Review Article

概述过去六年中在体内测试的恰加斯病、疟疾和血吸虫病分子-专注于新的合成药物身份和再利用策略的文献综述

卷 30, 期 26, 2023

发表于: 16 November, 2022

页: [2932 - 2976] 页: 45

弟呕挨: 10.2174/0929867329666220930112136

价格: $65

conference banner
摘要

背景:COVID-19 在 60% 的国家扰乱了 NTD 项目,损害了公共卫生目标。因此,提高 NTD 的研究知识是一项艰巨的任务,并且候选人的体内筛选可以根据他们的整体情况提供有前途的选择。 目标:在这项工作中,我们强调了 2015-2021 年在合成和再利用药物领域所做的相关研究,这些药物在体内测试了南美锥虫病、疟疾和血吸虫病。 方法:使用 MEDLINE、PUBMED、CAPES PERIODIC 和 ELSEVIER 数据库对每个领域/疾病过去 6 年的研究进行全面的文献回顾。 结果:总体而言,研究集中在硝基杂环、芳香族硝基、核苷和金属基支架上,用于基于类似物的药物生成。重新利用被广泛评估,主要是杂环药物、它们的类似物,以及与当前治疗的组合。几个药物靶点针对南美锥虫治疗,具体的如铁超氧化物歧化酶,以及更一般的如线粒体功能障碍。对于疟疾,疟原虫色素仍然很受欢迎,而对于血吸虫病,更普遍的结构损伤和/或生殖障碍是针对作用机制的体外分析。 结论:最新的体内结果概述了每种疾病的趋势——对于恰加斯病,成功探索了杂环化合物作为噻唑;对于疟疾,喹啉衍生物仍然具有相关性,而对于血吸虫病,与合成化合物相比,来自不同类别的再利用药物表现出色。这项研究推动了南美锥虫病、疟疾和血吸虫病药物的持续发展,为研究人员提供了工具和信息来解决此类未满足的治疗需求。

关键词: 恰加斯病、血吸虫病、疟疾、动物筛查、合成化合物、再利用。

[1]
World Health Organization (WHO). Global health estimates 2015: Disease burden by cause, age, sex, by country and by region, 2000–2015. 2015. Available from: https://www. who.int/data/gho/data/themes/mortality-and-global-healthestimates (Accessed on: 12 July 2021).
[2]
De Rycker, M.; Baragaña, B.; Duce, S.L.; Gilbert, I.H. Challenges and recent progress in drug discovery for tropical diseases. Nature, 2018, 559(7715), 498-506.
[http://dx.doi.org/10.1038/s41586-018-0327-4] [PMID: 30046073]
[3]
Lage, O.; Ramos, M.; Calisto, R.; Almeida, E.; Vasconcelos, V.; Vicente, F. Current screening methodologies in drug discovery for selected human diseases. Mar. Drugs, 2018, 16(8), 279.
[http://dx.doi.org/10.3390/md16080279] [PMID: 30110923]
[4]
World Health Organization (WHO). Neglected tropical diseases: Preventive chemotherapy treatment coverage declines due to COVID-19 disruptions. 2020. Available from: https://www.who.int/news/item/24-09-2021-neglected-tropical-diseases-2020-preventive-chemotherapy-treatmentcoverage-declines-due-to-covid-19-disruptions (accessed on: 12 July 2021).
[5]
Zhan, L.; Tang, J.; Sun, M.; Qin, C. Animal models for tuberculosis in translational and precision medicine. Front. Microbiol., 2017, 8, 717.
[http://dx.doi.org/10.3389/fmicb.2017.00717] [PMID: 28522990]
[6]
Kramnik, I.; Beamer, G. Mouse models of human TB pathology: Roles in the analysis of necrosis and the development of host-directed therapies. Semin. Immunopathol., 2016, 38(2), 221-237.
[http://dx.doi.org/10.1007/s00281-015-0538-9] [PMID: 26542392]
[7]
Angulo-Barturen, I.; Jiménez-Díaz, M.B.; Mulet, T.; Rullas, J.; Herreros, E.; Ferrer, S.; Jiménez, E.; Mendoza, A.; Regadera, J.; Rosenthal, P.J.; Bathurst, I.; Pompliano, D.L.; Gómez de las Heras, F.; Gargallo-Viola, D. A murine model of falciparum-malaria by in vivo selection of competent strains in non-myelodepleted mice engrafted with human erythrocytes. PLoS One, 2008, 3(5), e2252.
[http://dx.doi.org/10.1371/journal.pone.0002252] [PMID: 18493601]
[8]
Mikolajczak, S.A.; Vaughan, A.M.; Kangwanrangsan, N.; Roobsoong, W.; Fishbaugher, M.; Yimamnuaychok, N.; Rezakhani, N.; Lakshmanan, V.; Singh, N.; Kaushansky, A.; Camargo, N.; Baldwin, M.; Lindner, S.E.; Adams, J.H.; Sattabongkot, J.; Kappe, S.H.I. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. Cell Host Microbe, 2015, 17(4), 526-535.
[http://dx.doi.org/10.1016/j.chom.2015.02.011] [PMID: 25800544]
[9]
Dea-Ayuela, M.A.; Serrano, D.R. New drugs and therapeutic/diagnostic targets for fungal and parasitic diseases - Part I. Curr. Top. Med. Chem., 2018, 18(15), 1274.
[http://dx.doi.org/10.2174/156802661815181101110430] [PMID: 30598060]
[10]
de Barros Dias, M.C.H.; Freitas, L.A.B.; dos Santos, I.R.; de Almeida, V.S. do Amaral e Melo, R.T.; de Melo Silva, V.G.; de Fátima Maia de Santana, B.; da Conceição, J.M.; Lima Leite, A.C. An overview of the compounds tested in vivo for Leishmania spp. of the Last 5 years. Curr. Med. Chem., 2021, 28(21), 4226-4258.
[http://dx.doi.org/10.2174/0929867327999201116145408] [PMID: 33198609]
[11]
Campos, K.R.; Coleman, P.J.; Alvarez, J.C.; Dreher, S.D.; Garbaccio, R.M.; Terrett, N.K.; Tillyer, R.D.; Truppo, M.D.; Parmee, E.R. The importance of synthetic chemistry in the pharmaceutical industry. Science, 2019, 363(6424), eaat0805.
[http://dx.doi.org/10.1126/science.aat0805] [PMID: 30655413]
[12]
Flick, A.C.; Ding, H.X.; Leverett, C.A.; Kyne, R.E., Jr; Liu, K.K-C.; Fink, S.J.; O’Donnell, C.J. Synthetic approaches to the new drugs approved during 2015. J. Med. Chem., 2017, 60(15), 6480-6515.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00010]
[13]
Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[14]
Breckenridge, A.; Jacob, R. Overcoming the legal and regulatory barriers to drug repurposing. Nat. Rev. Drug Discov., 2019, 18(1), 1-2.
[http://dx.doi.org/10.1038/nrd.2018.92] [PMID: 29880920]
[15]
World Health Organization. WHO calls for comprehensive, equitable access to healthcare for every CD patient. Departmental news, Geneva. Available from: https://www.who.int/news/item/14-04-2021-who-calls-forcomprehensive-equitable-access-to-healthcare-for-everychagas-disease-patient (Accessed on: July 12, 2021).
[16]
Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet, 2018, 391(10115), 82-94.
[http://dx.doi.org/10.1016/S0140-6736(17)31612-4] [PMID: 28673423]
[17]
Medscape. BZN (Rx), Drugs and diseases. Available from: https://reference.medscape.com/drug/BZN -1000203#0 (Accessed on: July 12, 2021).
[18]
Medscape. Nifurtimox (Rx), drugs and diseases. Available from: https://reference.medscape.com/drug/lampit-nifurtimox- 342663#0 (Accessed on: July 12, 2021).
[19]
Álvarez, G.; Varela, J.; Cruces, E.; Fernández, M.; Gabay, M.; Leal, S.M.; Escobar, P.; Sanabria, L.; Serna, E.; Torres, S.; Figueredo Thiel, S.J.; Yaluff, G.; Vera de Bilbao, N.I.; Cerecetto, H.; González, M. Identification of a new amidecontaining thiazole as a drug candidate for treatment of Chagas’ disease. Antimicrob. Agents Chemother., 2015, 59(3), 1398-1404.
[http://dx.doi.org/10.1128/AAC.03814-14] [PMID: 25512408]
[20]
Álvarez, G.; Martínez, J.; Varela, J.; Birriel, E.; Cruces, E.; Gabay, M.; Leal, S.M.; Escobar, P.; Aguirre-López, B.; Cabrera, N.; Tuena de Gómez-Puyou, M.; Gómez Puyou, A.; Pérez-Montfort, R.; Yaluff, G.; Torres, S.; Serna, E.; Vera de Bilbao, N.; González, M.; Cerecetto, H. Development of bis-thiazoles as inhibitors of triosephosphate isomerase from Trypanosoma cruzi. Identification of new nonmutagenic agents that are active in vivo. Eur. J. Med. Chem., 2015, 100, 246-256.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.018] [PMID: 26094151]
[21]
Papadopoulou, M.V.; Bloomer, W.D.; Lepesheva, G.I.; Rosenzweig, H.S.; Kaiser, M.; Aguilera-Venegas, B.; Wilkinson, S.R.; Chatelain, E.; Ioset, J.R. Novel 3-nitrotriazolebased amides and carbinols as bifunctional antichagasic agents. J. Med. Chem., 2015, 58(3), 1307-1319.
[http://dx.doi.org/10.1021/jm5015742] [PMID: 25580906]
[22]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; O’Shea, I.P.; Wilkinson, S.R.; Kaiser, M.; Chatelain, E.; Ioset, J.R. Discovery of potent nitrotriazole-based antitrypanosomal agents: In vitro and in vivo evaluation. Bioorg. Med. Chem., 2015, 23(19), 6467-6476.
[http://dx.doi.org/10.1016/j.bmc.2015.08.014] [PMID: 26344593]
[23]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Wilkinson, S.R.; Szular, J.; Kaiser, M. Nitrotriazole-based acetamides and propanamides with broad spectrum antitrypanosomal activity. Eur. J. Med. Chem., 2016, 123, 895-904.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.002] [PMID: 27543881]
[24]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Mazzeti, A.L.; Gonçalves, K.R.; Mendes, P.F.; Bahia, M.T. Nitrotriazole-based compounds as antichagasic agents in a long-treatment in vivo assay. Antimicrob. Agents Chemother., 2017, 61(5), e02717-16.
[http://dx.doi.org/10.1128/AAC.02717-16] [PMID: 28242662]
[25]
de Oliveira Filho, G.B.; de Oliveira Cardoso, M.V.; Espíndola, J.W.P.; Ferreira, L.F.G.R.; de Simone, C.A.; Ferreira, R.S.; Coelho, P.L.; Meira, C.S.; Magalhaes Moreira, D.R.; Soares, M.B.P.; Lima, Leite A.C. Structural design, synthesis and pharmacological evaluation of 4-thiazolidinones against Trypanosoma cruzi. Bioorg. Med. Chem., 2015, 23(23), 7478-7486.
[http://dx.doi.org/10.1016/j.bmc.2015.10.048] [PMID: 26549870]
[26]
de Oliveira Filho, G.B.; Cardoso, M.V.O.; Espíndola, J.W.P.; Oliveira e Silva, D.A.; Ferreira, R.S.; Coelho, P.L.; Anjos, P.S.; Santos, E.S.; Meira, C.S.; Moreira, D.R.M.; Soares, M.B.P.; Leite, A.C.L.; Leite, A.C.L. Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi. Eur. J. Med. Chem., 2017, 141(141), 346-361.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.047] [PMID: 29031078]
[27]
Olmo, F.; Guardia, J.J.; Marin, C.; Messouri, I.; Rosales, M.J.; Urbanová, K.; Chayboun, I.; Chahboun, R.; Alvarez-Manzaneda, E.J.; Sánchez-Moreno, M. Prospects of an alternative treatment against Trypanosoma cruzi based on abietic acid derivatives show promising results in Balb/c mouse model. Eur. J. Med. Chem., 2015, 89(89), 683-690.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.004] [PMID: 25462275]
[28]
Olmo, F.; Gómez-Contreras, F.; Navarro, P.; Marín, C.; Yunta, M.J.R.; Cano, C.; Campayo, L.; Martín-Oliva, D.; Rosales, M.J.; Sánchez-Moreno, M. Synthesis and evaluation of in vitro and in vivo trypanocidal properties of a new imidazole-containing nitrophthalazine derivative. Eur. J. Med. Chem., 2015, 106(106), 106-119.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.034] [PMID: 26523668]
[29]
Olmo, F.; Cussó, O.; Marín, C.; Rosales, M.J.; Urbanová, K.; Krauth-Siegel, R.L.; Costas, M.; Ribas, X.; Sánchez-Moreno, M. In vitro and in vivo identification of tetradentated polyamine complexes as highly efficient metallodrugs against Trypanosoma cruzi. Exp. Parasitol., 2016, 164, 20-30.
[http://dx.doi.org/10.1016/j.exppara.2016.02.004] [PMID: 26874306]
[30]
Moreno-Viguri, E.; Jiménez-Montes, C.; Martín-Escolano, R.; Santivañez-Veliz, M.; Martin-Montes, A.; Azqueta, A.; Jimenez-Lopez, M.; Zamora, L.S.; Cirauqui, N.; López de Ceráin, A.; Marín, C.; Sánchez-Moreno, M.; Pérez-Silanes, S. In vitro and in vivo anti-Trypanosoma cruzi activity of new arylamine mannich base-type derivatives. J. Med. Chem., 2016, 59(24), 10929-10945.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00784]
[31]
Martín-Escolano, R.; Moreno-Viguri, E.; Santivañez-Veliz, M.; Martin-Montes, A.; Medina-Carmona, E.; Paucar, R.; Marín, C.; Azqueta, A.; Cirauqui, N.; Pey, A.L.; Pérez-Silanes, S.; Sánchez-Moreno, M. Second generation of mannich base-type derivatives with in vivo activity against Trypanosoma cruzi. J. Med. Chem., 2018, 61(13), 5643-5663.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00468] [PMID: 29883536]
[32]
Paucar, R.; Martín-Escolano, R.; Moreno-Viguri, E.; Azqueta, A.; Cirauqui, N.; Marín, C.; Sánchez-Moreno, M.; Pérez-Silanes, S. Rational modification of Mannich basetype derivatives as novel antichagasic compounds: Synthesis, in vitro and in vivo evaluation. Bioorg. Med. Chem., 2019, 27(17), 3902-3917.
[http://dx.doi.org/10.1016/j.bmc.2019.07.029] [PMID: 31345745]
[33]
Martins, S.C.; Lazarin-Bidóia, D.; Desoti, V.C.; Falzirolli, H.; da Silva, C.C.; Ueda-Nakamura, T.; Silva, S.O. 1,3,4-Thiadiazole derivatives of R-(+)- limonene benzaldehydethiosemicarbazones cause death in Trypanosoma cruzi through oxidative stress. Microbes Infect., 2016, 18(12), 787-797.
[http://dx.doi.org/10.1016/j.micinf.2016.07.007] [PMID: 27484335]
[34]
Guedes-da-Silva, F.H.; Batista, D.G.J.; Meuser, M.B.; Demarque, K.C.; Fulco, T.O.; Araújo, J.S.; Da Silva, P.B.; Da Silva, C.F.; Patrick, D.A.; Bakunova, S.M.; Bakunov, S.A.; Tidwell, R.R.; Oliveira, G.M.; Britto, C.; Moreira, O.C.; Soeiro, M.N.C. In vitro and in vivo trypanosomicidal action of novel arylimidamides against Trypanosoma cruzi. Antimicrob. Agents Chemother., 2016, 60(4), 2425-2434.
[http://dx.doi.org/10.1128/AAC.01667-15] [PMID: 26856830]
[35]
Da Silva, C.F.; Batista, D.G.J.; de Araújo, J.S.; Cunha-Junior, E.F.; Stephens, C.E.; Banerjee, M.; Farahat, A.A.; Akay, S.; Fisher, M.K.; Boykin, D.W.; Soeiro, M.N.C. Phenotypic evaluation and in silico ADMET properties of novel arylimidamides in acute mouse models of Trypanosoma cruzi infection. Drug Des. Devel. Ther., 2017, 11, 1095-1105.
[http://dx.doi.org/10.2147/DDDT.S120618] [PMID: 28435221]
[36]
Santos, C.C.; Lionel, J.R.; Peres, R.B.; Batista, M.M.; da Silva, P.B.; de Oliveira, G.M.; da Silva, C.F.; Batista, D.G.J.; Souza, S.M.O.; Andrade, C.H.; Neves, B.J.; Braga, R.C.; Patrick, D.A.; Bakunova, S.M.; Tidwell, R.R.; Soeiro, M.N.C. In vitro, in silico, and in vivo analyses of novel aromatic amidines against Trypanosoma cruzi. Antimicrob. Agents Chemother., 2018, 62(2), e02205-17.
[http://dx.doi.org/10.1128/AAC.02205-17] [PMID: 29203486]
[37]
Tempone, A.G.; Ferreira, D.D.; Lima, M.L.; Costa Silva, T.A.; Borborema, S.E.T.; Reimão, J.Q.; Galuppo, M.K.; Guerra, J.M.; Russell, A.J.; Wynne, G.M.; Lai, R.Y.L.; Cadelis, M.M.; Copp, B.R. Efficacy of a series of alphapyrone derivatives against Leishmania infantum (L.) and Trypanosoma cruzi. Eur. J. Med. Chem., 2017, 139, 947-960.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.055] [PMID: 28881289]
[38]
Ferreira de Almeida Fiuza, L.; Peres, R.B.; Simões-Silva, M.R.; da Silva, P.B.; Batista, D.G.J.; da Silva, C.F.; Nefertiti Silva da Gama, A.; Krishna Reddy, T.R.; Soeiro, M.N.C. Identification of Pyrazolo[3,4-e][1,4]thiazepin based CYP51 inhibitors as potential Chagas disease therapeutic alternative: In vitro and in vivo evaluation, binding mode prediction and SAR exploration. Eur. J. Med. Chem., 2018, 149, 257-268.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.020] [PMID: 29501946]
[39]
Cunha Almeida, T.; Gonzaga Ribeiro, L.H.; Ferreira dos Santos, L.B.; da Silva, C.M.; Tupinambá Branquinho, R.; de Lana, M.; Ramos Gadelha, F.; de Fátima, Â. Synthesis, in vitro and in vivo anti-Trypanosoma cruzi and toxicological activities of nitroaromatic Schiff bases. Biomed. Pharmacother., 2018, 108, 1703-1711.
[http://dx.doi.org/10.1016/j.biopha.2018.09.176] [PMID: 30372873]
[40]
Martín-Escolano, R.; Aguilera-Venegas, B.; Marín, C.; Martín-Montes, Á.; Martín-Escolano, J.; Medina-Carmona, E.; Arán, V.J.; Sánchez-Moreno, M. Synthesis, and biological in vitro and in vivo evaluation of 2-(5-Nitroindazol-1-yl)ethylamine and related compounds as potential therapeutic alternatives for CD. ChemMedChem, 2018, 13(19), 2104-2118.
[http://dx.doi.org/10.1002/cmdc.201800512] [PMID: 30098232]
[41]
Nefertiti, A.S.G.; Batista, M.M.; Da Silva, P.B.; Batista, D.G.J.; Da Silva, C.F.; Peres, R.B.; Torres-Santos, E.C.; Cunha-Junior, E.F.; Holt, E.; Boykin, D.W.; Brun, R.; Wenzler, T.; Soeiro, M.N.C. In vitro and in vivo studies of the trypanocidal effect of novel quinolines. Antimicrob. Agents Chemother., 2018, 62(2), e01936-17.
[http://dx.doi.org/10.1128/AAC.01936-17] [PMID: 29203485]
[42]
Muscia, G.C.; Roldán Pacheco, F.J.; Asís, S.E.; Buldain, G.Y.; Frank, F.M. Hit-to-lead optimization of novel 2-alkylaminomethylquinoline derivatives as anti-chagas agents. Eur. J. Med. Chem., 2020, 186, 111877.
[http://dx.doi.org/10.1016/j.ejmech.2019.111877] [PMID: 31771829]
[43]
Lin, C.; Hulpia, F.; da Silva, C.F.; Batista, D.G.J.; Van Hecke, K.; Maes, L.; Caljon, G.; Soeiro, M.N.C.; Van Calenbergh, S. Discovery of pyrrolo[2,3-b]pyridine (1,7-dideazapurine) nucleoside analogues as anti-Trypanosoma cruzi agents. J. Med. Chem., 2019, 62(19), 8847-8865.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01275] [PMID: 31495177]
[44]
Ribeiro, J.L.S.; Soares, J.C.A.V.; Portapilla, G.B.; Providello, M.V.; Lima, C.H.S.; Muri, E.M.F.; de Albuquerque, S.; Dias, L.R.S. Trypanocidal activity of new 1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine derivatives: Synthesis, in vitro and in vivo studies. Bioorg. Med. Chem., 2021, 29, 115855.
[http://dx.doi.org/10.1016/j.bmc.2020.115855] [PMID: 33199200]
[45]
dos Santos Petry, L.; Pillar Mayer, J.C.; de Giacommeti, M.; Teixeira de Oliveira, D.; Razia Garzon, L.; Martiele Engelmann, A.; Magalhães de Matos, A.F.I.; Dellaméa Baldissera, M.; Dornelles, L.; Melazzo de Andrade, C.; Gonzalez Monteiro, S. In vitro and in vivo trypanocidal activity of a benzofuroxan derivative against Trypanosoma cruzi. Exp. Parasitol., 2021, 226-227, 108125.
[http://dx.doi.org/10.1016/j.exppara.2021.108125] [PMID: 34129877]
[46]
Lara, L.S.; Lechuga, G.C.; Moreira, C.S.; Santos, T.B.; Ferreira, V.F.; da Rocha, D.R.; Pereira, M.C.S. Optimization of 1, 4-naphthoquinone hit compound: A computational, phenotypic, and in vivo screening against Trypanosoma cruzi. Molecules, 2021, 26(2), 423.
[http://dx.doi.org/10.3390/molecules26020423] [PMID: 33467422]
[47]
Martín-Escolano, R.; Etxebeste-Mitxeltorena, M.; Martín-Escolano, J.; Plano, D.; Rosales, M.J.; Espuelas, S.; Moreno, E.; Sánchez-Moreno, M.; Carmen, S.C.; Marín, C. Selenium derivatives as promising therapy for Chagas disease: In vitro and in vivo studies. ACS Infect. Dis., 2021, 7(6), 1727-1738.
[http://dx.doi.org/10.1021/acsinfecdis.1c00048]
[48]
Francisco, A.F.; Lewis, M.D.; Jayawardhana, S.; Taylor, M.C.; Chatelain, E.; Kelly, J.M. Limited ability of posaconazole to cure both acute and chronic Trypanosoma cruzi infections revealed by highly sensitive in vivo imaging. Antimicrob. Agents Chemother., 2015, 59(8), 4653-4661.
[http://dx.doi.org/10.1128/AAC.00520-15] [PMID: 26014936]
[49]
Veiga-Santos, P.; Barrias, E.S.; Santos, J.F.C.; de Barros Moreira, T.L.; de Carvalho, T.M.U.; Urbina, J.A.; de Souza, W. Effects of amiodarone and posaconazole on the growth and ultrastructure of Trypanosoma cruzi. Int. J. Antimicrob. Agents, 2012, 40(1), 61-71.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.03.009] [PMID: 22591838]
[50]
Martins, T.A.F.; De Figueiredo, D.L.; Mazzeti, A.L.; Do Nascimento, Á.F.D.S.; Caldas, S.; Caldas, I.S.; Andrade, I.M.; Ribeiro, I.; Bahia, M.T. Benznidazole/itraconazole combination treatment enhances anti-Trypanosoma cruzi activity in experimental Chagas Disease. PLoS One, 2015, 10(6), e0128707.
[http://dx.doi.org/10.1371/journal.pone.0128707]
[51]
Moreira da Silva, R.; Oliveira, L.T.; Silva Barcellos, N.M.; de Souza, J.; de Lana, M. Preclinical monitoring of drug association in experimental chemotherapy of Chagas’ disease by a new HPLC-UV method. Antimicrob. Agents Chemother., 2012, 56(6), 3344-3348.
[http://dx.doi.org/10.1128/AAC.05785-11] [PMID: 22450981]
[52]
Gulin, J.E.N.; Eagleson, M.A.; López-Muñoz, R.A.; Solana, M.E.; Altcheh, J.; García-Bournissen, F. In vitro and in vivo activity of voriconazole and benznidazole combination on Trypanosoma cruzi infection models. Acta Trop., 2020, 211, 105606.
[http://dx.doi.org/10.1016/j.actatropica.2020.105606] [PMID: 32598923]
[53]
Strauss, M.; Rodrigues, J.H.S.; Lo Presti, M.S.; Bazán, P.C.; Báez, A.L.; Paglini-Oliva, P.; Nakamura, C.V.; Bustamante, J.M.; Rivarola, H.W. In vitro and in vivo drug combination for the treatment of Trypanosoma cruzi infection: A multivariate approach. Exp. Parasitol., 2018, 189, 19-27.
[http://dx.doi.org/10.1016/j.exppara.2018.04.016] [PMID: 29726395]
[54]
Greco, W.R.; Bravo, G.; Parsons, J.C. The search for synergy: A critical review from a response surface perspective. Pharmacol. Rev., 1995, 47(2), 331-385.
[PMID: 7568331]
[55]
Vázquez, K.; Paulino, M.; Salas, C.O.; Zarate-Ramos, J.J.; Vera, B.; Rivera, G. Trypanothione reductase: A target for the development of anti-Trypanosoma cruzi drugs. Mini Rev. Med. Chem., 2017, 17(11), 939-946.
[http://dx.doi.org/10.2174/1389557517666170315145410] [PMID: 28302040]
[56]
Maya, J.D.; Cassels, B.K.; Iturriaga-Vásquez, P.; Ferreira, J.; Faúndez, M.; Galanti, N.; Ferreira, A.; Morello, A. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2007, 146(4), 601-620.
[http://dx.doi.org/10.1016/j.cbpa.2006.03.004] [PMID: 16626984]
[57]
Santos Souza, H.F.; Rocha, S.C.; Damasceno, F.S.; Rapado, L.N.; Pral, E.M.F.; Marinho, C.R.F.; Silber, A.M. The effect of memantine, an antagonist of the NMDA glutamate receptor, in in vitro and in vivo infections by Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2019, 13(9), e0007226.
[http://dx.doi.org/10.1371/journal.pntd.0007226] [PMID: 31536489]
[58]
Damasceno, F.S.; Barisón, M.J.; Pral, E.M.F.; Paes, L.S.; Silber, A.M. Memantine, an antagonist of the NMDA glutamate receptor, affects cell proliferation, differentiation and the intracellular cycle and induces apoptosis in Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2014, 8(2), e2717.
[http://dx.doi.org/10.1371/journal.pntd.0002717] [PMID: 24587468]
[59]
Penitente, A.R.; Shrestha, D.; Horta, A.L.; Leite, A.L.J.; Neves, C.A.; Natali, A.J.; de Paula Costa, G.; Talvani, A. Enalapril in combination with BZN reduces cardiac inflammation and creatine kinases in mice chronically infected with Trypanosoma cruzi. Am. J. Trop. Med. Hyg., 2015, 93(5), 976-982.
[http://dx.doi.org/10.4269/ajtmh.15-0237] [PMID: 26350447]
[60]
da Silva, M.T.A.; Silva-Jardim, I.; Portapilla, G.B.; de Lima, G.M.A.; Costa, F.C.; Anibal, F.F.; Thiemann, O.H. In vivo and in vitro auranofin activity against Trypanosoma cruzi: Possible new uses for an old drug. Exp. Parasitol., 2016, 166, 189-193.
[http://dx.doi.org/10.1016/j.exppara.2015.05.012] [PMID: 26183422]
[61]
Fan, C.; Zheng, W.; Fu, X.; Li, X.; Wong, Y-S.; Chen, T. Enhancement of auranofin-induced lung cancer cell apoptosis by selenocystine, a natural inhibitor of TrxR1 in vitro and in vivo. Cell Death Dis., 2014, 5(4), e1191.
[http://dx.doi.org/10.1038/cddis.2014.132] [PMID: 24763048]
[62]
Silva, M.; Araújo, J.; Oliveira, G.; Demarque, K.; Peres, R.; Melo, I.; Batista, D.; Silva, C.; Santos, C.; Silva, P.; Batista, M.; Bahia, M.; Soeiro, M. Strategy for the reuse of drugs against Trypanosoma cruzi infection: In vitro and in vivo evaluation of metronidazole activity in monotherapy and combination therapy. Biochem. Pharmacol., 2017, 141, 49-51.
[http://dx.doi.org/10.1016/j.bcp.2017.08.025]
[63]
Kumar, T.; Verma, D.; Menna-Barreto, R.F.S.; Valença, W.O.; da Silva Júnior, E.N.; Namboothiri, I.N.N. Synthesis of imidazoles via cascade reaction of nitroallylic acetates with amidines and studies on their trypanocidal activity. Org. Biomol. Chem., 2015, 13(7), 1996-2000.
[http://dx.doi.org/10.1039/C4OB02561J] [PMID: 25573664]
[64]
Puente, V.; Demaria, A.; Frank, F.M.; Batlle, A.; Lombardo, M.E. Anti-parasitic effect of vitamin C alone and in combination with benznidazole against Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2018, 12(9), e0006764.
[http://dx.doi.org/10.1371/journal.pntd.0006764] [PMID: 30240395]
[65]
Nwaka, S.; Hudson, A. Innovative lead discovery strategies for tropical diseases. Nat. Rev. Drug Discov., 2006, 5(11), 941-955.
[http://dx.doi.org/10.1038/nrd2144] [PMID: 17080030]
[66]
Mazzeti, A.L.; Diniz, L.F.; Gonçalves, K.R. WonDollinger, R.S.; Assíria, T.; Ribeiro, I.; Bahia, M.T. Synergic effect of allopurinol in combination with nitroheterocyclic compounds against Trypanosoma cruzi. Antimicrob. Agents Chemother., 2019, 63(6), e02264-18.
[http://dx.doi.org/10.1128/AAC.02264-18] [PMID: 30962342]
[67]
Ashley, E.A.; Pyae Phyo, A.; Woodrow, C.J. Malaria. Lancet, 2018, 391(10130), 1608-1621.
[http://dx.doi.org/10.1016/S0140-6736(18)30324-6]
[68]
Milner, D.A.J. Malaria pathogenesis. Cold Spring Harb. Perspect. Med., 2018, 8(1), 025569.
[http://dx.doi.org/10.1101/cshperspect.a025569]
[69]
World Health Organization (WHO), Malaria. Available from: https://www.paho.org/en/topics/malaria (Accessed on: July 19, 2021).
[70]
Centers for Disease Control Prevention (CDC). Malaria. Available from: https://www.cdc.gov/malaria/travelers/drugs.html (Accessed on: July 19, 2021).
[71]
Medscape. Antimaláricos. Available from: https://reference.medscape.com/drugs/antimalarials (Accessed on :July 19, 2021).
[72]
Soares, R.R.; da Silva, J.M.F.; Carlos, B.C.; da Fonseca, C.C.; de Souza, L.S.A.; Lopes, F.V.; de Paula Dias, R.M.; Moreira, P.O.L.; Abramo, C.; Viana, G.H.R.; de Pila Varotti, F.; da Silva, A.D.; Scopel, K.K.G. New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg. Med. Chem. Lett., 2015, 25(11), 2308-2313.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.014] [PMID: 25920564]
[73]
Ahmed, W.; Rani, M.; Khan, I.A.; Iqbal, A.; Khan, K.M.; Haleem, M.A.; Azim, M.K. Characterisation of hydrazides and hydrazine derivatives as novel aspartic protease inhibitors. J. Enzyme Inhib. Med. Chem., 2010, 25(5), 673-678.
[http://dx.doi.org/10.3109/14756360903508430] [PMID: 20063996]
[74]
Pinheiro, L.C.S.; Boechat, N.; Ferreira, M.L.G.; Júnior, C.C.S.; Jesus, A.M.L.; Leite, M.M.M.; Souza, N.B.; Krettli, A.U. Anti- Plasmodium falciparum activity of quinoline–sulfonamide hybrids. Bioorg. Med. Chem., 2015, 23(17), 5979-5984.
[http://dx.doi.org/10.1016/j.bmc.2015.06.056] [PMID: 26190461]
[75]
Korotchenko, V.; Sathunuru, R.; Gerena, L.; Caridha, D.; Li, Q.; Kreishman-Deitrick, M.; Smith, P.L.; Lin, A.J. Antimalarial activity of 4-amidinoquinoline and 10-amidinobenzonaphthyridine derivatives. J. Med. Chem., 2015, 58(8), 3411-3431.
[http://dx.doi.org/10.1021/jm501809x] [PMID: 25654185]
[76]
Ongarora, D.S.B.; Strydom, N.; Wicht, K.; Njoroge, M.; Wiesner, L.; Egan, T.J.; Wittlin, S.; Jurva, U.; Masimirembwa, C.M.; Chibale, K. Antimalarial benzoheterocyclic 4-aminoquinolines: Structure–activity relationship, in vivo evaluation, mechanistic and bioactivation studies. Bioorg. Med. Chem., 2015, 23(17), 5419-5432.
[http://dx.doi.org/10.1016/j.bmc.2015.07.051] [PMID: 26264839]
[77]
Singh, S.; Agarwal, D.; Sharma, K.; Sharma, M.; Nielsen, M.A.; Alifrangis, M.; Singh, A.K.; Gupta, R.D.; Awasthi, S.K. 4-Aminoquinoline derivatives: Synthesis, in vitro and in vivo antiplasmodial activity against chloroquine-resistant parasites. Eur. J. Med. Chem., 2016, 122, 394-407.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.033] [PMID: 27394399]
[78]
Aguiar, A.C.C.; Murce, E.; Cortopassi, W.A.; Pimentel, A.S.; Almeida, M.M.F.S.; Barros, D.C.S.; Guedes, J.S.; Meneghetti, M.R.; Krettli, A.U. Chloroquine analogs as antimalarial candidates with potent in vitro and in vivo activity. Int. J. Parasitol. Drugs Drug Resist., 2018, 8(3), 459-464.
[http://dx.doi.org/10.1016/j.ijpddr.2018.10.002] [PMID: 30396013]
[79]
Aguiar, A.C.C.; Panciera, M.; Simão dos Santos, E.F.; Singh, M.K.; Garcia, M.L.; de Souza, G.E.; Nakabashi, M.; Costa, J.L.; Garcia, C.R.S.; Oliva, G.; Correia, C.R.D.; Guido, R.V.C. Discovery of marinoquinolines as potent and Fast-Acting Plasmodium falciparum inhibitors with in vivo activity. J. Med. Chem., 2018, 61(13), 5547-5568.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00143] [PMID: 29879353]
[80]
Jain, S.; Kumar, A.; Saini, D. Novel arylidene derivatives of quinoline based thiazolidinones: Synthesis, in vitro, in vivo and in silico study as antimalarials. Exp. Parasitol., 2018, 185, 107-114.
[http://dx.doi.org/10.1016/j.exppara.2018.01.015] [PMID: 29355497]
[81]
Tripathi, M.; Taylor, D.; Khan, S.I.; Tekwani, B.L.; Ponnan, P.; Das, U.S.; Velpandian, T.; Rawat, D.S. Hybridization of fluoro-amodiaquine (FAQ) with pyrimidines: Synthesis and antimalarial efficacy of FAQ–Pyrimidines. ACS Med. Chem. Lett., 2019, 10(5), 714-719.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00496] [PMID: 31097988]
[82]
Tahghighi, A.; Parhizgar, A.; Karimi, S.; Irani, M. Synthesis of novel amodiaquine analogs and evaluation of their in vitro and in vivo antimalarial activities. J. Vector Borne Dis., 2019, 56(3), 221-230.
[http://dx.doi.org/10.4103/0972-9062.289395] [PMID: 32655071]
[83]
Dambuza, N.S.; Smith, P.; Evans, A.; Norman, J.; Taylor, D.; Andayi, A.; Egan, T.; Chibale, K.; Wiesner, L. Antiplasmodial activity, in vivo pharmacokinetics and antimalarial efficacy evaluation of hydroxypyridinone hybrids in a mouse model. Malar. J., 2015, 14(1), 505.
[http://dx.doi.org/10.1186/s12936-015-1032-5] [PMID: 26671222]
[84]
Romero, A.H.; Acosta, M.E.; Gamboa, N.; Charris, J.E.; Salazar, J.; López, S.E. Synthesis, β-hematin inhibition studies and antimalarial evaluation of dehydroxy isotebuquine derivatives against Plasmodium berghei. Bioorg. Med. Chem., 2015, 23(15), 4755-4762.
[http://dx.doi.org/10.1016/j.bmc.2015.05.040] [PMID: 26081761]
[85]
Tiwari, V.S.; Joshi, P.; Yadav, K.; Sharma, A.; Chowdhury, S.; Manhas, A.; Kumar, N.; Tripathi, R.; Haq, W. Synthesis and antimalarial activity of 4-methylaminoquinoline compounds against drug-resistant parasite. ACS Omega, 2021, 6(20), 12984-12994.
[http://dx.doi.org/10.1021/acsomega.0c06053] [PMID: 34056449]
[86]
Mizukawa, Y.; Ikegami-Kawai, M.; Horiuchi, M.; Kaiser, M.; Kojima, M.; Sakanoue, S.; Miyagi, S.; Nanga Chick, C.; Togashi, H.; Tsubuki, M.; Ihara, M.; Usuki, T.; Itoh, I. Quest for a potent antimalarial drug lead: Synthesis and evaluation of 6,7-dimethoxyquinazoline-2,4-diamines. Bioorg. Med. Chem., 2021, 33, 116018.
[http://dx.doi.org/10.1016/j.bmc.2021.116018] [PMID: 33524940]
[87]
Huang, Z.; Li, R.; Tang, T.; Ling, D.; Wang, M.; Xu, D.; Sun, M.; Zheng, L.; Zhu, F.; Min, H.; Boonhok, R.; Ding, Y.; Wen, Y.; Chen, Y.; Li, X.; Chen, Y.; Liu, T.; Han, J.; Miao, J.; Fang, Q.; Cao, Y.; Tang, Y.; Cui, J.; Xu, W.; Cui, L.; Zhu, J.; Wong, G.; Li, J.; Jiang, L. A novel multistage antiplasmodial inhibitor targeting Plasmodium falciparum histone deacetylase 1. Cell Discov., 2020, 6(1), 93.
[http://dx.doi.org/10.1038/s41421-020-00215-4] [PMID: 33311461]
[88]
Li, R.; Ling, D.; Tang, T.; Huang, Z.; Wang, M.; Ding, Y.; Liu, T.; Wei, H.; Xu, W.; Mao, F.; Zhu, J.; Li, X.; Jiang, L.; Li, J. Discovery of novel Plasmodium falciparum HDAC1 inhibitors with Dual-Stage antimalarial aotency and improved safety based on the clinical anticancer drug candidate quisinostat. J. Med. Chem., 2021, 64(4), 2254-2271.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02104] [PMID: 33541085]
[89]
Pandey, A.K.; Sharma, S.; Pandey, M.; Alam, M.M.; Shaquiquzzaman, M.; Akhter, M. 4, 5-Dihydrooxazolepyrazoline hybrids: Synthesis and their evaluation as potential antimalarial agents. Eur. J. Med. Chem., 2016, 123, 476-486.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.055] [PMID: 27494165]
[90]
Schwertz, G.; Witschel, M.C.; Rottmann, M.; Bonnert, R.; Leartsakulpanich, U.; Chitnumsub, P.; Jaruwat, A.; Ittarat, W.; Schäfer, A.; Aponte, R.A.; Charman, S.A.; White, K.L.; Kundu, A.; Sadhukhan, S.; Lloyd, M.; Freiberg, G.M.; Srikumaran, M.; Siggel, M.; Zwyssig, A.; Chaiyen, P.; Diederich, F. Antimalarial inhibitors targeting serine hydroxymethyltransferase (SHMT) with in vivo efficacy and analysis of their binding mode based on X-ray cocrystal structures. J. Med. Chem., 2017, 60(12), 4840-4860.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00008] [PMID: 28537728]
[91]
Bhagat, S.; Arfeen, M.; Adane, L.; Singh, S.; Singh, P.P.; Chakraborti, A.K.; Bharatam, P.V. Guanylthiourea derivatives as potential antimalarial agents: Synthesis, in vivo and molecular modelling studies. Eur. J. Med. Chem., 2017, 135, 339-348.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.022] [PMID: 28460309]
[92]
Shukla, M.; Hassam, M.; Kumar Yadav, D.; Sharma, S.; Singh, C.; Puri, S.K.; Shrivastava, R.; Prakash Verma, V. Synthesis of novel 1,2,4-trioxanes and antimalarial evaluation against multidrug-resistant Plasmodium yoelii nigeriensis. Bioorg. Med. Chem. Lett., 2021, 49, 128305.
[http://dx.doi.org/10.1016/j.bmcl.2021.128305] [PMID: 34365007]
[93]
Rocha e Silva, L.F.; Nogueira, K.L.; Pinto, A.C.S.; Katzin, A.M.; Sussmann, R.A.C.; Muniz, M.P.; Neto, V.F.A.; Chaves, F.C.M.; Coutinho, J.P.; Lima, E.S.; Krettli, A.U.; Tadei, W.P.; Pohlit, A.M. In vivo antimalarial activity and mechanisms of action of 4-nerolidylcatechol derivatives. Antimicrob. Agents Chemother., 2015, 59(6), 3271-3280.
[http://dx.doi.org/10.1128/AAC.05012-14] [PMID: 25801563]
[94]
El Bissati, K.; Redel, H.; Ting, L.M.; Lykins, J.D.; McPhillie, M.J.; Upadhya, R.; Woster, P.M.; Yarlett, N.; Kim, K.; Weiss, L.M. Novel synthetic polyamines have potent antimalarial activities in vitro and in vivo by decreasing intracellular spermidine and spermine concentrations. Front. Cell. Infect. Microbiol., 2019, 9, 9.
[http://dx.doi.org/10.3389/fcimb.2019.00009] [PMID: 30838177]
[95]
Mendes, A.M.; Albuquerque, I.S.; Machado, M.; Pissarra, J.; Meireles, P.; Prudêncio, M. Inhibition of Plasmodium liver infection by ivermectin. Antimicrob. Agents Chemother., 2017, 61(2), e02005-16.
[http://dx.doi.org/10.1128/AAC.02005-16] [PMID: 27895022]
[96]
Vera, I.M.; Grilo Ruivo, M.T.; Lemos Rocha, L.F.; Marques, S.; Bhatia, S.N.; Mota, M.M.; Mancio-Silva, L. Targeting liver stage malaria with metformin. JCI Insight, 2019, 4(24), e127441.
[http://dx.doi.org/10.1172/jci.insight.127441] [PMID: 31852843]
[97]
Umeyor, C.E.; Okoye, I.; Uronnachi, E.; Okeke, T.; Kenechukwu, F.; Attama, A. Repositioning miconazole nitrate for malaria: Formulation of sustained release nanostructured lipid carriers, structure characterization and in vivo antimalarial evaluation. J. Drug Deliv. Sci. Technol., 2021, 61, 102125.
[http://dx.doi.org/10.1016/j.jddst.2020.102125]
[98]
Yadav, K.; Shivahare, R.; Shaham, S.H.; Joshi, P.; Sharma, A.; Tripathi, R. Repurposing of existing therapeutics to combat drug-resistant malaria. Biomed. Pharmacother., 2021, 136, 111275.
[http://dx.doi.org/10.1016/j.biopha.2021.111275] [PMID: 33485067]
[99]
Mutapi, F.; Maizels, R.; Fenwick, A.; Woolhouse, M. Human schistosomiasis in the post mass drug administration era. Lancet Infect. Dis., 2017, 17(2), e42-e48.
[http://dx.doi.org/10.1016/S1473-3099(16)30475-3] [PMID: 27988094]
[100]
Barbosa, C.S.; de Souza Gomes, E.C.; Campos, J.V.; de Oliveira, F.J.M.; da Silva Mesquita, M.C.; de Oliveira, E.C.A.; Domingues, A.L.C. Morbidity of mansoni schistosomiasis in Pernambuco—Brazil: Analysis on the temporal evolution of deaths, hospital admissions and severe clinical forms (1999–2014). Acta Trop., 2016, 164, 10-16.
[http://dx.doi.org/10.1016/j.actatropica.2016.06.024] [PMID: 27381578]
[101]
Vale, N.; Gouveia, M.J.; Rinaldi, G.; Brindley, P.J.; Gärtner, F.; Correia da Costa, J.M. PZQ for schistosomiasis: Single-drug metabolism revisited, mode of action, andresistance. Antimicrob. Agents Chemother., 2017, 61(5), e02582-16.
[http://dx.doi.org/10.1128/AAC.02582-16] [PMID: 28264841]
[102]
World Health Organization (WHO). Investing to overcome the global impact of neglected tropical diseases, third WHO report on neglected tropical diseases. 2015. Available from: https://apps.who.int/iris/handle/10665/152781 (Accessed on: July 19, 2021).
[103]
Coulibaly, J.T.; Panic, G.; Silué, K.D.; Kovač, J.; Hattendorf, J.; Keiser, J. Efficacy and safety of praziquantel in preschool-aged and school-aged children infected with Schistosoma mansoni: A randomised controlled, parallelgroup, dose-ranging, phase 2 trial. Lancet Glob. Health, 2017, 5(7), e688-e698.
[http://dx.doi.org/10.1016/S2214-109X(17)30187-0] [PMID: 28619227]
[104]
Wang, W.; Wang, L.; Liang, Y.S. Susceptibility or resistance of praziquantel in human schistosomiasis: A review. Parasitol. Res., 2012, 111(5), 1871-1877.
[http://dx.doi.org/10.1007/s00436-012-3151-z] [PMID: 23052781]
[105]
Chevalier, F.D.; Le Clec’h, W.; Eng, N.; Rugel, A.R.; Assis, R.R.; Oliveira, G.; Holloway, S.P.; Cao, X.; Hart, P.J.; LoVerde, P.T.; Anderson, T.J.C. Independent origins of loss-of-function mutations conferring oxamniquine resistance in a Brazilian schistosome population. Int. J. Parasitol., 2016, 46(7), 417-424.
[http://dx.doi.org/10.1016/j.ijpara.2016.03.006] [PMID: 27073078]
[106]
Peter, J.H.; Donald, A.P.B.; Kathleen, B.; Simon, B.; Lesley, D.; Nilanthi, S.; Antonio, M.; Dirk, E.; Matthew, J.; Lester, C.; Jeffrey, C.; Ramanan, L.; Catherine, M.; Jeff, B.; Rodrigo, C.O.; Xiao, S.; Alan, F.; Lorenzo, S. Helminth infections: Soil-transmitted helminth infections and schistosomiasis. In: Disease Control Priorities in Developing Countries, 2nd ed; Dean, T.J.; Joel, G.B.; Anthony, R.M.; George, A.; Mariam, C.; David, B.E.; Prabhat, J.; Anne, M.; Philip, M., Eds.; Oxford University Press & World Bank: Washington, DC, 2006, pp. 467-482.
[107]
Frédéric, D.C.; Winka, L.C.; Marina, M.; Vinay, M.; Meghan, A.G.; Stephen, P.H.; Xiaohang, C.; Alexander, B.T.; Safari, K.; Anouk, N.G.; Bonnie, L.W.; Joanne, P.W.; Aidan, M.E.; David, R. Oxamniquine resistance alleles are widespread in old world Schistosoma mansoni and predate drug deployment. PLoS Pathog., 2019, 15(10), e1007881.
[108]
Cowan, N.; Dätwyler, P.; Ernst, B.; Wang, C.; Vennerstrom, J.L.; Spangenberg, T.; Keiser, J. Activities of N,N′-Diarylurea MMV665852 analogs against Schistosoma mansoni. Antimicrob. Agents Chemother., 2015, 59(4), 1935-1941.
[http://dx.doi.org/10.1128/AAC.04463-14] [PMID: 25583726]
[109]
Wu, J.; Wang, C.; Leas, D.; Vargas, M.; White, K.L.; Shackleford, D.M.; Chen, G.; Sanford, A.G.; Hemsley, R.M.; Davis, P.H.; Dong, Y.; Charman, S.A.; Keiser, J.; Vennerstrom, J.L. Progress in antischistosomal N,N′-diaryl urea SAR. Bioorg. Med. Chem. Lett., 2018, 28(3), 244-248.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.064] [PMID: 29317164]
[110]
Zhou, S.; Huang, G. Design, synthesis and bioactivities of phenithionate analogues or derivatives for antischistosomiasis. MedChemComm, 2018, 9(2), 328-336.
[http://dx.doi.org/10.1039/C7MD00590C] [PMID: 30108926]
[111]
Taman, A.; Alhusseiny, S.M.; El-Zayady, W.M.; Elblihy, A.A.; Mansour, B.; Massoud, M.; Youssef, M.Y.; Saleh, N.E. In vivo studies of the effect of PPQ-6, a quinolinebased agent against Schistosoma mansoni in mice. Exp. Parasitol., 2020, 215, 107933.
[http://dx.doi.org/10.1016/j.exppara.2020.107933] [PMID: 32525006]
[112]
Filho, C.A.L.M.; Barbosa, M.O.; Oliveira, A.R.; Santiago, E.F.; de Souza, V.C.A.; Lucena, J.P.; Fernandes, C.J.B.; Santos, I.R.; Leão, R.L.C.; Santos, F.A.B.; Alves, L.C.; Pereira, V.R.A.; de Araújo, R.E.; Leite, A.C.L.; de Oliveira, S.A. In vitro and in vivo activities of multi-target phtalimido-thiazoles on Schistosomiasis mansoni. Eur. J. Pharm. Sci., 2020, 146, 105236.
[http://dx.doi.org/10.1016/j.ejps.2020.105236] [PMID: 32058057]
[113]
Khan, M.O.F.; Keiser, J.; Amoyaw, P.N.A.; Hossain, M.F.; Vargas, M.; Le, J.G.; Simpson, N.C.; Roewe, K.D.; Freeman, T.N.C.; Hasley, T.R.; Maples, R.D.; Archibald, S.J.; Hubin, T.J. Discovery of antischistosomal drug leads based on tetraazamacrocyclic derivatives and their metal complexes. Antimicrob. Agents Chemother., 2016, 60(9), 5331-5336.
[http://dx.doi.org/10.1128/AAC.00778-16] [PMID: 27324765]
[114]
Hess, J.; Panic, G.; Patra, M.; Mastrobuoni, L.; Spingler, B.; Roy, S.; Keiser, J.; Gasser, G. Ferrocenyl, ruthenocenyl, and benzyl oxamniquine derivatives with cross-species activity against Schistosoma mansoni and Schistosoma haematobium. ACS Infect. Dis., 2017, 3(9), 645-652.
[http://dx.doi.org/10.1021/acsinfecdis.7b00054] [PMID: 28686009]
[115]
d’Orchymont, F.; Hess, J.; Panic, G.; Jakubaszek, M.; Gemperle, L.; Keiser, J.; Gasser, G. Synthesis, characterization and biological activity of organometallic derivatives of the antimalarial drug mefloquine as new antischistosomal drug candidates. MedChemComm, 2018, 9(11), 1905-1909.
[http://dx.doi.org/10.1039/C8MD00396C] [PMID: 30568758]
[116]
Gold, D.; Alian, M.; Domb, A.; Karawani, Y.; Jbarien, M.; Chollet, J.; Haynes, R.K.; Wong, H.N.; Buchholz, V.; Greiner, A.; Golenser, J. Elimination of Schistosoma mansoni in infected mice by slow release of artemisone. Int. J. Parasitol. Drugs Drug Resist., 2017, 7(2), 241-247.
[http://dx.doi.org/10.1016/j.ijpddr.2017.05.002] [PMID: 28511056]
[117]
Corrêa, S.A.P.; de Oliveira, R.N.; Mendes, T.M.F.; dos Santos, K.R.; Boaventura, S., Jr; Garcia, V.L.; Jeraldo, V.L.S.; Allegretti, S.M. In vitro and in vivo evaluation of six artemisinin derivatives against Schistosoma mansoni. Parasitol. Res., 2019, 118(2), 505-516.
[http://dx.doi.org/10.1007/s00436-018-6188-9] [PMID: 30617587]
[118]
Wang, X.; Yu, D.; Li, C.; Zhan, T.; Zhang, T.; Ma, H.; Xu, J.; Xia, C. In vitro and in vivo activities of DW-3-15, a commercial praziquantel derivative, against Schistosoma japonicum. Parasit. Vectors, 2019, 12(1), 199.
[http://dx.doi.org/10.1186/s13071-019-3442-7] [PMID: 31053083]
[119]
Panic, G.; Vargas, M.; Scandale, I.; Keiser, J. Activity Profile of an FDA-Approved Compound Library against Schistosoma mansoni. PLoS Negl. Trop. Dis., 2015, 9(7), e0003962.
[http://dx.doi.org/10.1371/journal.pntd.0003962] [PMID: 26230921]
[120]
Cowan, N.; Keiser, J. Repurposing of anticancer drugs: In vitro and in vivo activities against Schistosoma mansoni. Parasit. Vectors, 2015, 8(1), 417.
[http://dx.doi.org/10.1186/s13071-015-1023-y] [PMID: 26265386]
[121]
Mossallam, S.F.; Amer, E.I.; El-Faham, M.H. Efficacy of Synriam™, a new antimalarial combination of OZ277 and piperaquine, against different developmental stages of Schistosoma mansoni. Acta Trop., 2015, 143, 36-46.
[http://dx.doi.org/10.1016/j.actatropica.2014.12.005] [PMID: 25530543]
[122]
Guidi, A.; Lalli, C.; Perlas, E.; Bolasco, G.; Nibbio, M.; Monteagudo, E.; Bresciani, A.; Ruberti, G. Discovery and characterization of novel anti-schistosomal properties of the anti-anginal drug, perhexiline and its impact on Schistosoma mansoni male and female reproductive systems. PLoS Negl. Trop. Dis., 2016, 10(8), e0004928.
[http://dx.doi.org/10.1371/journal.pntd.0004928] [PMID: 27518281]
[123]
Eissa, M.M.; Mossallam, S.F.; Amer, E.I.; Younis, L.K.; Rashed, H.A. Repositioning of chlorambucil as a potential anti-schistosomal agent. Acta Trop., 2017, 166, 58-66.
[http://dx.doi.org/10.1016/j.actatropica.2016.11.006] [PMID: 27836498]
[124]
Guerra, R.A.; Silva, M.P.; Silva, T.C.; Salvadori, M.C.; Teixeira, F.S.; De Oliveira, R.N.; Rocha, J.A.; Pinto, P.L.S.; De Moraes, J. Spironolactone as an antischistosomal drug capable of clinical repurposing: In vitro and in vivo studies. Antimicrob. Agents Chemother., 2018, 63(3), e01722-e18.
[http://dx.doi.org/10.1128/AAC.01722-18] [PMID: 30559137]
[125]
Roquini, D.B.; Cogo, R.M.; Mengarda, A.C.; Mazloum, S.F.; Morais, C.S.; Xavier, R.P.; Salvadori, M.C.; Teixeira, F.S.; Ferreira, L.E.; Pinto, P.L.; Morais, T.R.; de Moraes, J. Promethazine exhibits antiparasitic properties in vitro and reduces worm burden, egg production, hepato-, and splenomegaly in a schistosomiasis animal model. Antimicrob. Agents Chemother., 2019, 63(12), e01208-19.
[http://dx.doi.org/10.1128/AAC.01208-19] [PMID: 31527034]
[126]
Lago, E.M.; Silva, M.P.; Queiroz, T.G.; Mazloum, S.F.; Rodrigues, V.C.; Carnaúba, P.U.; Pinto, P.L.; Rocha, J.A.; Ferreira, L.L.G.; Andricopulo, A.D.; de Moraes, J. Phenotypic screening of nonsteroidal anti-inflammatory drugs identified mefenamic acid as a drug for the treatment of schistosomiasis. EBioMedicine, 2019, 43, 370-379.
[http://dx.doi.org/10.1016/j.ebiom.2019.04.029] [PMID: 31027918]
[127]
Oliveira, R.N.; Corrêa, S.A.P.; Vieira, K.M.; Mendes, T.; Allegretti, S.M.; Miguel, D.C. In vitro schistosomicidal activity of tamoxifen and its effectiveness in a murine model of schistosomiasis at a single dose. Parasitol. Res., 2019, 118(5), 1625-1631.
[http://dx.doi.org/10.1007/s00436-019-06259-0] [PMID: 30798369]
[128]
de Brito, M.G.; Mengarda, A.C.; Oliveira, G.L.; Cirino, M.E.; Silva, T.C.; de Oliveira, R.N.; Allegretti, S.M.; de Moraes, J. Therapeutic effect of diminazene aceturate on parasitic blood fluke Schistosoma mansoni infection. Antimicrob. Agents Chemother., 2020, 64(11), e01372-20.
[http://dx.doi.org/10.1128/AAC.01372-20] [PMID: 32816737]
[129]
Abou-El-Naga, I.F.; El-Temsahy, M.M.; Mogahed, N.M.F.H.; Sheta, E.; Makled, S.; Ibrahim, E.I. Effect of celecoxib against different developmental stages of experimental Schistosoma mansoni infection. Acta Trop., 2021, 218, 105891.
[http://dx.doi.org/10.1016/j.actatropica.2021.105891] [PMID: 33773944]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy