., 2022, 38(8), 938-952.
[http://dx.doi.org/10.1007/s12264-022-00861-6] [PMID: 35482278]
[185]
Onukwufor, J.O.; Dirksen, R.T.; Wojtovich, A.P. Iron dysregulation in mitochondrial dysfunction and Alzheimer’s disease. Antioxidants, 2022, 11(4), 692.
[http://dx.doi.org/10.3390/antiox11040692] [PMID: 35453377]
[186]
Quintana, C. About the presence of hemosiderin in the hippocampus of Alzheimer patients. J. Alzheimers Dis., 2007, 12(2), 157-160.
[http://dx.doi.org/10.3233/JAD-2007-12205] [PMID: 17917160]
[187]
Akoudad, S.; Wolters, F.J.; Viswanathan, A.; de Bruijn, R.F.; van der Lugt, A.; Hofman, A.; Koudstaal, P.J.; Ikram, M.A.; Vernooij, M.W. Association of cerebral microbleeds with cognitive decline and dementia. JAMA Neurol., 2016, 73(8), 934-943.
[http://dx.doi.org/10.1001/jamaneurol.2016.1017] [PMID: 27271785]
[188]
Dixon, L.; McNamara, C.; Gaur, P.; Mallon, D.; Coughlan, C.; Tona, F.; Jan, W.; Wilson, M.; Jones, B. Cerebral microhaemorrhage in COVID-19: A critical illness related phenomenon? Stroke Vasc. Neurol., 2020, 5(4), e000652.
[http://dx.doi.org/10.1136/svn-2020-000652] [PMID: 33208493]
[189]
Fitsiori, A.; Pugin, D.; Thieffry, C.; Lalive, P.; Vargas, M.I. COVID-19 is associated with an unusual pattern of brain microbleeds in critically ill patients. J. Neuroimaging, 2020, 30(5), 593-597.
[http://dx.doi.org/10.1111/jon.12755] [PMID: 32639679]
[190]
Toeback, J.; Depoortere, S.D.R.; Vermassen, J.; Vereecke, E.L.H.; Van Driessche, V.; Hemelsoet, D.M. Microbleed patterns in critical illness and COVID-19. Clin. Neurol. Neurosurg., 2021, 203, 106594.
[http://dx.doi.org/10.1016/j.clineuro.2021.106594] [PMID: 33735661]
[191]
Napolitano, A.; Arrigoni, A.; Caroli, A.; Cava, M.; Remuzzi, A.; Longhi, L.G.; Barletta, A.; Zangari, R.; Lorini, F.L.; Sessa, M.; Gerevini, S. Cerebral microbleeds assessment and quantification in COVID-19 patients with neurological manifestations. Front. Neurol., 2022, 13, 884449.
[http://dx.doi.org/10.3389/fneur.2022.884449] [PMID: 35677326]
[192]
Vernooij, M.W.; van der Lugt, A.; Ikram, M.A.; Wielopolski, P.A.; Niessen, W.J.; Hofman, A.; Krestin, G.P.; Breteler, M.M.B. Prevalence and risk factors of cerebral microbleeds: The rotterdam scan study. Neurology, 2008, 70(14), 1208-1214.
[http://dx.doi.org/10.1212/01.wnl.0000307750.41970.d9] [PMID: 18378884]
[193]
Rogers, J.T.; Bush, A.I.; Cho, H.H.; Smith, D.H.; Thomson, A.M.; Friedlich, A.L.; Lahiri, D.K.; Leedman, P.J.; Huang, X.; Cahill, C.M. Iron and the translation of the amyloid precursor protein (APP) and ferritin mRNAs: Riboregulation against neural oxidative damage in Alzheimer’s disease. Biochem. Soc. Trans., 2008, 36(6), 1282-1287.
[http://dx.doi.org/10.1042/BST0361282] [PMID: 19021541]
[194]
Tisato, V.; Zuliani, G.; Vigliano, M.; Longo, G.; Franchini, E.; Secchiero, P.; Zauli, G.; Paraboschi, E.M.; Vikram Singh, A.; Serino, M.L.; Ortolani, B.; Zurlo, A.; Bosi, C.; Greco, A.; Seripa, D.; Asselta, R.; Gemmati, D. Gene-gene interactions among coding genes of iron-homeostasis proteins and APOE-alleles in cognitive impairment diseases. PLoS One, 2018, 13(3), e0193867.
[http://dx.doi.org/10.1371/journal.pone.0193867] [PMID: 29518107]
[195]
Weiland, A.; Wang, Y.; Wu, W.; Lan, X.; Han, X.; Li, Q.; Wang, J. Ferroptosis and its role in diverse brain diseases. Mol. Neurobiol., 2019, 56(7), 4880-4893.
[http://dx.doi.org/10.1007/s12035-018-1403-3] [PMID: 30406908]
[196]
Reichert, C.O.; de Freitas, F.A.; Sampaio-Silva, J.; Rokita-Rosa, L.; Barros, P.L.; Levy, D.; Bydlowski, S.P. Ferroptosis mechanisms involved in neurodegenerative diseases. Int. J. Mol. Sci., 2020, 21(22), 8765.
[http://dx.doi.org/10.3390/ijms21228765] [PMID: 33233496]
[197]
Zhou, Y.; Lin, W.; Rao, T.; Zheng, J.; Zhang, T.; Zhang, M.; Lin, Z. Ferroptosis and its potential role in the nervous system diseases. J. Inflamm. Res., 2022, 15, 1555-1574.
[http://dx.doi.org/10.2147/JIR.S351799] [PMID: 35264867]
[198]
Wang, Y.; Chen, G.; Shao, W. Identification of ferroptosis-related genes in Alzheimer’s disease based on bioinformatic analysis. Front. Neurosci., 2022, 16, 823741.
[http://dx.doi.org/10.3389/fnins.2022.823741] [PMID: 35197821]
[199]
Guo, N.; Chen, Y.; Zhang, Y.; Deng, Y.; Zeng, F.; Li, X. Potential role of APEX1 during ferroptosis. Front. Oncol., 2022, 12, 798304.
[http://dx.doi.org/10.3389/fonc.2022.798304] [PMID: 35311089]
[200]
Majerníková, N.; den Dunnen, W.F.A.; Dolga, A.M. The potential of ferroptosis-Targeting therapies for Alzheimer’s disease: From mechanism to transcriptomic analysis. Front. Aging Neurosci., 2021, 13, 745046.
[http://dx.doi.org/10.3389/fnagi.2021.745046] [PMID: 34987375]
[201]
Kung, Y.A.; Chiang, H.J.; Li, M.L.; Gong, Y.N.; Chiu, H.P.; Hung, C.T.; Huang, P.N.; Huang, S.Y.; Wang, P.Y.; Hsu, T.A.; Brewer, G.; Shih, S.R. Acyl-Coenzyme A synthetase long-chain family member 4 is involved in viral replication organelle formation and facilitates virus replication via ferroptosis. MBio, 2022, 13(1), e02717-21.
[http://dx.doi.org/10.1128/mbio.02717-21] [PMID: 35038927]
[202]
Kung, Y.A.; Lee, K.M.; Chiang, H.J.; Huang, S.Y.; Wu, C.J.; Shih, S.R. Molecular virology of SARS-CoV-2 and related coronaviruses. Microbiol. Mol. Biol. Rev., 2022, 86(2), e00026-21.
[http://dx.doi.org/10.1128/mmbr.00026-21] [PMID: 35343760]
[203]
Daniloski, Z.; Jordan, T.X.; Wessels, H.H.; Hoagland, D.A.; Kasela, S.; Legut, M.; Maniatis, S.; Mimitou, E.P.; Lu, L.; Geller, E.; Danziger, O.; Rosenberg, B.R.; Phatnani, H.; Smibert, P.; Lappalainen, T.; tenOever, B.R.; Sanjana, N.E. Identification of required host factors for SARS-CoV-2 infection in human cells. Cell, 2021, 184(1), 92-105.e16.
[http://dx.doi.org/10.1016/j.cell.2020.10.030] [PMID: 33147445]
[204]
Banchini, F.; Vallisa, D.; Maniscalco, P.; Capelli, P. Iron overload and Hepcidin overexpression could play a key role in COVID infection, and may explain vulnerability in elderly, diabetics, and obese patients. Acta Biomed., 2020, 91(3), e2020013.
[http://dx.doi.org/10.23750/abm.v91i3.9826] [PMID: 32921750]
[205]
Banchini, F.; Cattaneo, G.M.; Capelli, P. Serum ferritin levels in inflammation: A retrospective comparative analysis between COVID-19 and emergency surgical non-COVID-19 patients. World J. Emerg. Surg., 2021, 16(1), 9.
[http://dx.doi.org/10.1186/s13017-021-00354-3] [PMID: 33685484]
[206]
Fratta Pasini, A.M.; Stranieri, C.; Girelli, D.; Busti, F.; Cominacini, L. Is ferroptosis a key component of the process leading to multiorgan damage in COVID-19? Antioxidants, 2021, 10(11), 1677.
[http://dx.doi.org/10.3390/antiox10111677] [PMID: 34829548]
[207]
Vela, D. The dual role of hepcidin in brain iron load and inflammation. Front. Neurosci., 2018, 12, 740.
[http://dx.doi.org/10.3389/fnins.2018.00740] [PMID: 30374287]
[208]
Chaudhary, S.; Ashok, A.; McDonald, D.; Wise, A.S.; Kritikos, A.E.; Rana, N.A.; Harding, C.V.; Singh, N. Upregulation of local hepcidin contributes to iron accumulation in Alzheimer’s disease brains. J. Alzheimers Dis., 2021, 82(4), 1487-1497.
[http://dx.doi.org/10.3233/JAD-210221] [PMID: 34180415]
[209]
Sato, T.; Shapiro, J.S.; Chang, H.C.; Miller, R.A.; Ardehali, H. Aging is associated with increased brain iron through cortex-derived hepcidin expression. eLife, 2022, 11, e73456.
[http://dx.doi.org/10.7554/eLife.73456] [PMID: 35014607]
[210]
Yilmaz, N.; Eren, E.; Öz, C.; Kalayci, Z.; Sari̇bek, F. COVID-19 and iron metabolism: Traditional review. Turk. Klin. Tip Bilim. Derg., 2021, 41(2), 176-188.
[http://dx.doi.org/10.5336/medsci.2021-81574]
[211]
Liu, J.M.; Tan, B.H.; Wu, S.; Gui, Y.; Suo, J.L.; Li, Y.C. Evidence of central nervous system infection and neuroinvasive routes, as well as neurological involvement, in the lethality of SARS-CoV-2 infection. J. Med. Virol., 2021, 93(3), 1304-1313.
[http://dx.doi.org/10.1002/jmv.26570] [PMID: 33002209]
[212]
Morgello, S. Coronaviruses and the central nervous system. J. Neurovirol., 2020, 26(4), 459-473.
[http://dx.doi.org/10.1007/s13365-020-00868-7] [PMID: 32737861]
[213]
Najjar, S.; Najjar, A.; Chong, D.J.; Pramanik, B.K.; Kirsch, C.; Kuzniecky, R.I.; Pacia, S.V.; Azhar, S. Central nervous system complications associated with SARS-CoV- 2 infection: Integrative concepts of pathophysiology and case reports. J. Neuroinflammation, 2020, 17(1), 231.
[http://dx.doi.org/10.1186/s12974-020-01896-0] [PMID: 32758257]
[214]
Boldrini, M.; Canoll, P.D.; Klein, R.S. How COVID-19 affects the brain. JAMA Psychiatry, 2021, 78(6), 682-683.
[http://dx.doi.org/10.1001/jamapsychiatry.2021.0500] [PMID: 33769431]
[215]
Kristiansen, H.; Gad, H.H.; Eskildsen-Larsen, S.; Despres, P.; Hartmann, R. The oligoadenylate synthetase family: An ancient protein family with multiple antiviral activities. J. Interferon Cytokine Res., 2011, 31(1), 41-47.
[http://dx.doi.org/10.1089/jir.2010.0107] [PMID: 21142819]
[216]
Bisbal, C.; Silverman, R.H. Diverse functions of RNase L and implications in pathology. Biochimie, 2007, 89(6-7), 789-798.
[http://dx.doi.org/10.1016/j.biochi.2007.02.006] [PMID: 17400356]
[217]
Deczkowska, A.; Baruch, K.; Schwartz, M. Type I/II interferon balance in the regulation of brain physiology and pathology. Trends Immunol., 2016, 37(3), 181-192.
[http://dx.doi.org/10.1016/j.it.2016.01.006] [PMID: 26877243]
[218]
Majoros, A.; Platanitis, E.; Kernbauer-Hölzl, E.; Rosebrock, F.; Müller, M.; Decker, T. Canonical and non-canonical aspects of JAK-STAT signaling: Lessons from interferons for cytokine responses. Front. Immunol., 2017, 8, 29.
[http://dx.doi.org/10.3389/fimmu.2017.00029] [PMID: 28184222]
[219]
Taylor, J.M.; Moore, Z.; Minter, M.R.; Crack, P.J. Type-I interferon pathway in neuroinflammation and neurodegeneration: Focus on Alzheimer’s disease. J. Neural Transm. (Vienna), 2018, 125(5), 797-807.
[http://dx.doi.org/10.1007/s00702-017-1745-4] [PMID: 28676934]
[220]
Silverman, R.H. Viral encounters with 2′,5′-oligoadenylate synthetase and RNase L during the interferon antiviral response. J. Virol., 2007, 81(23), 12720-12729.
[http://dx.doi.org/10.1128/JVI.01471-07] [PMID: 17804500]
[221]
Donovan, J.; Dufner, M.; Korennykh, A. Structural basis for cytosolic double-stranded RNA surveillance by human oligoadenylate synthetase 1. Proc. Natl. Acad. Sci. USA, 2013, 110(5), 1652-1657.
[http://dx.doi.org/10.1073/pnas.1218528110] [PMID: 23319625]
[222]
Guillemin, A.; Kumar, A.; Wencker, M.; Ricci, E.P. Shaping the innate immune response through post-transcriptional regulation of gene expression mediated by RNA-binding proteins. Front. Immunol., 2022, 12, 796012.
[http://dx.doi.org/10.3389/fimmu.2021.796012] [PMID: 35087521]
[223]
NIH National Library for Medicine. OAS1 2'-5'-oligoadenylate synthetase 1 [Homo sapiens (human)]. National Center for Biotechnology Information. NIH National Library for Medicine, 2022. Available from: https://www.ncbi.nlm.nih.gov/gene/4938 (Accessed on: June 24th, 2022).
[224]
NIH National Library for Medicine. OAS1 gene. RefSeq: NCBI reference sequence database. National Center for Biotechnology Information. 2022. Available from: https://www.ncbi.nlm.nih.gov/refseq/ [Accessed on June 24th, 2022].
[225]
Schwartz, S.L.; Park, E.N.; Vachon, V.K.; Danzy, S.; Lowen, A.C.; Conn, G.L. Human OAS1 activation is highly dependent on both RNA sequence and context of activating RNA motifs. Nucleic Acids Res., 2020, 48(13), gkaa513.
[http://dx.doi.org/10.1093/nar/gkaa513] [PMID: 32678884]
[226]
Wickenhagen, A.; Sugrue, E.; Lytras, S.; Kuchi, S.; Noerenberg, M.; Turnbull, M.L.; Loney, C.; Herder, V.; Allan, J.; Jarmson, I.; Cameron-Ruiz, N.; Varjak, M.; Pinto, R.M.; Lee, J.Y.; Iselin, L.; Palmalux, N.; Stewart, D.G.; Swingler, S.; Greenwood, E.J.D.; Crozier, T.W.M.; Gu, Q.; Davies, E.L.; Clohisey, S.; Wang, B.; Trindade Maranhão Costa, F.; Freire Santana, M.; de Lima Ferreira, L.C.; Murphy, L.; Fawkes, A.; Meynert, A.; Grimes, G.; Da Silva Filho, J.L.; Marti, M.; Hughes, J.; Stanton, R.J.; Wang, E.C.Y.; Ho, A.; Davis, I.; Jarrett, R.F.; Castello, A.; Robertson, D.L.; Semple, M.G.; Openshaw, P.J.M.; Palmarini, M.; Lehner, P.J.; Baillie, J.K.; Rihn, S.J.; Wilson, S.J. A prenylated dsRNA sensor protects against severe COVID-19. Science, 2021, 374(6567), eabj3624.
[http://dx.doi.org/10.1126/science.abj3624] [PMID: 34581622]
[227]
Salih, D.A.; Bayram, S.; Guelfi, S.; Reynolds, R.H.; Shoai, M.; Ryten, M.; Brenton, J.W.; Zhang, D.; Matarin, M.; Botia, J.A.; Shah, R.; Brookes, K.J.; Guetta-Baranes, T.; Morgan, K.; Bellou, E.; Cummings, D.M.; Escott-Price, V.; Hardy, J. Genetic variability in response to amyloid beta deposition influences Alzheimer’s disease risk. Brain Commun., 2019, 1(1), fcz022.
[http://dx.doi.org/10.1093/braincomms/fcz022] [PMID: 32274467]
[228]
Bachiller, S.; Jiménez-Ferrer, I.; Paulus, A.; Yang, Y.; Swanberg, M.; Deierborg, T.; Boza-Serrano, A. Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Front. Cell. Neurosci., 2018, 12, 488.
[http://dx.doi.org/10.3389/fncel.2018.00488] [PMID: 30618635]
[229]
Padhi, S.; Sarangi, S.; Nayak, N.; Pati, A.; Panda, A.K. OAS1 rs1131454 genetic variant is associated with Alzheimer’s disease: An epidemiological analysis. Brain, 2022, 145(6), e61-e63.
[http://dx.doi.org/10.1093/brain/awac132] [PMID: 35383824]
[230]
Magusali, N.; Graham, A.C.; Piers, T.M.; Panichnantakul, P.; Yaman, U.; Shoai, M.; Reynolds, R.H.; Botia, J.A.; Brookes, K.J.; Guetta-Baranes, T.; Bellou, E.; Bayram, S.; Sokolova, D.; Ryten, M.; Sala Frigerio, C.; Escott-Price, V.; Morgan, K.; Pocock, J.M.; Hardy, J.; Salih, D.A. Genetic variability associated with OAS1 expression in myeloid cells increases the risk of Alzheimer’s disease and severe COVID-19 outcomes. bioRxiv, 2021, 2021, 232327408.
[http://dx.doi.org/10.1101/2021.03.16.435702]
[231]
Efthymiou, A.G.; Goate, A.M. Late onset Alzheimer’s disease genetics implicates microglial pathways in disease risk. Mol. Neurodegener., 2017, 12(1), 43.
[http://dx.doi.org/10.1186/s13024-017-0184-x] [PMID: 28549481]
[232]
Hardy, J.; Escott-Price, V. Genes, pathways and risk prediction in Alzheimer’s disease. Hum. Mol. Genet., 2019, 28(R2), ddz163.
[http://dx.doi.org/10.1093/hmg/ddz163] [PMID: 31332445]
[233]
Hong, S.; Beja-Glasser, V.F.; Nfonoyim, B.M.; Frouin, A.; Li, S.; Ramakrishnan, S.; Merry, K.M.; Shi, Q.; Rosenthal, A.; Barres, B.A.; Lemere, C.A.; Selkoe, D.J.; Stevens, B. Complement and microglia mediate early synapse loss in Alzheimer mouse models. Science, 2016, 352(6286), 712-716.
[http://dx.doi.org/10.1126/science.aad8373] [PMID: 27033548]
[234]
Edwards, F.A. A unifying hypothesis for Alzheimer’s disease: From plaques to neurodegeneration. Trends Neurosci., 2019, 42(5), 310-322.
[http://dx.doi.org/10.1016/j.tins.2019.03.003] [PMID: 31006494]
[235]
Parhizkar, S.; Arzberger, T.; Brendel, M.; Kleinberger, G.; Deussing, M.; Focke, C.; Nuscher, B.; Xiong, M.; Ghasemigharagoz, A.; Katzmarski, N.; Krasemann, S.; Lichtenthaler, S.F.; Müller, S.A.; Colombo, A.; Monasor, L.S.; Tahirovic, S.; Herms, J.; Willem, M.; Pettkus, N.; Butovsky, O.; Bartenstein, P.; Edbauer, D.; Rominger, A.; Ertürk, A.; Grathwohl, S.A.; Neher, J.J.; Holtzman, D.M.; Meyer-Luehmann, M.; Haass, C. Loss of TREM2 function increases amyloid seeding but reduces plaque-associated ApoE. Nat. Neurosci., 2019, 22(2), 191-204.
[http://dx.doi.org/10.1038/s41593-018-0296-9] [PMID: 30617257]
[236]
Friedman, B.A.; Srinivasan, K.; Ayalon, G.; Meilandt, W.J.; Lin, H.; Huntley, M.A.; Cao, Y.; Lee, S.H.; Haddick, P.C.G.; Ngu, H.; Modrusan, Z.; Larson, J.L.; Kaminker, J.S.; van der Brug, M.P.; Hansen, D.V. Diverse brain myeloid expression profiles reveal distinct microglial activation states and aspects of Alzheimer’s disease not evident in mouse models. Cell Rep., 2018, 22(3), 832-847.
[http://dx.doi.org/10.1016/j.celrep.2017.12.066] [PMID: 29346778]
[237]
Sala Frigerio, C.; Wolfs, L.; Fattorelli, N.; Thrupp, N.; Voytyuk, I.; Schmidt, I.; Mancuso, R.; Chen, W.T.; Woodbury, M.E.; Srivastava, G.; Möller, T.; Hudry, E.; Das, S.; Saido, T.; Karran, E.; Hyman, B.; Perry, V.H.; Fiers, M.; De Strooper, B. The major risk factors for Alzheimer’s disease: Age, sex, and genes modulate the microglia response to Aβ plaques. Cell Rep., 2019, 27(4), 1293-1306.e6.
[http://dx.doi.org/10.1016/j.celrep.2019.03.099] [PMID: 31018141]
[238]
Ellwanger, D.C.; Wang, S.; Brioschi, S.; Shao, Z.; Green, L.; Case, R.; Yoo, D.; Weishuhn, D.; Rathanaswami, P.; Bradley, J.; Rao, S.; Cha, D.; Luan, P.; Sambashivan, S.; Gilfillan, S.; Hasson, S.A.; Foltz, I.N.; van Lookeren Campagne, M.; Colonna, M. Prior activation state shapes the microglia response to antihuman TREM2 in a mouse model of Alzheimer’s disease. Proc. Natl. Acad. Sci. USA, 2021, 118(3), e2017742118.
[http://dx.doi.org/10.1073/pnas.2017742118] [PMID: 33446504]
[239]
Magusali, N.; Graham, A.C.; Piers, T.M.; Panichnantakul, P.; Yaman, U.; Shoai, M.; Reynolds, R.H.; Botia, J.A.; Brookes, K.J.; Guetta-Baranes, T.; Bellou, E.; Bayram, S.; Sokolova, D.; Ryten, M.; Sala Frigerio, C.; Escott-Price, V.; Morgan, K.; Pocock, J.M.; Hardy, J.; Salih, D.A. A genetic link between risk for Alzheimer’s disease and severe COVID-19 outcomes via the OAS1 gene. Brain, 2021, 144(12), 3727-3741.
[http://dx.doi.org/10.1093/brain/awab337] [PMID: 34619763]
[240]
Guerreiro, R.; Bras, J. The age factor in Alzheimer’s disease. Genome Med., 2015, 7(1), 106.
[http://dx.doi.org/10.1186/s13073-015-0232-5] [PMID: 26482651]
[241]
Ou, M.; Zhu, J.; Ji, P.; Li, H.; Zhong, Z.; Li, B.; Pang, J.; Zhang, J.; Zheng, X. Risk factors of severe cases with COVID-19: A meta-analysis. Epidemiol. Infect., 2020, 148, e175.
[http://dx.doi.org/10.1017/S095026882000179X] [PMID: 32782035]
[242]
Di Stadio, A.; Bernitsas, E.; Ralli, M.; Severini, C.; Brenner, M.J.; Angelini, C. OAS1 gene, Spike protein variants and persistent COVID-19-related anosmia: May the olfactory disfunction be a harbinger of future neurodegenerative disease? Eur. Rev. Med. Pharmacol. Sci., 2022, 26(2), 347-349.
[http://dx.doi.org/10.26355/eurrev_202201_27858] [PMID: 35113409]
[243]
Schwabenland, M.; Salié, H.; Tanevski, J.; Killmer, S.; Lago, M.S.; Schlaak, A.E.; Mayer, L.; Matschke, J.; Püschel, K.; Fitzek, A.; Ondruschka, B.; Mei, H.E.; Boettler, T.; Neumann-Haefelin, C.; Hofmann, M.; Breithaupt, A.; Genc, N.; Stadelmann, C.; Saez-Rodriguez, J.; Bronsert, P.; Knobeloch, K.P.; Blank, T.; Thimme, R.; Glatzel, M.; Prinz, M.; Bengsch, B. Deep spatial profiling of human COVID-19 brains reveals neuroinflammation with distinct microanatomical microglia-T-cell interactions. Immunity, 2021, 54(7), 1594-1610.e11.
[http://dx.doi.org/10.1016/j.immuni.2021.06.002] [PMID: 34174183]
[244]
Bouayed, J.; Bohn, T. The link between microglia and the severity of COVID-19: The “two-hit” hypothesis. J. Med. Virol., 2021, 93(7), 4111-4113.
[http://dx.doi.org/10.1002/jmv.26984] [PMID: 33788265]
[245]
Hartmann, R.; Walko, G.; Justesen, J. Inhibition of 2′-5′ oligoadenylate synthetase by divalent metal ions. FEBS Lett., 2001, 507(1), 54-58.
[http://dx.doi.org/10.1016/S0014-5793(01)02918-0] [PMID: 11682059]
[246]
Blennow, K.; Zetterberg, H.; Fagan, A.M. Fluid biomarkers in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2012, 2(9), a006221.
[http://dx.doi.org/10.1101/cshperspect.a006221] [PMID: 22951438]
[247]
McGrowder, D.A.; Miller, F.; Vaz, K.; Nwokocha, C.; Wilson-Clarke, C.; Anderson-Cross, M.; Brown, J.; Anderson-Jackson, L.; Williams, L.; Latore, L.; Thompson, R.; Alexander-Lindo, R. Cerebrospinal fluid biomarkers of Alzheimer’s disease: Current evidence and future perspectives. Brain Sci., 2021, 11(2), 215.
[http://dx.doi.org/10.3390/brainsci11020215] [PMID: 33578866]
[248]
Virhammar, J.; Nääs, A.; Fällmar, D.; Cunningham, J.L.; Klang, A.; Ashton, N.J.; Jackmann, S.; Westman, G.; Frithiof, R.; Blennow, K.; Zetterberg, H.; Kumlien, E.; Rostami, E. Biomarkers for central nervous system injury in cerebrospinal fluid are elevated in COVID-19 and associated with neurological symptoms and disease severity. Eur. J. Neurol., 2021, 28(10), 3324-3331.
[http://dx.doi.org/10.1111/ene.14703] [PMID: 33369818]
[249]
Ellul, M.A.; Benjamin, L.; Singh, B.; Lant, S.; Michael, B.D.; Easton, A.; Kneen, R.; Defres, S.; Sejvar, J.; Solomon, T. Neurological associations of COVID-19. Lancet Neurol., 2020, 19(9), 767-783.
[http://dx.doi.org/10.1016/S1474-4422(20)30221-0]
[250]
Liotta, E.M.; Batra, A.; Clark, J.R.; Shlobin, N.A.; Hoffman, S.C.; Orban, Z.S.; Koralnik, I.J. Frequent neurologic manifestations and encephalopathy-associated morbidity in COVID-19 patients. Ann. Clin. Transl. Neurol., 2020, 7(11), 2221-2230.
[http://dx.doi.org/10.1002/acn3.51210] [PMID: 33016619]
[251]
Whittaker, A.; Anson, M.; Harky, A. Neurological Manifestations of COVID-19: A systematic review and current update. Acta Neurol. Scand., 2020, 142(1), 14-22.
[http://dx.doi.org/10.1111/ane.13266] [PMID: 32412088]
[252]
Solomon, T. Neurological infection with SARS-CoV-2 — the story so far. Nat. Rev. Neurol., 2021, 17(2), 65-66.
[http://dx.doi.org/10.1038/s41582-020-00453-w] [PMID: 33414554]
[253]
Rathore, S.; Habes, M.; Iftikhar, M.A.; Shacklett, A.; Davatzikos, C. A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer’s disease and its prodromal stages. Neuroimage, 2017, 155, 530-548.
[http://dx.doi.org/10.1016/j.neuroimage.2017.03.057] [PMID: 28414186]
[254]
Nicholson, P.; Alshafai, L.; Krings, T. Neuroimaging findings in patients with COVID-19. AJNR Am. J. Neuroradiol., 2020, 41(8), 1380-1383.
[http://dx.doi.org/10.3174/ajnr.A6630] [PMID: 32527843]
[255]
Tae, W.S.; Ham, B.J.; Pyun, S.B.; Kang, S.H.; Kim, B.J. Current clinical applications of diffusion-tensor imaging in neurological disorders. J. Clin. Neurol., 2018, 14(2), 129-140.
[http://dx.doi.org/10.3988/jcn.2018.14.2.129] [PMID: 29504292]
[256]
Márquez, F.; Yassa, M.A. Neuroimaging biomarkers for Alzheimer’s disease. Mol. Neurodegener., 2019, 14(1), 21.
[http://dx.doi.org/10.1186/s13024-019-0325-5] [PMID: 31174557]
[257]
Huang, Y.; Ling, Q.; Manyande, A.; Wu, D.; Xiang, B. Brain imaging changes in patients recovered from COVID-19: A narrative review. Front. Neurosci., 2022, 16, 855868.
[http://dx.doi.org/10.3389/fnins.2022.855868] [PMID: 35527821]
[258]
McMahon, P.J.; Panczykowski, D.M.; Yue, J.K.; Puccio, A.M.; Inoue, T.; Sorani, M.D.; Lingsma, H.F.; Maas, A.I.R.; Valadka, A.B.; Yuh, E.L.; Mukherjee, P.; Manley, G.T.; Okonkwo, D.O.; Casey, S.S.; Cheong, M.; Cooper, S.R.; Dams-O’Connor, K.; Gordon, W.A.; Hricik, A.J.; Lawless, K.; Menon, D.; Schnyer, D.M.; Vassar, M.J. Measurement of the glial fibrillary acidic protein and its breakdown products GFAP-BDP biomarker for the detection of traumatic brain injury compared to computed tomography and magnetic resonance imaging. J. Neurotrauma, 2015, 32(8), 527-533.
[http://dx.doi.org/10.1089/neu.2014.3635] [PMID: 25264814]
[259]
Kanberg, N.; Ashton, N.J.; Andersson, L.M.; Yilmaz, A.; Lindh, M.; Nilsson, S.; Price, R.W.; Blennow, K.; Zetterberg, H.; Gisslén, M. Neurochemical evidence of astrocytic and neuronal injury commonly found in COVID-19. Neurology, 2020, 95(12), e1754-e1759.
[http://dx.doi.org/10.1212/WNL.0000000000010111] [PMID: 32546655]
[260]
Ameres, M.; Brandstetter, S.; Toncheva, A.A.; Kabesch, M.; Leppert, D.; Kuhle, J.; Wellmann, S. Association of neuronal injury blood marker neurofilament light chain with mild-to-moderate COVID-19. J. Neurol., 2020, 267(12), 3476-3478.
[http://dx.doi.org/10.1007/s00415-020-10050-y] [PMID: 32647900]
[261]
Kanberg, N.; Simrén, J.; Edén, A.; Andersson, L.M.; Nilsson, S.; Ashton, N.J.; Sundvall, P.D.; Nellgård, B.; Blennow, K.; Zetterberg, H.; Gisslén, M. Neurochemical signs of astrocytic and neuronal injury in acute COVID-19 normalizes during long-term follow-up. EBioMedicine, 2021, 70, 103512.
[http://dx.doi.org/10.1016/j.ebiom.2021.103512] [PMID: 34333238]
[262]
Myhre, P.L.; Prebensen, C.; Strand, H.; Røysland, R.; Jonassen, C.M.; Rangberg, A.; Sørensen, V.; Søvik, S.; Røsjø, H.; Svensson, M.; Erik Berdal, J.; Omland, T. Growth differentiation factor 15 provides prognostic information superior to established cardiovascular and inflammatory biomarkers in unselected patients hospitalized with COVID-19. Circulation, 2020, 142(22), 2128-2137.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.120.050360] [PMID: 33058695]
[263]
Huang, C.; Huang, L.; Wang, Y.; Li, X.; Ren, L.; Gu, X.; Kang, L.; Guo, L.; Liu, M.; Zhou, X.; Luo, J.; Huang, Z.; Tu, S.; Zhao, Y.; Chen, L.; Xu, D.; Li, Y.; Li, C.; Peng, L.; Li, Y.; Xie, W.; Cui, D.; Shang, L.; Fan, G.; Xu, J.; Wang, G.; Wang, Y.; Zhong, J.; Wang, C.; Wang, J.; Zhang, D.; Cao, B. 6-month consequences of COVID-19 in patients discharged from hospital: A cohort study. Lancet, 2021, 397(10270), 220-232.
[http://dx.doi.org/10.1016/S0140-6736(20)32656-8] [PMID: 33428867]
[264]
Miners, S.; Kehoe, P.G.; Love, S. Cognitive impact of COVID-19: Looking beyond the short term. Alzheimers Res. Ther., 2020, 12(1), 170.
[http://dx.doi.org/10.1186/s13195-020-00744-w] [PMID: 33380345]
[265]
Narayanan, S.; Shanker, A.; Khera, T.; Subramaniam, B. Neurofilament light: A narrative review on biomarker utility. Fac. Rev., 2021, 10, 46.
[http://dx.doi.org/10.12703/r/10-46] [PMID: 34131656]
[266]
Dhiman, K.; Gupta, V.B.; Villemagne, V.L.; Eratne, D.; Graham, P.L.; Fowler, C.; Bourgeat, P.; Li, Q.X.; Collins, S.; Bush, A.I.; Rowe, C.C.; Masters, C.L.; Ames, D.; Hone, E.; Blennow, K.; Zetterberg, H.; Martins, R.N. Cerebrospinal fluid neurofilament light concentration predicts brain atrophy and cognition in Alzheimer’s disease. Alzheimers Dement. (Amst.), 2020, 12(1), e12005.
[http://dx.doi.org/10.1002/dad2.12005] [PMID: 32211500]
[267]
Ziff, O.J.; Ashton, N.J.; Mehta, P.R.; Brown, R.; Athauda, D.; Heaney, J.; Heslegrave, A.J.; Benedet, A.L.; Blennow, K.; Checkley, A.M.; Houlihan, C.F.; Gauthier, S.; Rosa-Neto, P.; Fox, N.C.; Schott, J.M.; Zetterberg, H.; Benjamin, L.A.; Paterson, R.W. Amyloid processing in COVID -19-associated neurological syndromes. J. Neurochem., 2022, 161(2), 146-157.
[http://dx.doi.org/10.1111/jnc.15585] [PMID: 35137414]
[268]
Danta, C.C. Calcium channel blockers: A possible potential therapeutic strategy for the treatment of Alzheimer’s dementia patients with SARS-CoV-2 infection. ACS Chem. Neurosci., 2020, 11(15), 2145-2148.
[http://dx.doi.org/10.1021/acschemneuro.0c00391] [PMID: 32662982]
[269]
Jack, C.R., Jr; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Feldman, H.H.; Frisoni, G.B.; Hampel, H.; Jagust, W.J.; Johnson, K.A.; Knopman, D.S.; Petersen, R.C.; Scheltens, P.; Sperling, R.A.; Dubois, B. A/T/N: An unbiased descriptive classification scheme for Alzheimer disease biomarkers. Neurology, 2016, 87(5), 539-547.
[http://dx.doi.org/10.1212/WNL.0000000000002923] [PMID: 27371494]
[270]
Allegri, R.F.; Chrem Méndez, P.; Calandri, I.; Cohen, G.; Martín, M.E.; Russo, M.J.; Crivelli, L.; Pertierra, L.; Tapajóz, F.; Clarens, M.F.; Campos, J.; Nahas, F.E.; Vázquez, S.; Surace, E.; Sevlever, G. Prognostic value of ATN Alzheimer biomarkers: 60-month follow-up results from the Argentine Alzheimer’s Disease Neuroimaging Initiative. Alzheimers Dement. (Amst.), 2020, 12(1), e12026.
[http://dx.doi.org/10.1002/dad2.12026] [PMID: 32490138]
[271]
Hampel, H.; Cummings, J.; Blennow, K.; Gao, P.; Jack, C.R., Jr; Vergallo, A. Developing the ATX(N) classification for use across the Alzheimer disease continuum. Nat. Rev. Neurol., 2021, 17(9), 580-589.
[http://dx.doi.org/10.1038/s41582-021-00520-w] [PMID: 34239130]
[272]
Abe, K.; Shang, J.; Shi, X.; Yamashita, T.; Hishikawa, N.; Takemoto, M.; Morihara, R.; Nakano, Y.; Ohta, Y.; Deguchi, K.; Ikeda, M.; Ikeda, Y.; Okamoto, K.; Shoji, M.; Takatama, M.; Kojo, M.; Kuroda, T.; Ono, K.; Kimura, N.; Matsubara, E.; Osakada, Y.; Wakutani, Y.; Takao, Y.; Higashi, Y.; Asada, K.; Senga, T.; Lee, L.J.; Tanaka, K. A new serum biomarker set to detect mild cognitive impairment and Alzheimer’s disease by peptidome technology. J. Alzheimers Dis., 2020, 73(1), 217-227.
[http://dx.doi.org/10.3233/JAD-191016] [PMID: 31771070]
[273]
Torretta, E.; Garziano, M.; Poliseno, M.; Capitanio, D.; Biasin, M.; Santantonio, T.A.; Clerici, M.; Lo Caputo, S.; Trabattoni, D.; Gelfi, C. Severity of COVID-19 patients predicted by serum sphingolipids signature. Int. J. Mol. Sci., 2021, 22(19), 10198.
[http://dx.doi.org/10.3390/ijms221910198] [PMID: 34638539]
[274]
den Hoedt, S.; Crivelli, S.M.; Leijten, F.P.J.; Losen, M.; Stevens, J.A.A.; Mané-Damas, M.; de Vries, H.E.; Walter, J.; Mirzaian, M.; Sijbrands, E.J.G.; Aerts, J.M.F.G.; Verhoeven, A.J.M.; Martinez-Martinez, P.; Mulder, M.T. Effects of sex, age, and apolipoprotein E genotype on brain ceramides and sphingosine-1-phosphate in Alzheimer’s disease and control mice. Front. Aging Neurosci., 2021, 13, 765252.
[http://dx.doi.org/10.3389/fnagi.2021.765252] [PMID: 34776936]
[275]
Marfia, G.; Navone, S.; Guarnaccia, L.; Campanella, R.; Mondoni, M.; Locatelli, M.; Barassi, A.; Fontana, L.; Palumbo, F.; Garzia, E.; Ciniglio Appiani, G.; Chiumello, D.; Miozzo, M.; Centanni, S.; Riboni, L. Decreased serum level of sphingosine-1-phosphate: A novel predictor of clinical severity in COVID-19. EMBO Mol. Med., 2021, 13(1), e13424.
[http://dx.doi.org/10.15252/emmm.202013424] [PMID: 33190411]
[276]
Törnquist, K.; Asghar, M.Y.; Srinivasan, V.; Korhonen, L.; Lindholm, D. Sphingolipids as modulators of SARS-CoV-2 infection. Front. Cell Dev. Biol., 2021, 9, 689854.
[http://dx.doi.org/10.3389/fcell.2021.689854] [PMID: 34222257]
[277]
Horton, R. Offline: COVID-19 is not a pandemic. Lancet, 2020, 396(10255), 874.
[http://dx.doi.org/10.1016/S0140-6736(20)32000-6] [PMID: 32979964]
[278]
Cortinovis, M.; Perico, N.; Remuzzi, G. Long-term follow-up of recovered patients with COVID-19. Lancet, 2021, 397(10270), 173-175.
[http://dx.doi.org/10.1016/S0140-6736(21)00039-8] [PMID: 33428868]
[279]
The Lancet. Facing up to long COVID. Lancet, 2020, 396(10266), 1861.
[http://dx.doi.org/10.1016/S0140-6736(20)32662-3] [PMID: 33308453]
[280]
Nath, A. Long-Haul COVID. Neurology, 2020, 95(13), 559-560.
[http://dx.doi.org/10.1212/WNL.0000000000010640] [PMID: 32788251]
[281]
Zhang, W.; Wang, K.; Yin, L.; Zhao, W.; Xue, Q.; Peng, M.; Min, B.; Tian, Q.; Leng, H.; Du, J.; Chang, H.; Yang, Y.; Li, W.; Shangguan, F.; Yan, T.; Dong, H.; Han, Y.; Wang, Y.; Cosci, F.; Wang, H. Mental health and psychosocial problems of medical health workers during the COVID-19 epidemic in China. Psychother. Psychosom., 2020, 89(4), 242-250.
[http://dx.doi.org/10.1159/000507639] [PMID: 32272480]
[282]
Mattioli, F.; Stampatori, C.; Righetti, F.; Sala, E.; Tomasi, C.; De Palma, G. Neurological and cognitive sequelae of Covid-19: A four month follow-up. J. Neurol., 2021, 268(12), 4422-4428.
[http://dx.doi.org/10.1007/s00415-021-10579-6] [PMID: 33932157]
[283]
Morin, L.; Savale, L.; Pham, T.; Colle, R.; Figueiredo, S.; Harrois, A.; Gasnier, M.; Lecoq, A.L.; Meyrignac, O.; Noel, N.; Baudry, E.; Bellin, M.F.; Beurnier, A.; Choucha, W.; Corruble, E.; Dortet, L.; Hardy-Leger, I.; Radiguer, F.; Sportouch, S.; Verny, C.; Wyplosz, B.; Zaidan, M.; Becquemont, L.; Montani, D.; Monnet, X. Four-month clinical status of a cohort of patients after hospitalization for COVID-19. JAMA, 2021, 325(15), 1525-1534.
[http://dx.doi.org/10.1001/jama.2021.3331] [PMID: 33729425]
[284]
Costa-Filho, R.C.; Castro-Faria Neto, H.C.; Mengel, J.; Pelajo-Machado, M.; Martins, M.A.; Leite, É.T.; Mendonça-Filho, H.T.; de Souza, T.A.C.B.; Bello, G.B.; Leite, J.P.G. Should COVID-19 be branded to viral thrombotic fever? Mem. Inst. Oswaldo Cruz, 2021, 116, e200552.
[http://dx.doi.org/10.1590/0074-02760200552] [PMID: 33950107]
[285]
Erickson, M.A.; Rhea, E.M.; Knopp, R.C.; Banks, W.A. Interactions of SARS-CoV-2 with the blood-brain barrier. Int. J. Mol. Sci., 2021, 22(5), 2681.
[http://dx.doi.org/10.3390/ijms22052681] [PMID: 33800954]
[286]
Diener, H.C. COVID-19: Angriff auf psyche: Corona-pandemie. MMW Fortschr. Med., 2020, 162(16), 32.
[287]
Varatharaj, A.; Thomas, N.; Ellul, M.A.; Davies, N.W.S.; Pollak, T.A.; Tenorio, E.L.; Sultan, M.; Easton, A.; Breen, G.; Zandi, M.; Coles, J.P.; Manji, H.; Al-Shahi Salman, R.; Menon, D.K.; Nicholson, T.R.; Benjamin, L.A.; Carson, A.; Smith, C.; Turner, M.R.; Solomon, T.; Kneen, R.; Pett, S.L.; Galea, I.; Thomas, R.H.; Michael, B.D.; Allen, C.; Archibald, N.; Arkell, J.; Arthur-Farraj, P.; Baker, M.; Ball, H.; Bradley-Barker, V.; Brown, Z.; Bruno, S.; Carey, L.; Carswell, C.; Chakrabarti, A.; Choulerton, J.; Daher, M.; Davies, R.; Di Marco Barros, R.; Dima, S.; Dunley, R.; Dutta, D.; Ellis, R.; Everitt, A.; Fady, J.; Fearon, P.; Fisniku, L.; Gbinigie, I.; Gemski, A.; Gillies, E.; Gkrania-Klotsas, E.; Grigg, J.; Hamdalla, H.; Hubbett, J.; Hunter, N.; Huys, A-C.; Ihmoda, I.; Ispoglou, S.; Jha, A.; Joussi, R.; Kalladka, D.; Khalifeh, H.; Kooij, S.; Kumar, G.; Kyaw, S.; Li, L.; Littleton, E.; Macleod, M.; Macleod, M.J.; Madigan, B.; Mahadasa, V.; Manoharan, M.; Marigold, R.; Marks, I.; Matthews, P.; Mccormick, M.; Mcinnes, C.; Metastasio, A.; Milburn-McNulty, P.; Mitchell, C.; Mitchell, D.; Morgans, C.; Morris, H.; Morrow, J.; Mubarak Mohamed, A.; Mulvenna, P.; Murphy, L.; Namushi, R.; Newman, E.; Phillips, W.; Pinto, A.; Price, D.A.; Proschel, H.; Quinn, T.; Ramsey, D.; Roffe, C.; Ross Russell, A.; Samarasekera, N.; Sawcer, S.; Sayed, W.; Sekaran, L.; Serra-Mestres, J.; Snowdon, V.; Strike, G.; Sun, J.; Tang, C.; Vrana, M.; Wade, R.; Wharton, C.; Wiblin, L.; Boubriak, I.; Herman, K.; Plant, G. Neurological and neuropsychiatric complications of COVID-19 in 153 patients: A UK-wide surveillance study. Lancet Psychiatry, 2020, 7(10), 875-882.
[http://dx.doi.org/10.1016/S2215-0366(20)30287-X] [PMID: 32593341]
[288]
Snyder, H.; de Erausquin, G.A.; Seshadri, S.; Brugha, T. International brain study: SARS-CoV-2 impact on behavior and cognition. Alzheimer's association international cohort study of chronic neurological sequelae of SARS-CoV-2. Alzheimer’s Association, 2021. Available from: https://www.alz.org/research/for_researchers/partnerships/sars-cov2-global-brain-study (Accessed on: 1 April 1st, 2022).
[289]
Brusco, L.I. Alzheimer Y COVID. ALZAR, Alzheimer Argentina, 2020. Available from: http://alzheimer.org.ar/ alzheimer-y-covid/ (Accessed on: 1 April 1st, 2022).
[290]
Erausquin, G.A.; Snyder, H.; Carrillo, M.; Hosseini, A.A.; Brugha, T.S.; Seshadri, S. The chronic neuropsychiatric sequelae of COVID-19: The need for a prospective study of viral impact on brain functioning. Alzheimers Dement., 2021, 17(6), 1056-1065.
[http://dx.doi.org/10.1002/alz.12255] [PMID: 33399270]
[291]
The Lancet Psychiatry. COVID-19 and mental health. Lancet Psychiatry, 2021, 8(2), 87.
[http://dx.doi.org/10.1016/S2215-0366(21)00005-5] [PMID: 33485416]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy