Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Outlining the Molecules Tested In Vivo for Chagas Disease, Malaria, and Schistosomiasis Over the Last Six Years - A Literature Review Focused on New Synthetic Drug Identities and Repurposing Strategies

Author(s): Vanessa Gouveia de Melo Silva, Juliana Maria da Conceição, Carla Cauanny Vieira Costa Silva, Amanda Calazans Leal, Daniel Lopes Araújo, Janine Siqueira Nunes, Elineide Tayse Noberto da Silva, Anderson José Firmino Santos da Silva, Mabilly Cox Holanda de Barros Dias and Ana Cristina Lima Leite*

Volume 30, Issue 26, 2023

Published on: 16 November, 2022

Page: [2932 - 2976] Pages: 45

DOI: 10.2174/0929867329666220930112136

Price: $65

conference banner
Abstract

Background: COVID-19 disrupted NTD programs in 60% of countries, impairing public health goals. Thus, boosting NTD's research knowledge is demanding, and in vivo screening of candidates allows for the prospect of promising options based on their overall profile.

Objective: In this work, we highlighted the relevant research done between 2015-2021 in the fields of synthetic and repurposed drugs that were tested in vivo for Chagas disease, malaria, and schistosomiasis.

Methods: MEDLINE, PUBMED, CAPES PERIODIC, and ELSEVIER databases were used for a comprehensive literature review of the last 6 years of research on each area/disease.

Results: Overall, research focused on nitro heterocyclic, aromatic nitro, nucleoside, and metal-based scaffolds for analogue-based drug generation. Repurposing was widely assessed, mainly with heterocyclic drugs, their analogues, and in combinations with current treatments. Several drug targets were aimed for Chagas treatment, specific ones such as iron superoxide dismutase, and more general ones, such as mitochondrial dysfunction. For malaria, hemozoin is still popular, and for schistosomiasis, more general structural damage and/or reproduction impairment were aimed at in vitro analysis of the mechanism of action.

Conclusion: Latest in vivo results outlined trends for each disease - for Chagas Disease, heterocyclics as thiazoles were successfully explored; for Malaria, quinoline derivatives are still relevant, and for schistosomiasis, repurposed drugs from different classes outstood in comparison to synthetic compounds. This study uprises the continuous development of Chagas disease, malaria, and schistosomiasis drugs, providing researchers with tools and information to address such unmet therapeutic needs.

Keywords: Chagas disease, schistosomiasis, malaria, animal screening, synthetic compounds, repurposing.

[1]
World Health Organization (WHO). Global health estimates 2015: Disease burden by cause, age, sex, by country and by region, 2000–2015. 2015. Available from: https://www. who.int/data/gho/data/themes/mortality-and-global-healthestimates (Accessed on: 12 July 2021).
[2]
De Rycker, M.; Baragaña, B.; Duce, S.L.; Gilbert, I.H. Challenges and recent progress in drug discovery for tropical diseases. Nature, 2018, 559(7715), 498-506.
[http://dx.doi.org/10.1038/s41586-018-0327-4] [PMID: 30046073]
[3]
Lage, O.; Ramos, M.; Calisto, R.; Almeida, E.; Vasconcelos, V.; Vicente, F. Current screening methodologies in drug discovery for selected human diseases. Mar. Drugs, 2018, 16(8), 279.
[http://dx.doi.org/10.3390/md16080279] [PMID: 30110923]
[4]
World Health Organization (WHO). Neglected tropical diseases: Preventive chemotherapy treatment coverage declines due to COVID-19 disruptions. 2020. Available from: https://www.who.int/news/item/24-09-2021-neglected-tropical-diseases-2020-preventive-chemotherapy-treatmentcoverage-declines-due-to-covid-19-disruptions (accessed on: 12 July 2021).
[5]
Zhan, L.; Tang, J.; Sun, M.; Qin, C. Animal models for tuberculosis in translational and precision medicine. Front. Microbiol., 2017, 8, 717.
[http://dx.doi.org/10.3389/fmicb.2017.00717] [PMID: 28522990]
[6]
Kramnik, I.; Beamer, G. Mouse models of human TB pathology: Roles in the analysis of necrosis and the development of host-directed therapies. Semin. Immunopathol., 2016, 38(2), 221-237.
[http://dx.doi.org/10.1007/s00281-015-0538-9] [PMID: 26542392]
[7]
Angulo-Barturen, I.; Jiménez-Díaz, M.B.; Mulet, T.; Rullas, J.; Herreros, E.; Ferrer, S.; Jiménez, E.; Mendoza, A.; Regadera, J.; Rosenthal, P.J.; Bathurst, I.; Pompliano, D.L.; Gómez de las Heras, F.; Gargallo-Viola, D. A murine model of falciparum-malaria by in vivo selection of competent strains in non-myelodepleted mice engrafted with human erythrocytes. PLoS One, 2008, 3(5), e2252.
[http://dx.doi.org/10.1371/journal.pone.0002252] [PMID: 18493601]
[8]
Mikolajczak, S.A.; Vaughan, A.M.; Kangwanrangsan, N.; Roobsoong, W.; Fishbaugher, M.; Yimamnuaychok, N.; Rezakhani, N.; Lakshmanan, V.; Singh, N.; Kaushansky, A.; Camargo, N.; Baldwin, M.; Lindner, S.E.; Adams, J.H.; Sattabongkot, J.; Kappe, S.H.I. Plasmodium vivax liver stage development and hypnozoite persistence in human liver-chimeric mice. Cell Host Microbe, 2015, 17(4), 526-535.
[http://dx.doi.org/10.1016/j.chom.2015.02.011] [PMID: 25800544]
[9]
Dea-Ayuela, M.A.; Serrano, D.R. New drugs and therapeutic/diagnostic targets for fungal and parasitic diseases - Part I. Curr. Top. Med. Chem., 2018, 18(15), 1274.
[http://dx.doi.org/10.2174/156802661815181101110430] [PMID: 30598060]
[10]
de Barros Dias, M.C.H.; Freitas, L.A.B.; dos Santos, I.R.; de Almeida, V.S. do Amaral e Melo, R.T.; de Melo Silva, V.G.; de Fátima Maia de Santana, B.; da Conceição, J.M.; Lima Leite, A.C. An overview of the compounds tested in vivo for Leishmania spp. of the Last 5 years. Curr. Med. Chem., 2021, 28(21), 4226-4258.
[http://dx.doi.org/10.2174/0929867327999201116145408] [PMID: 33198609]
[11]
Campos, K.R.; Coleman, P.J.; Alvarez, J.C.; Dreher, S.D.; Garbaccio, R.M.; Terrett, N.K.; Tillyer, R.D.; Truppo, M.D.; Parmee, E.R. The importance of synthetic chemistry in the pharmaceutical industry. Science, 2019, 363(6424), eaat0805.
[http://dx.doi.org/10.1126/science.aat0805] [PMID: 30655413]
[12]
Flick, A.C.; Ding, H.X.; Leverett, C.A.; Kyne, R.E., Jr; Liu, K.K-C.; Fink, S.J.; O’Donnell, C.J. Synthetic approaches to the new drugs approved during 2015. J. Med. Chem., 2017, 60(15), 6480-6515.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00010]
[13]
Ashburn, T.T.; Thor, K.B. Drug repositioning: Identifying and developing new uses for existing drugs. Nat. Rev. Drug Discov., 2004, 3(8), 673-683.
[http://dx.doi.org/10.1038/nrd1468] [PMID: 15286734]
[14]
Breckenridge, A.; Jacob, R. Overcoming the legal and regulatory barriers to drug repurposing. Nat. Rev. Drug Discov., 2019, 18(1), 1-2.
[http://dx.doi.org/10.1038/nrd.2018.92] [PMID: 29880920]
[15]
World Health Organization. WHO calls for comprehensive, equitable access to healthcare for every CD patient. Departmental news, Geneva. Available from: https://www.who.int/news/item/14-04-2021-who-calls-forcomprehensive-equitable-access-to-healthcare-for-everychagas-disease-patient (Accessed on: July 12, 2021).
[16]
Pérez-Molina, J.A.; Molina, I. Chagas disease. Lancet, 2018, 391(10115), 82-94.
[http://dx.doi.org/10.1016/S0140-6736(17)31612-4] [PMID: 28673423]
[17]
Medscape. BZN (Rx), Drugs and diseases. Available from: https://reference.medscape.com/drug/BZN -1000203#0 (Accessed on: July 12, 2021).
[18]
Medscape. Nifurtimox (Rx), drugs and diseases. Available from: https://reference.medscape.com/drug/lampit-nifurtimox- 342663#0 (Accessed on: July 12, 2021).
[19]
Álvarez, G.; Varela, J.; Cruces, E.; Fernández, M.; Gabay, M.; Leal, S.M.; Escobar, P.; Sanabria, L.; Serna, E.; Torres, S.; Figueredo Thiel, S.J.; Yaluff, G.; Vera de Bilbao, N.I.; Cerecetto, H.; González, M. Identification of a new amidecontaining thiazole as a drug candidate for treatment of Chagas’ disease. Antimicrob. Agents Chemother., 2015, 59(3), 1398-1404.
[http://dx.doi.org/10.1128/AAC.03814-14] [PMID: 25512408]
[20]
Álvarez, G.; Martínez, J.; Varela, J.; Birriel, E.; Cruces, E.; Gabay, M.; Leal, S.M.; Escobar, P.; Aguirre-López, B.; Cabrera, N.; Tuena de Gómez-Puyou, M.; Gómez Puyou, A.; Pérez-Montfort, R.; Yaluff, G.; Torres, S.; Serna, E.; Vera de Bilbao, N.; González, M.; Cerecetto, H. Development of bis-thiazoles as inhibitors of triosephosphate isomerase from Trypanosoma cruzi. Identification of new nonmutagenic agents that are active in vivo. Eur. J. Med. Chem., 2015, 100, 246-256.
[http://dx.doi.org/10.1016/j.ejmech.2015.06.018] [PMID: 26094151]
[21]
Papadopoulou, M.V.; Bloomer, W.D.; Lepesheva, G.I.; Rosenzweig, H.S.; Kaiser, M.; Aguilera-Venegas, B.; Wilkinson, S.R.; Chatelain, E.; Ioset, J.R. Novel 3-nitrotriazolebased amides and carbinols as bifunctional antichagasic agents. J. Med. Chem., 2015, 58(3), 1307-1319.
[http://dx.doi.org/10.1021/jm5015742] [PMID: 25580906]
[22]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; O’Shea, I.P.; Wilkinson, S.R.; Kaiser, M.; Chatelain, E.; Ioset, J.R. Discovery of potent nitrotriazole-based antitrypanosomal agents: In vitro and in vivo evaluation. Bioorg. Med. Chem., 2015, 23(19), 6467-6476.
[http://dx.doi.org/10.1016/j.bmc.2015.08.014] [PMID: 26344593]
[23]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Wilkinson, S.R.; Szular, J.; Kaiser, M. Nitrotriazole-based acetamides and propanamides with broad spectrum antitrypanosomal activity. Eur. J. Med. Chem., 2016, 123, 895-904.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.002] [PMID: 27543881]
[24]
Papadopoulou, M.V.; Bloomer, W.D.; Rosenzweig, H.S.; Mazzeti, A.L.; Gonçalves, K.R.; Mendes, P.F.; Bahia, M.T. Nitrotriazole-based compounds as antichagasic agents in a long-treatment in vivo assay. Antimicrob. Agents Chemother., 2017, 61(5), e02717-16.
[http://dx.doi.org/10.1128/AAC.02717-16] [PMID: 28242662]
[25]
de Oliveira Filho, G.B.; de Oliveira Cardoso, M.V.; Espíndola, J.W.P.; Ferreira, L.F.G.R.; de Simone, C.A.; Ferreira, R.S.; Coelho, P.L.; Meira, C.S.; Magalhaes Moreira, D.R.; Soares, M.B.P.; Lima, Leite A.C. Structural design, synthesis and pharmacological evaluation of 4-thiazolidinones against Trypanosoma cruzi. Bioorg. Med. Chem., 2015, 23(23), 7478-7486.
[http://dx.doi.org/10.1016/j.bmc.2015.10.048] [PMID: 26549870]
[26]
de Oliveira Filho, G.B.; Cardoso, M.V.O.; Espíndola, J.W.P.; Oliveira e Silva, D.A.; Ferreira, R.S.; Coelho, P.L.; Anjos, P.S.; Santos, E.S.; Meira, C.S.; Moreira, D.R.M.; Soares, M.B.P.; Leite, A.C.L.; Leite, A.C.L. Structural design, synthesis and pharmacological evaluation of thiazoles against Trypanosoma cruzi. Eur. J. Med. Chem., 2017, 141(141), 346-361.
[http://dx.doi.org/10.1016/j.ejmech.2017.09.047] [PMID: 29031078]
[27]
Olmo, F.; Guardia, J.J.; Marin, C.; Messouri, I.; Rosales, M.J.; Urbanová, K.; Chayboun, I.; Chahboun, R.; Alvarez-Manzaneda, E.J.; Sánchez-Moreno, M. Prospects of an alternative treatment against Trypanosoma cruzi based on abietic acid derivatives show promising results in Balb/c mouse model. Eur. J. Med. Chem., 2015, 89(89), 683-690.
[http://dx.doi.org/10.1016/j.ejmech.2014.11.004] [PMID: 25462275]
[28]
Olmo, F.; Gómez-Contreras, F.; Navarro, P.; Marín, C.; Yunta, M.J.R.; Cano, C.; Campayo, L.; Martín-Oliva, D.; Rosales, M.J.; Sánchez-Moreno, M. Synthesis and evaluation of in vitro and in vivo trypanocidal properties of a new imidazole-containing nitrophthalazine derivative. Eur. J. Med. Chem., 2015, 106(106), 106-119.
[http://dx.doi.org/10.1016/j.ejmech.2015.10.034] [PMID: 26523668]
[29]
Olmo, F.; Cussó, O.; Marín, C.; Rosales, M.J.; Urbanová, K.; Krauth-Siegel, R.L.; Costas, M.; Ribas, X.; Sánchez-Moreno, M. In vitro and in vivo identification of tetradentated polyamine complexes as highly efficient metallodrugs against Trypanosoma cruzi. Exp. Parasitol., 2016, 164, 20-30.
[http://dx.doi.org/10.1016/j.exppara.2016.02.004] [PMID: 26874306]
[30]
Moreno-Viguri, E.; Jiménez-Montes, C.; Martín-Escolano, R.; Santivañez-Veliz, M.; Martin-Montes, A.; Azqueta, A.; Jimenez-Lopez, M.; Zamora, L.S.; Cirauqui, N.; López de Ceráin, A.; Marín, C.; Sánchez-Moreno, M.; Pérez-Silanes, S. In vitro and in vivo anti-Trypanosoma cruzi activity of new arylamine mannich base-type derivatives. J. Med. Chem., 2016, 59(24), 10929-10945.
[http://dx.doi.org/10.1021/acs.jmedchem.6b00784]
[31]
Martín-Escolano, R.; Moreno-Viguri, E.; Santivañez-Veliz, M.; Martin-Montes, A.; Medina-Carmona, E.; Paucar, R.; Marín, C.; Azqueta, A.; Cirauqui, N.; Pey, A.L.; Pérez-Silanes, S.; Sánchez-Moreno, M. Second generation of mannich base-type derivatives with in vivo activity against Trypanosoma cruzi. J. Med. Chem., 2018, 61(13), 5643-5663.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00468] [PMID: 29883536]
[32]
Paucar, R.; Martín-Escolano, R.; Moreno-Viguri, E.; Azqueta, A.; Cirauqui, N.; Marín, C.; Sánchez-Moreno, M.; Pérez-Silanes, S. Rational modification of Mannich basetype derivatives as novel antichagasic compounds: Synthesis, in vitro and in vivo evaluation. Bioorg. Med. Chem., 2019, 27(17), 3902-3917.
[http://dx.doi.org/10.1016/j.bmc.2019.07.029] [PMID: 31345745]
[33]
Martins, S.C.; Lazarin-Bidóia, D.; Desoti, V.C.; Falzirolli, H.; da Silva, C.C.; Ueda-Nakamura, T.; Silva, S.O. 1,3,4-Thiadiazole derivatives of R-(+)- limonene benzaldehydethiosemicarbazones cause death in Trypanosoma cruzi through oxidative stress. Microbes Infect., 2016, 18(12), 787-797.
[http://dx.doi.org/10.1016/j.micinf.2016.07.007] [PMID: 27484335]
[34]
Guedes-da-Silva, F.H.; Batista, D.G.J.; Meuser, M.B.; Demarque, K.C.; Fulco, T.O.; Araújo, J.S.; Da Silva, P.B.; Da Silva, C.F.; Patrick, D.A.; Bakunova, S.M.; Bakunov, S.A.; Tidwell, R.R.; Oliveira, G.M.; Britto, C.; Moreira, O.C.; Soeiro, M.N.C. In vitro and in vivo trypanosomicidal action of novel arylimidamides against Trypanosoma cruzi. Antimicrob. Agents Chemother., 2016, 60(4), 2425-2434.
[http://dx.doi.org/10.1128/AAC.01667-15] [PMID: 26856830]
[35]
Da Silva, C.F.; Batista, D.G.J.; de Araújo, J.S.; Cunha-Junior, E.F.; Stephens, C.E.; Banerjee, M.; Farahat, A.A.; Akay, S.; Fisher, M.K.; Boykin, D.W.; Soeiro, M.N.C. Phenotypic evaluation and in silico ADMET properties of novel arylimidamides in acute mouse models of Trypanosoma cruzi infection. Drug Des. Devel. Ther., 2017, 11, 1095-1105.
[http://dx.doi.org/10.2147/DDDT.S120618] [PMID: 28435221]
[36]
Santos, C.C.; Lionel, J.R.; Peres, R.B.; Batista, M.M.; da Silva, P.B.; de Oliveira, G.M.; da Silva, C.F.; Batista, D.G.J.; Souza, S.M.O.; Andrade, C.H.; Neves, B.J.; Braga, R.C.; Patrick, D.A.; Bakunova, S.M.; Tidwell, R.R.; Soeiro, M.N.C. In vitro, in silico, and in vivo analyses of novel aromatic amidines against Trypanosoma cruzi. Antimicrob. Agents Chemother., 2018, 62(2), e02205-17.
[http://dx.doi.org/10.1128/AAC.02205-17] [PMID: 29203486]
[37]
Tempone, A.G.; Ferreira, D.D.; Lima, M.L.; Costa Silva, T.A.; Borborema, S.E.T.; Reimão, J.Q.; Galuppo, M.K.; Guerra, J.M.; Russell, A.J.; Wynne, G.M.; Lai, R.Y.L.; Cadelis, M.M.; Copp, B.R. Efficacy of a series of alphapyrone derivatives against Leishmania infantum (L.) and Trypanosoma cruzi. Eur. J. Med. Chem., 2017, 139, 947-960.
[http://dx.doi.org/10.1016/j.ejmech.2017.08.055] [PMID: 28881289]
[38]
Ferreira de Almeida Fiuza, L.; Peres, R.B.; Simões-Silva, M.R.; da Silva, P.B.; Batista, D.G.J.; da Silva, C.F.; Nefertiti Silva da Gama, A.; Krishna Reddy, T.R.; Soeiro, M.N.C. Identification of Pyrazolo[3,4-e][1,4]thiazepin based CYP51 inhibitors as potential Chagas disease therapeutic alternative: In vitro and in vivo evaluation, binding mode prediction and SAR exploration. Eur. J. Med. Chem., 2018, 149, 257-268.
[http://dx.doi.org/10.1016/j.ejmech.2018.02.020] [PMID: 29501946]
[39]
Cunha Almeida, T.; Gonzaga Ribeiro, L.H.; Ferreira dos Santos, L.B.; da Silva, C.M.; Tupinambá Branquinho, R.; de Lana, M.; Ramos Gadelha, F.; de Fátima, Â. Synthesis, in vitro and in vivo anti-Trypanosoma cruzi and toxicological activities of nitroaromatic Schiff bases. Biomed. Pharmacother., 2018, 108, 1703-1711.
[http://dx.doi.org/10.1016/j.biopha.2018.09.176] [PMID: 30372873]
[40]
Martín-Escolano, R.; Aguilera-Venegas, B.; Marín, C.; Martín-Montes, Á.; Martín-Escolano, J.; Medina-Carmona, E.; Arán, V.J.; Sánchez-Moreno, M. Synthesis, and biological in vitro and in vivo evaluation of 2-(5-Nitroindazol-1-yl)ethylamine and related compounds as potential therapeutic alternatives for CD. ChemMedChem, 2018, 13(19), 2104-2118.
[http://dx.doi.org/10.1002/cmdc.201800512] [PMID: 30098232]
[41]
Nefertiti, A.S.G.; Batista, M.M.; Da Silva, P.B.; Batista, D.G.J.; Da Silva, C.F.; Peres, R.B.; Torres-Santos, E.C.; Cunha-Junior, E.F.; Holt, E.; Boykin, D.W.; Brun, R.; Wenzler, T.; Soeiro, M.N.C. In vitro and in vivo studies of the trypanocidal effect of novel quinolines. Antimicrob. Agents Chemother., 2018, 62(2), e01936-17.
[http://dx.doi.org/10.1128/AAC.01936-17] [PMID: 29203485]
[42]
Muscia, G.C.; Roldán Pacheco, F.J.; Asís, S.E.; Buldain, G.Y.; Frank, F.M. Hit-to-lead optimization of novel 2-alkylaminomethylquinoline derivatives as anti-chagas agents. Eur. J. Med. Chem., 2020, 186, 111877.
[http://dx.doi.org/10.1016/j.ejmech.2019.111877] [PMID: 31771829]
[43]
Lin, C.; Hulpia, F.; da Silva, C.F.; Batista, D.G.J.; Van Hecke, K.; Maes, L.; Caljon, G.; Soeiro, M.N.C.; Van Calenbergh, S. Discovery of pyrrolo[2,3-b]pyridine (1,7-dideazapurine) nucleoside analogues as anti-Trypanosoma cruzi agents. J. Med. Chem., 2019, 62(19), 8847-8865.
[http://dx.doi.org/10.1021/acs.jmedchem.9b01275] [PMID: 31495177]
[44]
Ribeiro, J.L.S.; Soares, J.C.A.V.; Portapilla, G.B.; Providello, M.V.; Lima, C.H.S.; Muri, E.M.F.; de Albuquerque, S.; Dias, L.R.S. Trypanocidal activity of new 1,6-diphenyl-1H-pyrazolo[3,4-b]pyridine derivatives: Synthesis, in vitro and in vivo studies. Bioorg. Med. Chem., 2021, 29, 115855.
[http://dx.doi.org/10.1016/j.bmc.2020.115855] [PMID: 33199200]
[45]
dos Santos Petry, L.; Pillar Mayer, J.C.; de Giacommeti, M.; Teixeira de Oliveira, D.; Razia Garzon, L.; Martiele Engelmann, A.; Magalhães de Matos, A.F.I.; Dellaméa Baldissera, M.; Dornelles, L.; Melazzo de Andrade, C.; Gonzalez Monteiro, S. In vitro and in vivo trypanocidal activity of a benzofuroxan derivative against Trypanosoma cruzi. Exp. Parasitol., 2021, 226-227, 108125.
[http://dx.doi.org/10.1016/j.exppara.2021.108125] [PMID: 34129877]
[46]
Lara, L.S.; Lechuga, G.C.; Moreira, C.S.; Santos, T.B.; Ferreira, V.F.; da Rocha, D.R.; Pereira, M.C.S. Optimization of 1, 4-naphthoquinone hit compound: A computational, phenotypic, and in vivo screening against Trypanosoma cruzi. Molecules, 2021, 26(2), 423.
[http://dx.doi.org/10.3390/molecules26020423] [PMID: 33467422]
[47]
Martín-Escolano, R.; Etxebeste-Mitxeltorena, M.; Martín-Escolano, J.; Plano, D.; Rosales, M.J.; Espuelas, S.; Moreno, E.; Sánchez-Moreno, M.; Carmen, S.C.; Marín, C. Selenium derivatives as promising therapy for Chagas disease: In vitro and in vivo studies. ACS Infect. Dis., 2021, 7(6), 1727-1738.
[http://dx.doi.org/10.1021/acsinfecdis.1c00048]
[48]
Francisco, A.F.; Lewis, M.D.; Jayawardhana, S.; Taylor, M.C.; Chatelain, E.; Kelly, J.M. Limited ability of posaconazole to cure both acute and chronic Trypanosoma cruzi infections revealed by highly sensitive in vivo imaging. Antimicrob. Agents Chemother., 2015, 59(8), 4653-4661.
[http://dx.doi.org/10.1128/AAC.00520-15] [PMID: 26014936]
[49]
Veiga-Santos, P.; Barrias, E.S.; Santos, J.F.C.; de Barros Moreira, T.L.; de Carvalho, T.M.U.; Urbina, J.A.; de Souza, W. Effects of amiodarone and posaconazole on the growth and ultrastructure of Trypanosoma cruzi. Int. J. Antimicrob. Agents, 2012, 40(1), 61-71.
[http://dx.doi.org/10.1016/j.ijantimicag.2012.03.009] [PMID: 22591838]
[50]
Martins, T.A.F.; De Figueiredo, D.L.; Mazzeti, A.L.; Do Nascimento, Á.F.D.S.; Caldas, S.; Caldas, I.S.; Andrade, I.M.; Ribeiro, I.; Bahia, M.T. Benznidazole/itraconazole combination treatment enhances anti-Trypanosoma cruzi activity in experimental Chagas Disease. PLoS One, 2015, 10(6), e0128707.
[http://dx.doi.org/10.1371/journal.pone.0128707]
[51]
Moreira da Silva, R.; Oliveira, L.T.; Silva Barcellos, N.M.; de Souza, J.; de Lana, M. Preclinical monitoring of drug association in experimental chemotherapy of Chagas’ disease by a new HPLC-UV method. Antimicrob. Agents Chemother., 2012, 56(6), 3344-3348.
[http://dx.doi.org/10.1128/AAC.05785-11] [PMID: 22450981]
[52]
Gulin, J.E.N.; Eagleson, M.A.; López-Muñoz, R.A.; Solana, M.E.; Altcheh, J.; García-Bournissen, F. In vitro and in vivo activity of voriconazole and benznidazole combination on Trypanosoma cruzi infection models. Acta Trop., 2020, 211, 105606.
[http://dx.doi.org/10.1016/j.actatropica.2020.105606] [PMID: 32598923]
[53]
Strauss, M.; Rodrigues, J.H.S.; Lo Presti, M.S.; Bazán, P.C.; Báez, A.L.; Paglini-Oliva, P.; Nakamura, C.V.; Bustamante, J.M.; Rivarola, H.W. In vitro and in vivo drug combination for the treatment of Trypanosoma cruzi infection: A multivariate approach. Exp. Parasitol., 2018, 189, 19-27.
[http://dx.doi.org/10.1016/j.exppara.2018.04.016] [PMID: 29726395]
[54]
Greco, W.R.; Bravo, G.; Parsons, J.C. The search for synergy: A critical review from a response surface perspective. Pharmacol. Rev., 1995, 47(2), 331-385.
[PMID: 7568331]
[55]
Vázquez, K.; Paulino, M.; Salas, C.O.; Zarate-Ramos, J.J.; Vera, B.; Rivera, G. Trypanothione reductase: A target for the development of anti-Trypanosoma cruzi drugs. Mini Rev. Med. Chem., 2017, 17(11), 939-946.
[http://dx.doi.org/10.2174/1389557517666170315145410] [PMID: 28302040]
[56]
Maya, J.D.; Cassels, B.K.; Iturriaga-Vásquez, P.; Ferreira, J.; Faúndez, M.; Galanti, N.; Ferreira, A.; Morello, A. Mode of action of natural and synthetic drugs against Trypanosoma cruzi and their interaction with the mammalian host. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 2007, 146(4), 601-620.
[http://dx.doi.org/10.1016/j.cbpa.2006.03.004] [PMID: 16626984]
[57]
Santos Souza, H.F.; Rocha, S.C.; Damasceno, F.S.; Rapado, L.N.; Pral, E.M.F.; Marinho, C.R.F.; Silber, A.M. The effect of memantine, an antagonist of the NMDA glutamate receptor, in in vitro and in vivo infections by Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2019, 13(9), e0007226.
[http://dx.doi.org/10.1371/journal.pntd.0007226] [PMID: 31536489]
[58]
Damasceno, F.S.; Barisón, M.J.; Pral, E.M.F.; Paes, L.S.; Silber, A.M. Memantine, an antagonist of the NMDA glutamate receptor, affects cell proliferation, differentiation and the intracellular cycle and induces apoptosis in Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2014, 8(2), e2717.
[http://dx.doi.org/10.1371/journal.pntd.0002717] [PMID: 24587468]
[59]
Penitente, A.R.; Shrestha, D.; Horta, A.L.; Leite, A.L.J.; Neves, C.A.; Natali, A.J.; de Paula Costa, G.; Talvani, A. Enalapril in combination with BZN reduces cardiac inflammation and creatine kinases in mice chronically infected with Trypanosoma cruzi. Am. J. Trop. Med. Hyg., 2015, 93(5), 976-982.
[http://dx.doi.org/10.4269/ajtmh.15-0237] [PMID: 26350447]
[60]
da Silva, M.T.A.; Silva-Jardim, I.; Portapilla, G.B.; de Lima, G.M.A.; Costa, F.C.; Anibal, F.F.; Thiemann, O.H. In vivo and in vitro auranofin activity against Trypanosoma cruzi: Possible new uses for an old drug. Exp. Parasitol., 2016, 166, 189-193.
[http://dx.doi.org/10.1016/j.exppara.2015.05.012] [PMID: 26183422]
[61]
Fan, C.; Zheng, W.; Fu, X.; Li, X.; Wong, Y-S.; Chen, T. Enhancement of auranofin-induced lung cancer cell apoptosis by selenocystine, a natural inhibitor of TrxR1 in vitro and in vivo. Cell Death Dis., 2014, 5(4), e1191.
[http://dx.doi.org/10.1038/cddis.2014.132] [PMID: 24763048]
[62]
Silva, M.; Araújo, J.; Oliveira, G.; Demarque, K.; Peres, R.; Melo, I.; Batista, D.; Silva, C.; Santos, C.; Silva, P.; Batista, M.; Bahia, M.; Soeiro, M. Strategy for the reuse of drugs against Trypanosoma cruzi infection: In vitro and in vivo evaluation of metronidazole activity in monotherapy and combination therapy. Biochem. Pharmacol., 2017, 141, 49-51.
[http://dx.doi.org/10.1016/j.bcp.2017.08.025]
[63]
Kumar, T.; Verma, D.; Menna-Barreto, R.F.S.; Valença, W.O.; da Silva Júnior, E.N.; Namboothiri, I.N.N. Synthesis of imidazoles via cascade reaction of nitroallylic acetates with amidines and studies on their trypanocidal activity. Org. Biomol. Chem., 2015, 13(7), 1996-2000.
[http://dx.doi.org/10.1039/C4OB02561J] [PMID: 25573664]
[64]
Puente, V.; Demaria, A.; Frank, F.M.; Batlle, A.; Lombardo, M.E. Anti-parasitic effect of vitamin C alone and in combination with benznidazole against Trypanosoma cruzi. PLoS Negl. Trop. Dis., 2018, 12(9), e0006764.
[http://dx.doi.org/10.1371/journal.pntd.0006764] [PMID: 30240395]
[65]
Nwaka, S.; Hudson, A. Innovative lead discovery strategies for tropical diseases. Nat. Rev. Drug Discov., 2006, 5(11), 941-955.
[http://dx.doi.org/10.1038/nrd2144] [PMID: 17080030]
[66]
Mazzeti, A.L.; Diniz, L.F.; Gonçalves, K.R. WonDollinger, R.S.; Assíria, T.; Ribeiro, I.; Bahia, M.T. Synergic effect of allopurinol in combination with nitroheterocyclic compounds against Trypanosoma cruzi. Antimicrob. Agents Chemother., 2019, 63(6), e02264-18.
[http://dx.doi.org/10.1128/AAC.02264-18] [PMID: 30962342]
[67]
Ashley, E.A.; Pyae Phyo, A.; Woodrow, C.J. Malaria. Lancet, 2018, 391(10130), 1608-1621.
[http://dx.doi.org/10.1016/S0140-6736(18)30324-6]
[68]
Milner, D.A.J. Malaria pathogenesis. Cold Spring Harb. Perspect. Med., 2018, 8(1), 025569.
[http://dx.doi.org/10.1101/cshperspect.a025569]
[69]
World Health Organization (WHO), Malaria. Available from: https://www.paho.org/en/topics/malaria (Accessed on: July 19, 2021).
[70]
Centers for Disease Control Prevention (CDC). Malaria. Available from: https://www.cdc.gov/malaria/travelers/drugs.html (Accessed on: July 19, 2021).
[71]
Medscape. Antimaláricos. Available from: https://reference.medscape.com/drugs/antimalarials (Accessed on :July 19, 2021).
[72]
Soares, R.R.; da Silva, J.M.F.; Carlos, B.C.; da Fonseca, C.C.; de Souza, L.S.A.; Lopes, F.V.; de Paula Dias, R.M.; Moreira, P.O.L.; Abramo, C.; Viana, G.H.R.; de Pila Varotti, F.; da Silva, A.D.; Scopel, K.K.G. New quinoline derivatives demonstrate a promising antimalarial activity against Plasmodium falciparum in vitro and Plasmodium berghei in vivo. Bioorg. Med. Chem. Lett., 2015, 25(11), 2308-2313.
[http://dx.doi.org/10.1016/j.bmcl.2015.04.014] [PMID: 25920564]
[73]
Ahmed, W.; Rani, M.; Khan, I.A.; Iqbal, A.; Khan, K.M.; Haleem, M.A.; Azim, M.K. Characterisation of hydrazides and hydrazine derivatives as novel aspartic protease inhibitors. J. Enzyme Inhib. Med. Chem., 2010, 25(5), 673-678.
[http://dx.doi.org/10.3109/14756360903508430] [PMID: 20063996]
[74]
Pinheiro, L.C.S.; Boechat, N.; Ferreira, M.L.G.; Júnior, C.C.S.; Jesus, A.M.L.; Leite, M.M.M.; Souza, N.B.; Krettli, A.U. Anti- Plasmodium falciparum activity of quinoline–sulfonamide hybrids. Bioorg. Med. Chem., 2015, 23(17), 5979-5984.
[http://dx.doi.org/10.1016/j.bmc.2015.06.056] [PMID: 26190461]
[75]
Korotchenko, V.; Sathunuru, R.; Gerena, L.; Caridha, D.; Li, Q.; Kreishman-Deitrick, M.; Smith, P.L.; Lin, A.J. Antimalarial activity of 4-amidinoquinoline and 10-amidinobenzonaphthyridine derivatives. J. Med. Chem., 2015, 58(8), 3411-3431.
[http://dx.doi.org/10.1021/jm501809x] [PMID: 25654185]
[76]
Ongarora, D.S.B.; Strydom, N.; Wicht, K.; Njoroge, M.; Wiesner, L.; Egan, T.J.; Wittlin, S.; Jurva, U.; Masimirembwa, C.M.; Chibale, K. Antimalarial benzoheterocyclic 4-aminoquinolines: Structure–activity relationship, in vivo evaluation, mechanistic and bioactivation studies. Bioorg. Med. Chem., 2015, 23(17), 5419-5432.
[http://dx.doi.org/10.1016/j.bmc.2015.07.051] [PMID: 26264839]
[77]
Singh, S.; Agarwal, D.; Sharma, K.; Sharma, M.; Nielsen, M.A.; Alifrangis, M.; Singh, A.K.; Gupta, R.D.; Awasthi, S.K. 4-Aminoquinoline derivatives: Synthesis, in vitro and in vivo antiplasmodial activity against chloroquine-resistant parasites. Eur. J. Med. Chem., 2016, 122, 394-407.
[http://dx.doi.org/10.1016/j.ejmech.2016.06.033] [PMID: 27394399]
[78]
Aguiar, A.C.C.; Murce, E.; Cortopassi, W.A.; Pimentel, A.S.; Almeida, M.M.F.S.; Barros, D.C.S.; Guedes, J.S.; Meneghetti, M.R.; Krettli, A.U. Chloroquine analogs as antimalarial candidates with potent in vitro and in vivo activity. Int. J. Parasitol. Drugs Drug Resist., 2018, 8(3), 459-464.
[http://dx.doi.org/10.1016/j.ijpddr.2018.10.002] [PMID: 30396013]
[79]
Aguiar, A.C.C.; Panciera, M.; Simão dos Santos, E.F.; Singh, M.K.; Garcia, M.L.; de Souza, G.E.; Nakabashi, M.; Costa, J.L.; Garcia, C.R.S.; Oliva, G.; Correia, C.R.D.; Guido, R.V.C. Discovery of marinoquinolines as potent and Fast-Acting Plasmodium falciparum inhibitors with in vivo activity. J. Med. Chem., 2018, 61(13), 5547-5568.
[http://dx.doi.org/10.1021/acs.jmedchem.8b00143] [PMID: 29879353]
[80]
Jain, S.; Kumar, A.; Saini, D. Novel arylidene derivatives of quinoline based thiazolidinones: Synthesis, in vitro, in vivo and in silico study as antimalarials. Exp. Parasitol., 2018, 185, 107-114.
[http://dx.doi.org/10.1016/j.exppara.2018.01.015] [PMID: 29355497]
[81]
Tripathi, M.; Taylor, D.; Khan, S.I.; Tekwani, B.L.; Ponnan, P.; Das, U.S.; Velpandian, T.; Rawat, D.S. Hybridization of fluoro-amodiaquine (FAQ) with pyrimidines: Synthesis and antimalarial efficacy of FAQ–Pyrimidines. ACS Med. Chem. Lett., 2019, 10(5), 714-719.
[http://dx.doi.org/10.1021/acsmedchemlett.8b00496] [PMID: 31097988]
[82]
Tahghighi, A.; Parhizgar, A.; Karimi, S.; Irani, M. Synthesis of novel amodiaquine analogs and evaluation of their in vitro and in vivo antimalarial activities. J. Vector Borne Dis., 2019, 56(3), 221-230.
[http://dx.doi.org/10.4103/0972-9062.289395] [PMID: 32655071]
[83]
Dambuza, N.S.; Smith, P.; Evans, A.; Norman, J.; Taylor, D.; Andayi, A.; Egan, T.; Chibale, K.; Wiesner, L. Antiplasmodial activity, in vivo pharmacokinetics and antimalarial efficacy evaluation of hydroxypyridinone hybrids in a mouse model. Malar. J., 2015, 14(1), 505.
[http://dx.doi.org/10.1186/s12936-015-1032-5] [PMID: 26671222]
[84]
Romero, A.H.; Acosta, M.E.; Gamboa, N.; Charris, J.E.; Salazar, J.; López, S.E. Synthesis, β-hematin inhibition studies and antimalarial evaluation of dehydroxy isotebuquine derivatives against Plasmodium berghei. Bioorg. Med. Chem., 2015, 23(15), 4755-4762.
[http://dx.doi.org/10.1016/j.bmc.2015.05.040] [PMID: 26081761]
[85]
Tiwari, V.S.; Joshi, P.; Yadav, K.; Sharma, A.; Chowdhury, S.; Manhas, A.; Kumar, N.; Tripathi, R.; Haq, W. Synthesis and antimalarial activity of 4-methylaminoquinoline compounds against drug-resistant parasite. ACS Omega, 2021, 6(20), 12984-12994.
[http://dx.doi.org/10.1021/acsomega.0c06053] [PMID: 34056449]
[86]
Mizukawa, Y.; Ikegami-Kawai, M.; Horiuchi, M.; Kaiser, M.; Kojima, M.; Sakanoue, S.; Miyagi, S.; Nanga Chick, C.; Togashi, H.; Tsubuki, M.; Ihara, M.; Usuki, T.; Itoh, I. Quest for a potent antimalarial drug lead: Synthesis and evaluation of 6,7-dimethoxyquinazoline-2,4-diamines. Bioorg. Med. Chem., 2021, 33, 116018.
[http://dx.doi.org/10.1016/j.bmc.2021.116018] [PMID: 33524940]
[87]
Huang, Z.; Li, R.; Tang, T.; Ling, D.; Wang, M.; Xu, D.; Sun, M.; Zheng, L.; Zhu, F.; Min, H.; Boonhok, R.; Ding, Y.; Wen, Y.; Chen, Y.; Li, X.; Chen, Y.; Liu, T.; Han, J.; Miao, J.; Fang, Q.; Cao, Y.; Tang, Y.; Cui, J.; Xu, W.; Cui, L.; Zhu, J.; Wong, G.; Li, J.; Jiang, L. A novel multistage antiplasmodial inhibitor targeting Plasmodium falciparum histone deacetylase 1. Cell Discov., 2020, 6(1), 93.
[http://dx.doi.org/10.1038/s41421-020-00215-4] [PMID: 33311461]
[88]
Li, R.; Ling, D.; Tang, T.; Huang, Z.; Wang, M.; Ding, Y.; Liu, T.; Wei, H.; Xu, W.; Mao, F.; Zhu, J.; Li, X.; Jiang, L.; Li, J. Discovery of novel Plasmodium falciparum HDAC1 inhibitors with Dual-Stage antimalarial aotency and improved safety based on the clinical anticancer drug candidate quisinostat. J. Med. Chem., 2021, 64(4), 2254-2271.
[http://dx.doi.org/10.1021/acs.jmedchem.0c02104] [PMID: 33541085]
[89]
Pandey, A.K.; Sharma, S.; Pandey, M.; Alam, M.M.; Shaquiquzzaman, M.; Akhter, M. 4, 5-Dihydrooxazolepyrazoline hybrids: Synthesis and their evaluation as potential antimalarial agents. Eur. J. Med. Chem., 2016, 123, 476-486.
[http://dx.doi.org/10.1016/j.ejmech.2016.07.055] [PMID: 27494165]
[90]
Schwertz, G.; Witschel, M.C.; Rottmann, M.; Bonnert, R.; Leartsakulpanich, U.; Chitnumsub, P.; Jaruwat, A.; Ittarat, W.; Schäfer, A.; Aponte, R.A.; Charman, S.A.; White, K.L.; Kundu, A.; Sadhukhan, S.; Lloyd, M.; Freiberg, G.M.; Srikumaran, M.; Siggel, M.; Zwyssig, A.; Chaiyen, P.; Diederich, F. Antimalarial inhibitors targeting serine hydroxymethyltransferase (SHMT) with in vivo efficacy and analysis of their binding mode based on X-ray cocrystal structures. J. Med. Chem., 2017, 60(12), 4840-4860.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00008] [PMID: 28537728]
[91]
Bhagat, S.; Arfeen, M.; Adane, L.; Singh, S.; Singh, P.P.; Chakraborti, A.K.; Bharatam, P.V. Guanylthiourea derivatives as potential antimalarial agents: Synthesis, in vivo and molecular modelling studies. Eur. J. Med. Chem., 2017, 135, 339-348.
[http://dx.doi.org/10.1016/j.ejmech.2017.04.022] [PMID: 28460309]
[92]
Shukla, M.; Hassam, M.; Kumar Yadav, D.; Sharma, S.; Singh, C.; Puri, S.K.; Shrivastava, R.; Prakash Verma, V. Synthesis of novel 1,2,4-trioxanes and antimalarial evaluation against multidrug-resistant Plasmodium yoelii nigeriensis. Bioorg. Med. Chem. Lett., 2021, 49, 128305.
[http://dx.doi.org/10.1016/j.bmcl.2021.128305] [PMID: 34365007]
[93]
Rocha e Silva, L.F.; Nogueira, K.L.; Pinto, A.C.S.; Katzin, A.M.; Sussmann, R.A.C.; Muniz, M.P.; Neto, V.F.A.; Chaves, F.C.M.; Coutinho, J.P.; Lima, E.S.; Krettli, A.U.; Tadei, W.P.; Pohlit, A.M. In vivo antimalarial activity and mechanisms of action of 4-nerolidylcatechol derivatives. Antimicrob. Agents Chemother., 2015, 59(6), 3271-3280.
[http://dx.doi.org/10.1128/AAC.05012-14] [PMID: 25801563]
[94]
El Bissati, K.; Redel, H.; Ting, L.M.; Lykins, J.D.; McPhillie, M.J.; Upadhya, R.; Woster, P.M.; Yarlett, N.; Kim, K.; Weiss, L.M. Novel synthetic polyamines have potent antimalarial activities in vitro and in vivo by decreasing intracellular spermidine and spermine concentrations. Front. Cell. Infect. Microbiol., 2019, 9, 9.
[http://dx.doi.org/10.3389/fcimb.2019.00009] [PMID: 30838177]
[95]
Mendes, A.M.; Albuquerque, I.S.; Machado, M.; Pissarra, J.; Meireles, P.; Prudêncio, M. Inhibition of Plasmodium liver infection by ivermectin. Antimicrob. Agents Chemother., 2017, 61(2), e02005-16.
[http://dx.doi.org/10.1128/AAC.02005-16] [PMID: 27895022]
[96]
Vera, I.M.; Grilo Ruivo, M.T.; Lemos Rocha, L.F.; Marques, S.; Bhatia, S.N.; Mota, M.M.; Mancio-Silva, L. Targeting liver stage malaria with metformin. JCI Insight, 2019, 4(24), e127441.
[http://dx.doi.org/10.1172/jci.insight.127441] [PMID: 31852843]
[97]
Umeyor, C.E.; Okoye, I.; Uronnachi, E.; Okeke, T.; Kenechukwu, F.; Attama, A. Repositioning miconazole nitrate for malaria: Formulation of sustained release nanostructured lipid carriers, structure characterization and in vivo antimalarial evaluation. J. Drug Deliv. Sci. Technol., 2021, 61, 102125.
[http://dx.doi.org/10.1016/j.jddst.2020.102125]
[98]
Yadav, K.; Shivahare, R.; Shaham, S.H.; Joshi, P.; Sharma, A.; Tripathi, R. Repurposing of existing therapeutics to combat drug-resistant malaria. Biomed. Pharmacother., 2021, 136, 111275.
[http://dx.doi.org/10.1016/j.biopha.2021.111275] [PMID: 33485067]
[99]
Mutapi, F.; Maizels, R.; Fenwick, A.; Woolhouse, M. Human schistosomiasis in the post mass drug administration era. Lancet Infect. Dis., 2017, 17(2), e42-e48.
[http://dx.doi.org/10.1016/S1473-3099(16)30475-3] [PMID: 27988094]
[100]
Barbosa, C.S.; de Souza Gomes, E.C.; Campos, J.V.; de Oliveira, F.J.M.; da Silva Mesquita, M.C.; de Oliveira, E.C.A.; Domingues, A.L.C. Morbidity of mansoni schistosomiasis in Pernambuco—Brazil: Analysis on the temporal evolution of deaths, hospital admissions and severe clinical forms (1999–2014). Acta Trop., 2016, 164, 10-16.
[http://dx.doi.org/10.1016/j.actatropica.2016.06.024] [PMID: 27381578]
[101]
Vale, N.; Gouveia, M.J.; Rinaldi, G.; Brindley, P.J.; Gärtner, F.; Correia da Costa, J.M. PZQ for schistosomiasis: Single-drug metabolism revisited, mode of action, andresistance. Antimicrob. Agents Chemother., 2017, 61(5), e02582-16.
[http://dx.doi.org/10.1128/AAC.02582-16] [PMID: 28264841]
[102]
World Health Organization (WHO). Investing to overcome the global impact of neglected tropical diseases, third WHO report on neglected tropical diseases. 2015. Available from: https://apps.who.int/iris/handle/10665/152781 (Accessed on: July 19, 2021).
[103]
Coulibaly, J.T.; Panic, G.; Silué, K.D.; Kovač, J.; Hattendorf, J.; Keiser, J. Efficacy and safety of praziquantel in preschool-aged and school-aged children infected with Schistosoma mansoni: A randomised controlled, parallelgroup, dose-ranging, phase 2 trial. Lancet Glob. Health, 2017, 5(7), e688-e698.
[http://dx.doi.org/10.1016/S2214-109X(17)30187-0] [PMID: 28619227]
[104]
Wang, W.; Wang, L.; Liang, Y.S. Susceptibility or resistance of praziquantel in human schistosomiasis: A review. Parasitol. Res., 2012, 111(5), 1871-1877.
[http://dx.doi.org/10.1007/s00436-012-3151-z] [PMID: 23052781]
[105]
Chevalier, F.D.; Le Clec’h, W.; Eng, N.; Rugel, A.R.; Assis, R.R.; Oliveira, G.; Holloway, S.P.; Cao, X.; Hart, P.J.; LoVerde, P.T.; Anderson, T.J.C. Independent origins of loss-of-function mutations conferring oxamniquine resistance in a Brazilian schistosome population. Int. J. Parasitol., 2016, 46(7), 417-424.
[http://dx.doi.org/10.1016/j.ijpara.2016.03.006] [PMID: 27073078]
[106]
Peter, J.H.; Donald, A.P.B.; Kathleen, B.; Simon, B.; Lesley, D.; Nilanthi, S.; Antonio, M.; Dirk, E.; Matthew, J.; Lester, C.; Jeffrey, C.; Ramanan, L.; Catherine, M.; Jeff, B.; Rodrigo, C.O.; Xiao, S.; Alan, F.; Lorenzo, S. Helminth infections: Soil-transmitted helminth infections and schistosomiasis. In: Disease Control Priorities in Developing Countries, 2nd ed; Dean, T.J.; Joel, G.B.; Anthony, R.M.; George, A.; Mariam, C.; David, B.E.; Prabhat, J.; Anne, M.; Philip, M., Eds.; Oxford University Press & World Bank: Washington, DC, 2006, pp. 467-482.
[107]
Frédéric, D.C.; Winka, L.C.; Marina, M.; Vinay, M.; Meghan, A.G.; Stephen, P.H.; Xiaohang, C.; Alexander, B.T.; Safari, K.; Anouk, N.G.; Bonnie, L.W.; Joanne, P.W.; Aidan, M.E.; David, R. Oxamniquine resistance alleles are widespread in old world Schistosoma mansoni and predate drug deployment. PLoS Pathog., 2019, 15(10), e1007881.
[108]
Cowan, N.; Dätwyler, P.; Ernst, B.; Wang, C.; Vennerstrom, J.L.; Spangenberg, T.; Keiser, J. Activities of N,N′-Diarylurea MMV665852 analogs against Schistosoma mansoni. Antimicrob. Agents Chemother., 2015, 59(4), 1935-1941.
[http://dx.doi.org/10.1128/AAC.04463-14] [PMID: 25583726]
[109]
Wu, J.; Wang, C.; Leas, D.; Vargas, M.; White, K.L.; Shackleford, D.M.; Chen, G.; Sanford, A.G.; Hemsley, R.M.; Davis, P.H.; Dong, Y.; Charman, S.A.; Keiser, J.; Vennerstrom, J.L. Progress in antischistosomal N,N′-diaryl urea SAR. Bioorg. Med. Chem. Lett., 2018, 28(3), 244-248.
[http://dx.doi.org/10.1016/j.bmcl.2017.12.064] [PMID: 29317164]
[110]
Zhou, S.; Huang, G. Design, synthesis and bioactivities of phenithionate analogues or derivatives for antischistosomiasis. MedChemComm, 2018, 9(2), 328-336.
[http://dx.doi.org/10.1039/C7MD00590C] [PMID: 30108926]
[111]
Taman, A.; Alhusseiny, S.M.; El-Zayady, W.M.; Elblihy, A.A.; Mansour, B.; Massoud, M.; Youssef, M.Y.; Saleh, N.E. In vivo studies of the effect of PPQ-6, a quinolinebased agent against Schistosoma mansoni in mice. Exp. Parasitol., 2020, 215, 107933.
[http://dx.doi.org/10.1016/j.exppara.2020.107933] [PMID: 32525006]
[112]
Filho, C.A.L.M.; Barbosa, M.O.; Oliveira, A.R.; Santiago, E.F.; de Souza, V.C.A.; Lucena, J.P.; Fernandes, C.J.B.; Santos, I.R.; Leão, R.L.C.; Santos, F.A.B.; Alves, L.C.; Pereira, V.R.A.; de Araújo, R.E.; Leite, A.C.L.; de Oliveira, S.A. In vitro and in vivo activities of multi-target phtalimido-thiazoles on Schistosomiasis mansoni. Eur. J. Pharm. Sci., 2020, 146, 105236.
[http://dx.doi.org/10.1016/j.ejps.2020.105236] [PMID: 32058057]
[113]
Khan, M.O.F.; Keiser, J.; Amoyaw, P.N.A.; Hossain, M.F.; Vargas, M.; Le, J.G.; Simpson, N.C.; Roewe, K.D.; Freeman, T.N.C.; Hasley, T.R.; Maples, R.D.; Archibald, S.J.; Hubin, T.J. Discovery of antischistosomal drug leads based on tetraazamacrocyclic derivatives and their metal complexes. Antimicrob. Agents Chemother., 2016, 60(9), 5331-5336.
[http://dx.doi.org/10.1128/AAC.00778-16] [PMID: 27324765]
[114]
Hess, J.; Panic, G.; Patra, M.; Mastrobuoni, L.; Spingler, B.; Roy, S.; Keiser, J.; Gasser, G. Ferrocenyl, ruthenocenyl, and benzyl oxamniquine derivatives with cross-species activity against Schistosoma mansoni and Schistosoma haematobium. ACS Infect. Dis., 2017, 3(9), 645-652.
[http://dx.doi.org/10.1021/acsinfecdis.7b00054] [PMID: 28686009]
[115]
d’Orchymont, F.; Hess, J.; Panic, G.; Jakubaszek, M.; Gemperle, L.; Keiser, J.; Gasser, G. Synthesis, characterization and biological activity of organometallic derivatives of the antimalarial drug mefloquine as new antischistosomal drug candidates. MedChemComm, 2018, 9(11), 1905-1909.
[http://dx.doi.org/10.1039/C8MD00396C] [PMID: 30568758]
[116]
Gold, D.; Alian, M.; Domb, A.; Karawani, Y.; Jbarien, M.; Chollet, J.; Haynes, R.K.; Wong, H.N.; Buchholz, V.; Greiner, A.; Golenser, J. Elimination of Schistosoma mansoni in infected mice by slow release of artemisone. Int. J. Parasitol. Drugs Drug Resist., 2017, 7(2), 241-247.
[http://dx.doi.org/10.1016/j.ijpddr.2017.05.002] [PMID: 28511056]
[117]
Corrêa, S.A.P.; de Oliveira, R.N.; Mendes, T.M.F.; dos Santos, K.R.; Boaventura, S., Jr; Garcia, V.L.; Jeraldo, V.L.S.; Allegretti, S.M. In vitro and in vivo evaluation of six artemisinin derivatives against Schistosoma mansoni. Parasitol. Res., 2019, 118(2), 505-516.
[http://dx.doi.org/10.1007/s00436-018-6188-9] [PMID: 30617587]
[118]
Wang, X.; Yu, D.; Li, C.; Zhan, T.; Zhang, T.; Ma, H.; Xu, J.; Xia, C. In vitro and in vivo activities of DW-3-15, a commercial praziquantel derivative, against Schistosoma japonicum. Parasit. Vectors, 2019, 12(1), 199.
[http://dx.doi.org/10.1186/s13071-019-3442-7] [PMID: 31053083]
[119]
Panic, G.; Vargas, M.; Scandale, I.; Keiser, J. Activity Profile of an FDA-Approved Compound Library against Schistosoma mansoni. PLoS Negl. Trop. Dis., 2015, 9(7), e0003962.
[http://dx.doi.org/10.1371/journal.pntd.0003962] [PMID: 26230921]
[120]
Cowan, N.; Keiser, J. Repurposing of anticancer drugs: In vitro and in vivo activities against Schistosoma mansoni. Parasit. Vectors, 2015, 8(1), 417.
[http://dx.doi.org/10.1186/s13071-015-1023-y] [PMID: 26265386]
[121]
Mossallam, S.F.; Amer, E.I.; El-Faham, M.H. Efficacy of Synriam™, a new antimalarial combination of OZ277 and piperaquine, against different developmental stages of Schistosoma mansoni. Acta Trop., 2015, 143, 36-46.
[http://dx.doi.org/10.1016/j.actatropica.2014.12.005] [PMID: 25530543]
[122]
Guidi, A.; Lalli, C.; Perlas, E.; Bolasco, G.; Nibbio, M.; Monteagudo, E.; Bresciani, A.; Ruberti, G. Discovery and characterization of novel anti-schistosomal properties of the anti-anginal drug, perhexiline and its impact on Schistosoma mansoni male and female reproductive systems. PLoS Negl. Trop. Dis., 2016, 10(8), e0004928.
[http://dx.doi.org/10.1371/journal.pntd.0004928] [PMID: 27518281]
[123]
Eissa, M.M.; Mossallam, S.F.; Amer, E.I.; Younis, L.K.; Rashed, H.A. Repositioning of chlorambucil as a potential anti-schistosomal agent. Acta Trop., 2017, 166, 58-66.
[http://dx.doi.org/10.1016/j.actatropica.2016.11.006] [PMID: 27836498]
[124]
Guerra, R.A.; Silva, M.P.; Silva, T.C.; Salvadori, M.C.; Teixeira, F.S.; De Oliveira, R.N.; Rocha, J.A.; Pinto, P.L.S.; De Moraes, J. Spironolactone as an antischistosomal drug capable of clinical repurposing: In vitro and in vivo studies. Antimicrob. Agents Chemother., 2018, 63(3), e01722-e18.
[http://dx.doi.org/10.1128/AAC.01722-18] [PMID: 30559137]
[125]
Roquini, D.B.; Cogo, R.M.; Mengarda, A.C.; Mazloum, S.F.; Morais, C.S.; Xavier, R.P.; Salvadori, M.C.; Teixeira, F.S.; Ferreira, L.E.; Pinto, P.L.; Morais, T.R.; de Moraes, J. Promethazine exhibits antiparasitic properties in vitro and reduces worm burden, egg production, hepato-, and splenomegaly in a schistosomiasis animal model. Antimicrob. Agents Chemother., 2019, 63(12), e01208-19.
[http://dx.doi.org/10.1128/AAC.01208-19] [PMID: 31527034]
[126]
Lago, E.M.; Silva, M.P.; Queiroz, T.G.; Mazloum, S.F.; Rodrigues, V.C.; Carnaúba, P.U.; Pinto, P.L.; Rocha, J.A.; Ferreira, L.L.G.; Andricopulo, A.D.; de Moraes, J. Phenotypic screening of nonsteroidal anti-inflammatory drugs identified mefenamic acid as a drug for the treatment of schistosomiasis. EBioMedicine, 2019, 43, 370-379.
[http://dx.doi.org/10.1016/j.ebiom.2019.04.029] [PMID: 31027918]
[127]
Oliveira, R.N.; Corrêa, S.A.P.; Vieira, K.M.; Mendes, T.; Allegretti, S.M.; Miguel, D.C. In vitro schistosomicidal activity of tamoxifen and its effectiveness in a murine model of schistosomiasis at a single dose. Parasitol. Res., 2019, 118(5), 1625-1631.
[http://dx.doi.org/10.1007/s00436-019-06259-0] [PMID: 30798369]
[128]
de Brito, M.G.; Mengarda, A.C.; Oliveira, G.L.; Cirino, M.E.; Silva, T.C.; de Oliveira, R.N.; Allegretti, S.M.; de Moraes, J. Therapeutic effect of diminazene aceturate on parasitic blood fluke Schistosoma mansoni infection. Antimicrob. Agents Chemother., 2020, 64(11), e01372-20.
[http://dx.doi.org/10.1128/AAC.01372-20] [PMID: 32816737]
[129]
Abou-El-Naga, I.F.; El-Temsahy, M.M.; Mogahed, N.M.F.H.; Sheta, E.; Makled, S.; Ibrahim, E.I. Effect of celecoxib against different developmental stages of experimental Schistosoma mansoni infection. Acta Trop., 2021, 218, 105891.
[http://dx.doi.org/10.1016/j.actatropica.2021.105891] [PMID: 33773944]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy