Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

Synergy Potential of Ursolic Acid-Based Hybrid Molecules

Author(s): Krishna N. Mishra, Sonam Singh, Harish C. Upadhyay*, Swaroop Sanket, Manoj Kumar, Umme Yashmeen, Rajni Kant and Gaurav R. Dwivedi

Volume 20, Issue 4, 2023

Published on: 01 November, 2022

Page: [469 - 478] Pages: 10

DOI: 10.2174/1570180819666220929143234

Price: $65

conference banner
Abstract

Background: Ursolic acid (UA, 3β-hydroxy-urs-12-en-28-oic acid), a pentacyclic triterpenoid from various medicinal plants, has been blessed with proven biological effects, including antiinflammatory, anticancer, antidiabetic, antioxidant and antibacterial, but its bioavailability and solubility limit its clinical application.

Objective: Synthesis of UA-based hybrid molecules to explore their antibacterial and synergy potential in combination with azithromycin (AZT) for the treatment of multidrug-resistant (MDR) bacterial infections.

Methods: Hybrid molecules of UA with menthol, eugenol, and nalidixic acid (NAL) along with some other ester derivatives were synthesized, and evaluated for their antibacterial and synergy potential in combination with AZT against the clinical isolate of Escherichia coli in terms of their minimum inhibitory concentration (MIC), fold reduction in MIC, fractional inhibitory concentration index (FICI) and type of interaction. In silico screening of pharmacokinetic parameters, docking affinity against efflux pump proteins AcrA, AcrB, and TolC was performed on the most potent derivative 7 (3-O-nalidixoyl UA).

Results: Derivative 7 showed MIC of 62.5 μg/mL and a strong synergistic effect with AZT reducing the MIC of AZT from 100 to 0.19 μg/mL (512-fold reduction) against E. coli at a concentration of 12.5 μg/mL. Other derivatives neither showed antibacterial activity of their own (MIC > 1000 μg/mL) nor any significant synergistic interaction in combination with AZT. The in silico studies on 7 revealed improved druggability parameters over the parent UA and NAL.

Conclusion: The findings highlight derivative 7 as strong synergistic agent in combination with AZT which may be further investigated to render its efficient use for the treatment of MDR bacterial infections.

Keywords: Hybrid molecules, nalidixic acid, azithromycin, ursolic acid, antibacterial, multidrug-resistant, drug resistance reversal.

Graphical Abstract
[1]
Yang, Y.H.; Buttery, J. Antimicrobial resistance: A global one-health problem for all ages. World J. Pediatr., 2018, 14(6), 521-522.
[http://dx.doi.org/10.1007/s12519-018-0194-y] [PMID: 30298235]
[2]
Maddocks, S. Antimicrobial resistance: Global problems need global solutions. Med. J. Aust., 2013, 198(5), 241.
[http://dx.doi.org/10.5694/mja13.c0318] [PMID: 23496384]
[3]
Hu, X.Y.; Logue, M.; Robinson, N. Antimicrobial resistance is a global problem-A UK perspective. Eur. J. Integr. Med., 2020, 36, 101136.
[http://dx.doi.org/10.1016/j.eujim.2020.101136] [PMID: 32399092]
[4]
Christaki, E.; Marcou, M.; Tofarides, A. antimicrobial resistance in bacteria: Mechanisms, evolution, and persistence. J. Mol. Evol., 2020, 88(1), 26-40.
[http://dx.doi.org/10.1007/s00239-019-09914-3] [PMID: 31659373]
[5]
Morrison, L.; Zembower, T.R. Antimicrobial resistance. Gastrointest. Endosc. Clin. N. Am., 2020, 30(4), 619-635.
[http://dx.doi.org/10.1016/j.giec.2020.06.004] [PMID: 32891221]
[6]
WHO. Global antimicrobial resistance and use surveillance system (GLASS) report. 2020. Available from: https://www.who.int/initiatives/glass (Accessed on: August 01, 2021).
[7]
Sonam Singh. Sanket, A.S.; Dwivedi, G.R.; Upadhyay, H.C. In-silico Druggability Studies of 4-hydroxy-α-tetralone and its derivatives with RND Efflux pump of E. coli. Pharma. Biosci. J., 2020, 8(2), 21-26.
[http://dx.doi.org/10.20510/ukjpb/8/i2/1586224632]
[8]
WHO. Antimicrobial resistance., Available from: https://www.who.int/health-topics/antimicrobial-resistance (Accessed on: August 01, 2021).
[9]
Tacconelli, E.; Carrara, E.; Savoldi, A.; Harbarth, S.; Mendelson, M.; Monnet, D.L.; Pulcini, C.; Kahlmeter, G.; Kluytmans, J.; Carmeli, Y.; Ouellette, M.; Outterson, K.; Patel, J.; Cavaleri, M.; Cox, E.M.; Houchens, C.R.; Grayson, M.L.; Hansen, P.; Singh, N.; Theuretzbacher, U.; Magrini, N.; Aboderin, A.O.; Al-Abri, S.S.; Awang Jalil, N.; Benzonana, N.; Bhattacharya, S.; Brink, A.J.; Burkert, F.R.; Cars, O.; Cornaglia, G.; Dyar, O.J.; Friedrich, A.W.; Gales, A.C.; Gandra, S.; Giske, C.G.; Goff, D.A.; Goossens, H.; Gottlieb, T.; Guzman Blanco, M.; Hryniewicz, W.; Kattula, D.; Jinks, T.; Kanj, S.S.; Kerr, L.; Kieny, M-P.; Kim, Y.S.; Kozlov, R.S.; Labarca, J.; Laxminarayan, R.; Leder, K.; Leibovici, L.; Levy-Hara, G.; Littman, J.; Malhotra-Kumar, S.; Manchanda, V.; Moja, L.; Ndoye, B.; Pan, A.; Paterson, D.L.; Paul, M.; Qiu, H.; Ramon-Pardo, P.; Rodríguez-Baño, J.; Sanguinetti, M.; Sengupta, S.; Sharland, M.; Si-Mehand, M.; Silver, L.L.; Song, W.; Steinbakk, M.; Thomsen, J.; Thwaites, G.E.; van der Meer, J.W.M.; Van Kinh, N.; Vega, S.; Villegas, M.V.; Wechsler-Fördös, A.; Wertheim, H.F.L.; Wesangula, E.; Woodford, N.; Yilmaz, F.O.; Zorzet, A. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis., 2018, 18(3), 318-327.
[http://dx.doi.org/10.1016/S1473-3099(17)30753-3] [PMID: 29276051]
[10]
Upadhyay, H.C. Coumarin-1,2,3-triazole hybrid molecules: An emerging scaffold for combating drug resistance. Curr. Top. Med. Chem., 2021, 21(8), 737-752.
[http://dx.doi.org/10.2174/1568026621666210303145759] [PMID: 33655863]
[11]
de Kraker, M.E.A.; Stewardson, A.J.; Harbarth, S. Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Med., 2016, 13(11), e1002184.
[http://dx.doi.org/10.1371/journal.pmed.1002184] [PMID: 27898664]
[12]
Li, X.Z.; Plésiat, P.; Nikaido, H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev., 2015, 28(2), 337-418.
[http://dx.doi.org/10.1128/CMR.00117-14] [PMID: 25788514]
[13]
Simpkin, V.L.; Renwick, M.J.; Kelly, R.; Mossialos, E. Incentivising innovation in antibiotic drug discovery and development: Progress, challenges and next steps. J. Antibiot., 2017, 70(12), 1087-1096.
[http://dx.doi.org/10.1038/ja.2017.124] [PMID: 29089600]
[14]
Fair, R.J.; Tor, Y. Antibiotics and bacterial resistance in the 21st century. Perspect. Medicin. Chem., 2014, 6, PMC.S14459.
[http://dx.doi.org/10.4137/PMC.S14459] [PMID: 25232278]
[15]
Upadhyay, H.C. Medicinal chemistry of alternative therapeutics: Novelty and hopes with genus Ammannia. Curr. Top. Med. Chem., 2019, 19(10), 784-794.
[http://dx.doi.org/10.2174/1568026619666190412101047] [PMID: 30977452]
[16]
Upadhyay, H.C.; Verma, R.K.; Srivastava, S.K. Quantitative determination of bioactive 4-hydroxy-α-tetralone, tetralone-4-O-β-D-glucopyranoside and ellagic acid in Ammannia baccifera (Linn.) by reversed-phase high-performance liquid chromatography. J. Chromatogr. Sci., 2013, 51(1), 21-25.
[http://dx.doi.org/10.1093/chromsci/bms099] [PMID: 22700790]
[17]
Upadhyay, H.C.; Thakur, J.P.; Saikia, D.; Srivastava, S.K. Anti-tubercular agents from Ammannia baccifera (Linn.). Med. Chem. Res., 2013, 22(1), 16-21.
[http://dx.doi.org/10.1007/s00044-012-9998-9]
[18]
Upadhyay, H.C.; Sisodia, B.S.; Verma, R.K.; Darokar, M.P.; Srivastava, S.K. Antiplasmodial potential of extracts from two species of genus Blumea. Pharm. Biol., 2013, 51(10), 1326-1330.
[http://dx.doi.org/10.3109/13880209.2013.790453] [PMID: 23767769]
[19]
Katiyar, C.; Kanjilal, S.; Gupta, A.; Katiyar, S. Drug discovery from plant sources: An integrated approach. Ayu, 2012, 33(1), 10-19.
[http://dx.doi.org/10.4103/0974-8520.100295] [PMID: 23049178]
[20]
Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod., 2020, 83(3), 770-803.
[http://dx.doi.org/10.1021/acs.jnatprod.9b01285] [PMID: 32162523]
[21]
Upadhyay, H.C.; Mishra, A.; Pandey, J.; Sharma, P.; Tamrakar, A.K.; Srivastava, A.K.; Khan, F.; Srivastava, S.K. In vitro, in vivo and in silico antihyperglycemic activity of some semi-synthetic phytol derivatives. Med. Chem., 2021, 18(1), 115-121.
[http://dx.doi.org/10.2174/1573406417666201216124018] [PMID: 33327922]
[22]
Saxena, A.; Upadhyay, H.C.; Cheema, H.S.; Srivastava, S.K.; Darokar, M.P.; Bawankule, D.U. Antimalarial activity of phytol derivatives: In vitro and in vivo study. Med. Chem. Res., 2018, 27(5), 1345-1354.
[http://dx.doi.org/10.1007/s00044-017-2132-2]
[23]
Sultana, N. Clinically useful anticancer, antitumor, and antiwrinkle agent, ursolic acid and related derivatives as medicinally important natural product. J. Enzyme Inhib. Med. Chem., 2011, 26(5), 616-642.
[http://dx.doi.org/10.3109/14756366.2010.546793] [PMID: 21417964]
[24]
Mlala, S.; Oyedeji, A.O.; Gondwe, M.; Oyedeji, O.O. Ursolic acid and its derivatives as bioactive agents. Molecules, 2019, 24(15), 2751.
[http://dx.doi.org/10.3390/molecules24152751] [PMID: 31362424]
[25]
Maurya, A.; Srivastava, S.K. Preparative-scale separation of anticancer triterpenes from Eucalyptus hybrid by centrifugal partition chromatography. Sep. Sci. Technol., 2011, 46(7), 1189-1194.
[http://dx.doi.org/10.1080/01496395.2010.545793]
[26]
Pironi, A.M.; de Araújo, P.R.; Fernandes, M.A.; Salgado, H.R.N.; Chorilli, M. Characteristics, biological properties and analytical methods of ursolic acid: A review. Crit. Rev. Anal. Chem., 2018, 48(1), 86-93.
[http://dx.doi.org/10.1080/10408347.2017.1390425] [PMID: 29039968]
[27]
Feng, X.M.; Su, X.L. Anticancer effect of ursolic acid via mitochondria dependent pathways. Oncol. Lett., 2019, 17(6), 4761-4767.
[http://dx.doi.org/10.3892/ol.2019.10171] [PMID: 31186681]
[28]
Chen, H.; Gao, Y.; Wang, A.; Zhou, X.; Zheng, Y.; Zhou, J. Evolution in medicinal chemistry of ursolic acid derivatives as anticancer agents. Eur. J. Med. Chem., 2015, 92, 648-655.
[http://dx.doi.org/10.1016/j.ejmech.2015.01.031] [PMID: 25617694]
[29]
Yin, R.; Li, T.; Tian, J.X.; Xi, P.; Liu, R.H. Ursolic acid, a potential anticancer compound for breast cancer therapy. Crit. Rev. Food Sci. Nutr., 2018, 58(4), 568-574.
[http://dx.doi.org/10.1080/10408398.2016.1203755] [PMID: 27469428]
[30]
Stiti, N.; Hartmann, M.A. Nonsterol triterpenoids as major constituents of Olea Europaea. J. Lipids, 2012, 2012, 1-13.
[http://dx.doi.org/10.1155/2012/476595] [PMID: 22523691]
[31]
Batra, A.; Sastry, V.G. Extraction of ursolic acid from Ocimum sanctum and synthesis of its novel derivatives: Effects on extracellular homocysteine, dihydrofolate reductase activity and proliferation of HepG2 human hepatoma cells. Pteridines, 2013, 24(3-4), 191-199.
[http://dx.doi.org/10.1515/pterid-2013-0023]
[32]
Sharma, S.B.; Gupta, R. Drug development from natural resource: A systematic approach. Mini Rev. Med. Chem., 2015, 15(1), 52-57.
[http://dx.doi.org/10.2174/138955751501150224160518] [PMID: 25986040]
[33]
Balunas, M.J.; Kinghorn, A.D. Drug discovery from medicinal plants. Life Sci., 2005, 78(5), 431-441.
[http://dx.doi.org/10.1016/j.lfs.2005.09.012] [PMID: 16198377]
[34]
Hussain, H.; Green, I.R.; Ali, I.; Khan, I.A.; Ali, Z.; Al-Sadi, A.M.; Ahmed, I. Ursolic acid derivatives for pharmaceutical use: A patent review (2012-2016). Expert Opin. Ther. Pat., 2017, 27(9), 1061-1072.
[http://dx.doi.org/10.1080/13543776.2017.1344219] [PMID: 28637397]
[35]
Shaveta; Mishra, S.; Singh, P. Hybrid molecules: The privileged scaffolds for various pharmaceuticals. Eur. J. Med. Chem., 2016, 124, 500-536.
[http://dx.doi.org/10.1016/j.ejmech.2016.08.039] [PMID: 27598238]
[36]
Wayne, P. Clinical and Laboratory Standards Institute. In: Performance standards for antimicrobial susceptibility testing, 29th Ed.; CLSI supplement M100. Clinical and Laboratory Standards Institute, 2019; 39, .
[37]
Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Singh, V.; Khan, F.; Gupta, M.K.; Singh, M.; Darokar, M.P.; Srivastava, S.K. Synergy of clavine alkaloid ‘chanoclavine’ with tetracycline against multi-drug-resistant E. coli. J. Biomol. Struct. Dyn., 2019, 37(5), 1307-1325.
[http://dx.doi.org/10.1080/07391102.2018.1458654] [PMID: 29595093]
[38]
Dwivedi, G.R.; Maurya, A.; Yadav, D.K.; Khan, F.; Gupta, M.K.; Gupta, P.; Darokar, M.P.; Srivastava, S.K. Comparative drug resistance reversal potential of natural glycosides: Potential of synergy Niaziridin & Niazirin. Curr. Top. Med. Chem., 2019, 19(10), 847-860.
[http://dx.doi.org/10.2174/1568026619666190412120008] [PMID: 30977451]
[39]
Odds, F.C. Synergy, antagonism, and what the chequerboard puts between them. J. Antimicrob. Chemother., 2003, 52(1), 1.
[http://dx.doi.org/10.1093/jac/dkg301] [PMID: 12805255]
[40]
Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res., 2018, 46(W1), W363-W367.
[http://dx.doi.org/10.1093/nar/gky473] [PMID: 29860391]
[41]
Yu, E.W.; McDermott, G.; Zgurskaya, H.I.; Nikaido, H.; Koshland, D.E. Jr Structural basis of multiple drug-binding capacity of the AcrB multidrug efflux pump. Science, 2003, 300(5621), 976-980.
[http://dx.doi.org/10.1126/science.1083137] [PMID: 12738864]
[42]
Wouatsa, V.N.A.; Misra, L.; Kumar, S.; Prakash, O.; Khan, F.; Tchoumbougnang, F.; Venkatesh, R.K. Aromatase and glycosyl transferase inhibiting acridone alkaloids from fruits of Cameroonian zanthoxylumspecies. Chem. Cent. J., 2013, 7(1), 125.
[http://dx.doi.org/10.1186/1752-153X-7-125] [PMID: 23866063]
[43]
Upadhyay, H.C.; Singh, M.; Prakash, O.; Khan, F.; Srivastava, S.K.; Bawankule, D.U. QSAR, ADME and docking guided semi-synthesis and in vitro evaluation of 4-hydroxy-α-tetralone analogs for anti-inflammatory activity. SN Appl. Sci., 2020, 2(12), 2069.
[http://dx.doi.org/10.1007/s42452-020-03798-5]
[44]
Upadhyay, H.C.; Dwivedi, G.R.; Roy, S.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Phytol derivatives as drug resistance reversal agents. ChemMedChem, 2014, 9(8), 1860-1868.
[http://dx.doi.org/10.1002/cmdc.201402027] [PMID: 24891085]
[45]
Neises, B.; Steglich, W. Simple method for the esterification of carboxylic acids. Angew. Chem. Int. Ed. Engl., 1978, 17(7), 522-524.
[http://dx.doi.org/10.1002/anie.197805221]
[46]
Papi Reddy, K.; Singh, A.B.; Puri, A.; Srivastava, A.K.; Narender, T. Synthesis of novel triterpenoid (lupeol) derivatives and their in vivo antihyperglycemic and antidyslipidemic activity. Bioorg. Med. Chem. Lett., 2009, 19(15), 4463-4466.
[http://dx.doi.org/10.1016/j.bmcl.2009.05.034] [PMID: 19515563]
[47]
Cos, P.; Vlietinck, A.J.; Berghe, D.V.; Maes, L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J. Ethnopharmacol., 2006, 106(3), 290-302.
[http://dx.doi.org/10.1016/j.jep.2006.04.003] [PMID: 16698208]
[48]
Dwivedi, G.R.; Rai, R.; Pratap, R.; Singh, K.; Pati, S.; Sahu, S.N.; Kant, R.; Darokar, M.P.; Yadav, D.K. Drug resistance reversal potential of multifunctional thieno[3,2-c]pyran via potentiation of antibiotics in MDR P. aeruginosa. Biomed. Pharmacother., 2021, 142, 112084.
[http://dx.doi.org/10.1016/j.biopha.2021.112084] [PMID: 34449308]
[49]
Mulani, M.S.; Kamble, E.E.; Kumkar, S.N.; Tawre, M.S.; Pardesi, K.R. Emerging strategies to combat eskape pathogens in the era of antimicrobial resistance: A review. Front. Microbiol., 2019, 10, 539.
[http://dx.doi.org/10.3389/fmicb.2019.00539] [PMID: 30988669]
[50]
Upadhyay, H.; Dwivedi, G.; Darokar, M.; Chaturvedi, V.; Srivastava, S. Bioenhancing and antimycobacterial agents from Ammannia multiflora. Planta Med., 2012, 78(1), 79-81.
[http://dx.doi.org/10.1055/s-0031-1280256] [PMID: 21969115]
[51]
Nikaido, H.; Takatsuka, Y. Mechanisms of RND multidrug efflux pumps. Biochim. Biophys. Acta. Proteins Proteomics, 2009, 1794(5), 769-781.
[http://dx.doi.org/10.1016/j.bbapap.2008.10.004] [PMID: 19026770]
[52]
Pollastri, M.P. Overview on the rule of five. Curr. Protoc. Pharmacol., 2010.
[http://dx.doi.org/10.1002/0471141755.ph0912s49]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy