Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Angiotensin-Converting Enzyme Inhibition Properties and Antioxidant Effects of Plants and their Bioactive Compounds as Cardioprotective Agent

Author(s): Sonal Prasad and Tabish Qidwai*

Volume 20, Issue 4, 2023

Published on: 23 September, 2022

Page: [457 - 468] Pages: 12

DOI: 10.2174/1570180819666220513115923

Price: $65

conference banner
Abstract

Background: The prevalence of cardiovascular diseases is being increased; researchers are trying to explore effective preventive and treatment options. Antioxidant effects and Angiotensin- Converting. Enzyme (ACE) inhibitors demonstrated cardioprotective effects. Many herbs and plants have shown antiinflammatory, antioxidant, free radical scavenging, and ACE inhibition properties in preventing and treating cardiac-related disorders. Therefore, the exploration of bioactive compounds such as polyphenols, flavonoids, quercetin, kaempferol, isoflavones, and catechin needs to be explored as potential ACE inhibitors and antioxidants in preventing and treating cardiac-related diseases.

Objective: The present study is designed to investigate the cardio-protective potential of important bioactive compounds from plants and herbs.

Methods: Articles were collected from electronic databases, such as PubMed, Google Scholar, Web of Science, and Science Direct, using the keywords antioxidant, anti-inflammatory, ACE inhibition and antihypertensive properties of plants and herbs. In vitro and in vivo studies on animal models have been included in the current study. Articles published in languages other than the English language were excluded, and finally, 100 manuscripts were included in this study.

Results: Plants and herbs chosen for this study with abundant natural bioactive compounds have demonstrated ACE inhibition, antioxidant, anti-inflammatory, and anti-hypertensive properties and can be an effective cardioprotective. Hence, it could pave the way for the development of new therapeutics that could be beneficial in treating cardiovascular diseases.

Conclusion: The current review focuses on herbs and plants possessing ACE inhibition, antioxidant, antioxidative, anti-inflammatory, hyperaccumulating and anti-hypertensive properties with their ability to prevent the breakdown of ACE I enzyme into ACE enzyme II, acting as ACE inhibitors and showing its strong potential as a cardioprotective agent. Also, it could support the development of new therapeutic agents to address cardiovascular problems.

Keywords: Cardiovascular diseases, anti-hypertensive herbs, antioxidant properties, natural bioactive compounds, ACE-1 inhibitor, cardioprotective agent.

Graphical Abstract
[1]
WHO. Cardiovascular Diseases (CVDs); World Health Organization: Geneva, Switzerland, 2017.
[2]
Knowles, J.W.; Ashley, E.A. Cardiovascular disease: The rise of the genetic risk score. PLoS Med., 2018, 15(3), e1002546.
[3]
Piepoli, M.F.; Hoes, A.W.; Agewall, S.; Albus, C.; Brotons, C.; Catapano, A.L.; Cooney, M.T.; Corrà, U.; Cosyns, B.; Deaton, C.; Graham, I.; Hall, M.S.; Hobbs, F.D.R.; Løchen, M.L.; Löllgen, H.; Marques-Vidal, P.; Perk, J.; Prescott, E.; Redon, J.; Richter, D.J.; Sattar, N.; Smulders, Y.; Tiberi, M.; van der Worp, H.B.; van Dis, I.; Verschuren, W.M.M.; Binno, S. 2016 European Guidelines on cardiovascular disease prevention in clinical practice: The Sixth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of 10 societies and by invited experts) Developed with the special contribution of the European Association for Cardiovascular Prevention & Rehabilitation (EACPR). Eur. Heart J., 2016, 37(29), 2315-2381.
[http://dx.doi.org/10.1177/2047487316653709]
[4]
Nabavi, S.F.; Nabavi, S.M.; Ebrahimzadeh, M.A.; Eslami, S.; Jafari, N.; Moghaddam, H. The protective effect of curcumin against sodium fluoride-induced oxidative stress in rat heart. Arch. Biol. Sci., 2011, 63(3), 563-569.
[http://dx.doi.org/10.2298/ABS1103563N]
[5]
Angeloni, C.; Spencer, J.P.E.; Leoncini, E.; Biagi, P.L.; Hrelia, S. Role of quercetin and its in vivo metabolites in protecting H9c2 cells against oxidative stress. Biochimie, 2007, 89(1), 73-82.
[http://dx.doi.org/10.1016/j.biochi.2006.09.006] [PMID: 17045724]
[6]
Upadhyay, H.C. Medicinal chemistry of alternative therapeutics: Novelty and hopes with genus ammannia. Curr. Top. Med. Chem., 2019, 19(10), 784-794.
[http://dx.doi.org/10.2174/1568026619666190412101047] [PMID: 30977452]
[7]
Popović Z.; Matić R.; Bojović S.; Stefanović M.; Vidaković V. Ethnobotany and herbal medicine in modern complementary and alternative medicine: An overview of publications in the field of I&C medicine 2001–2013. J. Ethnopharmacol., 2016, 181, 182-192.
[http://dx.doi.org/10.1016/j.jep.2016.01.034] [PMID: 26807912]
[8]
Tewari, D. Samoilă O.; Gocan, D.; Mocan, A.; Moldovan, C.; Devkota, H.P.; Atanasov, A.G.; Zengin, G.; Echeverría, J.; Vodnar, D.; Szabo, B.; Crişan, G. Medicinal plants and natural products used in cataract management. Front. Pharmacol., 2019, 10, 466.
[http://dx.doi.org/10.3389/fphar.2019.00466] [PMID: 31263410]
[9]
Sharifi-Rad, J.; Rodrigues, C.F.; Sharopov, F.; Docea, A.O.; Can Karaca, A.; Sharifi-Rad, M. Kahveci Karıncaoglu, D.; Gülseren, G.; Şenol, E.; Demircan, E.; Taheri, Y.; Suleria, H.A.R.; Özçelik, B.; Nur Kasapoğlu, K.; Gültekin-Özgüven, M.; Daşkaya-Dikmen, C.; Cho, W.C.; Martins, N.; Calina, D. Diet, lifestyle and cardiovascular diseases: Linking pathophysiology to cardioprotective effects of natural bioactive compounds. Int. J. Environ. Res. Public Health, 2020, 17(7), 2326.
[http://dx.doi.org/10.3390/ijerph17072326] [PMID: 32235611]
[10]
Qidwai, T.; Yadav, D.K.; Khan, F.; Dhawan, S.; Bhakuni, R.S. QSAR, docking and ADMET studies of artemisinin derivatives for antimalarial activity targeting plasmepsin II, a hemoglobin-degrading enzyme from P. falciparum. Curr. Pharm. Des., 2012, 18(37), 6133-6154.
[http://dx.doi.org/10.2174/138161212803582397] [PMID: 22670592]
[11]
Krishna, S.; Bustamante, L.; Haynes, R.K.; Staines, H.M. Artemisinins: Their growing importance in medicine. Trends Pharmacol. Sci., 2008, 29(10), 520-527.
[http://dx.doi.org/10.1016/j.tips.2008.07.004] [PMID: 18752857]
[12]
Yadav, D.; Dhawan, S.; Chauhan, A.; Qidwai, T.; Sharma, P.; Bhakuni, R.; Dhawan, O.; Khan, F. QSAR and docking based semi-synthesis and in vivo evaluation of artemisinin derivatives for antimalarial activity. Curr. Drug Targets, 2014, 15(8), 753-761.
[http://dx.doi.org/10.2174/1389450115666140630102711] [PMID: 24975562]
[13]
Qidwai, T. QSAR modeling, docking and ADMET studies for exploration of potential anti-malarial compounds against Plasmodium falciparum. In Silico Pharmacol., 2017, 5(1), 6.
[http://dx.doi.org/10.1007/s40203-017-0026-0] [PMID: 28726171]
[14]
Upadhyay, H.C. Coumarin-1,2,3-triazole hybrid molecules: An emerging scaffold for combating drug resistance. Curr. Top. Med. Chem., 2021, 21(8), 737-752.
[http://dx.doi.org/10.2174/1568026621666210303145759] [PMID: 33655863]
[15]
Tandon, N.; Yadav, S.S. Contributions of Indian Council of Medical Research (ICMR) in the area of Medicinal plants/Traditional medicine. J. Ethnopharmacol., 2017, 197, 39-45.
[http://dx.doi.org/10.1016/j.jep.2016.07.064] [PMID: 27452657]
[16]
Devasagayam, T.P.; Tilak, J.C.; Boloor, K.K.; Sane, K.S.; Ghaskadbi, S.S.; Lele, R.D. Free radicals and antioxidants in human health: Current status and future prospects. J. Assoc. Physicians, 2004, 52, 794-804.
[PMID: 15909857]
[17]
Hwang, Y.Y.; Ho, Y-S. Nutraceutical support for respiratory diseases. Food Sci. Hum. Wellness, 2018, 7(3), 205-208.
[http://dx.doi.org/10.1016/j.fshw.2018.09.001]
[18]
Hattori, Y.; Jojima, T.; Tomizawa, A.; Satoh, H.; Hattori, S.; Kasai, K.; Hayashi, T. Retracted article: A glucagon-like peptide-1 (GLP-1) analogue, liraglutide, upregulates nitric oxide production and exerts anti-inflammatory action in endothelial cells. Diabetologia, 2010, 53(10), 2256-2263.
[http://dx.doi.org/10.1007/s00125-010-1831-8] [PMID: 20593161]
[19]
Rouhi-Boroujeni, H.; Heidarian, E.; Rouhi-Boroujeni, H.; Deris, F.; Rafieian-Kopaei, M. Medicinal plants with multiple effects on cardiovascular diseases: A systematic review. Curr. Pharm. Des., 2017, 23(7), 999-1015.
[http://dx.doi.org/10.2174/1381612822666161021160524] [PMID: 27774898]
[20]
Salehi, B.; Lopez-Jornet, P.; Pons-Fuster López, E.; Calina, D.; Sharifi-Rad, M.; Ramírez-Alarcón, K.; Forman, K.; Fernández, M.; Martorell, M.; Setzer, W.; Martins, N.; Rodrigues, C.; Sharifi-Rad, J. Plant-derived bioactives in oral mucosal lesions: A key emphasis to curcumin, lycopene, chamomile, Aloe vera, green tea and coffee properties. Biomolecules, 2019, 9(3), 106.
[http://dx.doi.org/10.3390/biom9030106] [PMID: 30884918]
[21]
Graf, B.A.; Milbury, P.E.; Blumberg, J.B. Flavonols, flavones, flavanones, and human health: Epidemiological evidence. J. Med. Food, 2005, 8(3), 281-290.
[http://dx.doi.org/10.1089/jmf.2005.8.281] [PMID: 16176136]
[22]
Arts, I.C.W.; Hollman, P.C.H. Polyphenols and disease risk in epidemiologic studies. Am. J. Clin. Nutr., 2005, 81(1)(Suppl.), 317S-325S.
[http://dx.doi.org/10.1093/ajcn/81.1.317S] [PMID: 15640497]
[23]
Dai, Q.; Borenstein, A.R.; Wu, Y.; Jackson, J.C.; Larson, E.B. Fruit and vegetable juices and Alzheimer’s disease: The Kame Project. Am. J. Med., 2006, 119(9), 751-759.
[http://dx.doi.org/10.1016/j.amjmed.2006.03.045] [PMID: 16945610]
[24]
Singh, M.; Arseneault, M.; Sanderson, T.; Murthy, V.; Ramassamy, C. Challenges for research on polyphenols from foods in Alzheimer’s disease: Bioavailability, metabolism, and cellular and molecular mechanisms. J. Agric. Food Chem., 2008, 56(13), 4855-4873.
[http://dx.doi.org/10.1021/jf0735073] [PMID: 18557624]
[25]
Khurana, S.; Venkataraman, K.; Hollingsworth, A.; Piche, M.; Tai, T. Polyphenols: Benefits to the cardiovascular system in health and in aging. Nutrients, 2013, 5(10), 3779-3827.
[http://dx.doi.org/10.3390/nu5103779] [PMID: 24077237]
[26]
Potì, F.; Santi, D.; Spaggiari, G.; Zimetti, F.; Zanotti, I. Polyphenol health effects on cardiovascular and neurodegenerative disorders: A review and meta-analysis. Int. J. Mol. Sci., 2019, 20(2), 351.
[http://dx.doi.org/10.3390/ijms20020351] [PMID: 30654461]
[27]
Chao, S.C.; Chen, Y.J.; Huang, K.H.; Kuo, K.L.; Yang, T.H.; Huang, K.Y.; Wang, C.C.; Tang, C.H.; Yang, R.S.; Liu, S.H. Induction of sirtuin-1 signaling by resveratrol induces human chondrosarcoma cell apoptosis and exhibits antitumor activity. Sci. Rep., 2017, 7(1), 3180.
[http://dx.doi.org/10.1038/s41598-017-03635-7] [PMID: 28600541]
[28]
Tejada, S.; Pinya, S.; Del Mar Bibiloni, M.; Tur, J.A.; Pons, A.; Sureda, A. Cardioprotective effects of the polyphenol hydroxytyrosol from olive oil. Curr. Drug Targets, 2017, 18(13), 1477-1486.
[PMID: 27719659]
[29]
Cucciolla, V.; Borriello, A.; Oliva, A.; Galletti, P.; Zappia, V.; Ragione, F.D. Resveratrol: From basic science to the clinic. Cell Cycle, 2007, 6(20), 2495-2510.
[http://dx.doi.org/10.4161/cc.6.20.4815] [PMID: 17726376]
[30]
Shakibaei, M.; Harikumar, K.B.; Aggarwal, B.B. Resveratrol addiction: To die or not to die. Mol. Nutr. Food Res., 2009, 53(1), 115-128.
[http://dx.doi.org/10.1002/mnfr.200800148] [PMID: 19072742]
[31]
Plat, J.; Mensink, R.P. Effects of plant sterols and stanols on lipid metabolism and cardiovascular risk. Nutr. Metab. Cardiovasc. Dis., 2001, 11(1), 31-40.
[PMID: 11383323]
[32]
Pollak, O.J.; Kritchevsky, D. Sitosterol. Monogr. Atheroscler., 1981, 10(1), 1-219.
[PMID: 7231433]
[33]
Hu, F.B. Plant-based foods and prevention of cardiovascular disease: An overview. Am. J. Clin. Nutr., 2003, 78(3)(Suppl.), 544S-551S.
[http://dx.doi.org/10.1093/ajcn/78.3.544S] [PMID: 12936948]
[34]
Retelny, V.S.; Neuendorf, A.; Roth, J.L. Nutrition protocols for the prevention of cardiovascular disease. Nutr. Clin. Pract., 2008, 23(5), 468-476.
[http://dx.doi.org/10.1177/0884533608323425] [PMID: 18849551]
[35]
Yeshurun, D.; Gotto, A.M., Jr Drug treatment of hyperlipidemia. Am. J. Med., 1976, 60(3), 379-396.
[http://dx.doi.org/10.1016/0002-9343(76)90755-5] [PMID: 1258886]
[36]
Ganapathy, P.; Rajadurai, M.; Ashokumar, N. Cardioprotective effect of β-sitosterol on lipid peroxides and antioxidant in isoproterenol-induced myocardial infarction in rats: A histopathological study. Int. J. Curr. Res., 2014, 6(6), 7260-7266.
[37]
Khan, H.; Jaiswal, V.; Kulshreshtha, S.; Khan, A. Potential angiotensin converting enzyme inhibitors from Moringa oleifera. Recent Pat. Biotechnol., 2019, 13(3), 239-248.
[http://dx.doi.org/10.2174/1872208313666190211114229] [PMID: 30747089]
[38]
Bangajavalli, Dr GC-MS analysis of bioactive componenets of bark of saraca asoca (Roxb.) will. Fabaceae. European J. Pharm. Med. Res., 2019, 6(1), 258-261.
[39]
Gryglewski, R.J. Korbut, R.; Robak, J.; Świȩs, J. On the mechanism of antithrombotic action of flavonoids. Biochem. Pharmacol., 1987, 36(3), 317-322.
[http://dx.doi.org/10.1016/0006-2952(87)90288-7] [PMID: 3101704]
[40]
Pourmorad, F.; Hosseinimehr, S.J.; Shahabimajd, N. Antioxidant activity, phenol and flavonoid contents of some selected Iranian medicinal plants. Afr. J. Biotechnol., 2006, 5(11), 1142-1145.
[41]
Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci., 2016, 5, e47.
[http://dx.doi.org/10.1017/jns.2016.41] [PMID: 28620474]
[42]
Hossain, H.; Jahan, I.A.; Nimmi, I.; Hasan, K.; Haq, M. Evaluation of antinociceptive and antioxidant potential from the leaves of Spilanthes paniculata growing in Bangladesh. Int. J. Pharm. Phytopharmacol Res., 2012, 1(4), 178-186.
[43]
Snijman, P.W.; Swanevelder, S.; Joubert, E.; Green, I.R.; Gelderblom, W.C.A. The antimutagenic activity of the major flavonoids of rooibos (Aspalathus linearis): Some dose–response effects on mutagen activation–flavonoid interactions. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2007, 631(2), 111-123.
[http://dx.doi.org/10.1016/j.mrgentox.2007.03.009] [PMID: 17537670]
[44]
LeJeune, T.M.; Tsui, H.Y.; Parsons, L.B.; Miller, G.E.; Whitted, C.; Lynch, K.E.; Ramsauer, R.E.; Patel, J.U.; Wyatt, J.E.; Street, D.S.; Adams, C.B.; McPherson, B.; Tsui, H.M.; Evans, J.A.; Livesay, C.; Torrenegra, R.D.; Palau, V.E. Mechanism of action of two flavone isomers targeting cancer cells with varying cell differentiation status. PLoS One, 2015, 10(11), e0142928.
[http://dx.doi.org/10.1371/journal.pone.0142928] [PMID: 26606169]
[45]
Kim, H.P.; Son, K.H.; Chang, H.W.; Kang, S.S. Anti-inflammatory plant flavonoids and cellular action mechanisms. J. Pharmacol. Sci., 2004, 96(3), 229-245.
[http://dx.doi.org/10.1254/jphs.CRJ04003X] [PMID: 15539763]
[46]
García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as anti-inflammatory agents: Implications in cancer and cardiovascular disease. Inflamm. Res., 2009, 58(9), 537-552.
[http://dx.doi.org/10.1007/s00011-009-0037-3] [PMID: 19381780]
[47]
Oyagbemi, A.A.; Omobowale, T.O.; Ola-Davies, O.E.; Asenuga, E.R.; Ajibade, T.O.; Adejumobi, O.A.; Arojojoye, O.A.; Afolabi, J.M.; Ogunpolu, B.S.; Falayi, O.O.; Hassan, F.O.; Ochigbo, G.O.; Saba, A.B.; Adedapo, A.A.; Yakubu, M.A. Quercetin attenuates hypertension induced by sodium fluoride via reduction in oxidative stress and modulation of HSP 70/ERK/PPARγ signaling pathways. Biofactors, 2018, 44(5), 465-479.
[http://dx.doi.org/10.1002/biof.1445] [PMID: 30171731]
[48]
Saha, J.; Mukherjee, S.; Gupta, K.; Gupta, B. High-performance thin-layer chromatographic analysis of antioxidants present in different parts of Saraca asoca (Roxb.) de Wilde. J. Pharm. Res., 2013, 7(9), 798-803.
[http://dx.doi.org/10.1016/j.jopr.2013.10.004]
[49]
Siriwardhana, N.; Kalupahana, N.S.; Moustaid-Moussa, N. Health benefits of n-3 polyunsaturated fatty acids: Eicosapentaenoic acid and docosahexaenoic acid. Adv. Food Nutr. Res., 2012, 65, 211-222.
[http://dx.doi.org/10.1016/B978-0-12-416003-3.00013-5] [PMID: 22361189]
[50]
Ander, B.P.; Dupasquier, C.M.; Prociuk, M.A.; Pierce, G.N. Polyunsaturated fatty acids and their effects on cardiovascular disease. Exp. Clin. Cardiol., 2003, 8(4), 164-172.
[PMID: 19649216]
[51]
Lavy, A.; Ben Amotz, A.; Aviram, M. Preferential inhibition of LDL oxidation by the all-trans isomer of β-carotene in comparison with 9-cis β-carotene. Clin. Chem. Lab. Med., 1993, 31(2), 83-90.
[http://dx.doi.org/10.1515/cclm.1993.31.2.83] [PMID: 8467013]
[52]
Zhao, G.; Zhang, X.; Wang, H.; Chen, Z. Beta carotene protects H9c2 cardiomyocytes from advanced glycation end product-induced endoplasmic reticulum stress, apoptosis, and autophagy via the PI3K/Akt/mTOR signaling pathway. Ann. Transl. Med., 2020, 8(10), 647.
[http://dx.doi.org/10.21037/atm-20-3768] [PMID: 32566584]
[53]
Di Pietro, N.; Di Tomo, P.; Pandolfi, A. Carotenoids in cardiovascular disease prevention. JSM Atheroscler., 2016, 1(1), 1002.
[54]
Young, A.; Lowe, G. Carotenoids-antioxidant properties. Antioxidants, 2018, 7(2), 28.
[http://dx.doi.org/10.3390/antiox7020028] [PMID: 29439455]
[55]
Leone, A.; Spada, A.; Battezzati, A.; Schiraldi, A.; Aristil, J.; Bertoli, S. Cultivation, genetic, ethnopharmacology, phytochemistry and pharmacology of Moringa oleifera Leaves: An overview. Int. J. Mol. Sci., 2015, 16(12), 12791-12835.
[http://dx.doi.org/10.3390/ijms160612791] [PMID: 26057747]
[56]
Jiraungkoorskul, K.; Jiraungkoorskul, W. Moringa oleifera: A new challenge reducing heavy metal toxicity: A review. Indian J. Agric. Res., 2016, 50(3), 199-205.
[http://dx.doi.org/10.18805/ijare.v0iOF.9361]
[57]
Santos, A.F.S.; Argolo, A.C.C.; Paiva, P.M.G.; Coelho, L.C.B.B. Antioxidant activity of Moringa oleifera tissue extracts. Phytother. Res., 2012, 26(9), 1366-1370.
[http://dx.doi.org/10.1002/ptr.4591] [PMID: 22294387]
[58]
Aktar, S.; Das, P.; Asha, S.; Siddika, M.; Islam, F.; Khanam, J.; Rakib, M. Moringa oleifera leaves methanolic extract inhibits angiotensin converting enzyme activity in vitro which ameliorates hypertension. J. Adv. Biotechnol. Exp. Ther., 2019, 2(2), 73-77.
[http://dx.doi.org/10.5455/jabet.2019.d28]
[59]
Ali, M.; Seong, S.; Reddy, M.; Seo, S.; Choi, J.; Jung, H. Kinetics and molecular docking studies of 6-formyl umbelliferone isolated from Angelica decursiva as an inhibitor of cholinesterase and BACE1. Molecules, 2017, 22(10), 1604.
[http://dx.doi.org/10.3390/molecules22101604] [PMID: 28946641]
[60]
Ali, M.Y.; Seong, S.H.; Jung, H.A.; Jannat, S.; Choi, J.S. Kinetics and molecular docking of dihydroxanthyletin-type coumarins from Angelica decursiva that inhibit cholinesterase and BACE1. Arch. Pharm. Res., 2018, 41(7), 753-764.
[http://dx.doi.org/10.1007/s12272-018-1056-9] [PMID: 30047040]
[61]
Seong, S.H.; Ali, M.Y.; Jung, H.A.; Choi, J.S. Umbelliferone derivatives exert neuroprotective effects by inhibiting monoamine oxidase A, self-amyloidβ aggregation, and lipid peroxidation. Bioorg. Chem., 2019, 92, 103293.
[http://dx.doi.org/10.1016/j.bioorg.2019.103293] [PMID: 31557622]
[62]
Ali, M.Y.; Seong, S.H.; Jung, H.A.; Choi, J.S. Angiotensin-I-converting enzyme inhibitory activity of coumarins from Angelica decursiva. Molecules, 2019, 24(21), 3937.
[http://dx.doi.org/10.3390/molecules24213937] [PMID: 31683604]
[63]
Symes, A.; Shavandi, A.; Zhang, H.; Mohamed Ahmed, I.; Al-Juhaimi, F.; Bekhit, A. Antioxidant activities and caffeic acid content in New Zealand Asparagus [Asparagus officinalis] roots extracts. Antioxidants, 2018, 7(4), 52.
[http://dx.doi.org/10.3390/antiox7040052] [PMID: 29617287]
[64]
Huang, X.; Kong, L. Steroidal saponins from roots of Asparagus officinalis. Steroids, 2006, 71(2), 171-176.
[http://dx.doi.org/10.1016/j.steroids.2005.09.005] [PMID: 16280142]
[65]
Fathalipour, M.; Delnavazi, M.R.; Safa, O.; Zarifinia, N.; Rafiee, B. Antioxidant and antinociceptive effects of hydroalcoholic root extract of Asparagus officinalis L. J. Physiol. Pharmacol., 2020, 24(4), 322-330.
[http://dx.doi.org/10.32598/ppj.24.4.30]
[66]
Nakabayashi, R.; Yang, Z.; Nishizawa, T.; Mori, T.; Saito, K. Top-down targeted metabolomics reveals a sulfur-containing metabolite with inhibitory activity against angiotensin-converting enzyme in Asparagus officinalis. J. Nat. Prod., 2015, 78(5), 1179-1183.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00092] [PMID: 25922884]
[67]
Sanae, M.; Yasuo, A. Green asparagus (Asparagus officinalis) prevented hypertension by an inhibitory effect on angiotensin-converting enzyme activity in the kidney of spontaneously hypertensive rats. J. Agric. Food Chem., 2013, 61(23), 5520-5525.
[http://dx.doi.org/10.1021/jf3041066] [PMID: 23647085]
[68]
Jenis, J.; Kim, J.Y.; Uddin, Z.; Song, Y.H.; Lee, H.H.; Park, K.H. Phytochemical profile and angiotensin I converting enzyme (ACE) inhibitory activity of Limonium michelsonii Lincz. J. Nat. Med., 2017, 71(4), 650-658.
[http://dx.doi.org/10.1007/s11418-017-1095-4] [PMID: 28550653]
[69]
Takashima, M.; Kanamori, Y.; Kodera, Y.; Morihara, N.; Tamura, K. Aged garlic extract exerts endothelium-dependent vasorelaxant effect on rat aorta by increasing nitric oxide production. Phytomedicine, 2017, 24, 56-61.
[http://dx.doi.org/10.1016/j.phymed.2016.11.016] [PMID: 28160862]
[70]
Martins, N.; Petropoulos, S.; Ferreira, I.C.F.R. Chemical composition and bioactive compounds of garlic (Allium sativum L.) as affected by pre- and post-harvest conditions: A review. Food Chem., 2016, 211, 41-50.
[http://dx.doi.org/10.1016/j.foodchem.2016.05.029] [PMID: 27283605]
[71]
Fratianni, F.; Ombra, M.N.; Cozzolino, A.; Riccardi, R.; Spigno, P.; Tremonte, P.; Coppola, R.; Nazzaro, F. Phenolic constituents, antioxidant, antimicrobial and anti-proliferative activities of different endemic Italian varieties of garlic (Allium sativum L.). J. Funct. Foods, 2016, 21, 240-248. [Allium sativum L.]
[http://dx.doi.org/10.1016/j.jff.2015.12.019]
[72]
Shang, A.; Cao, S.Y.; Xu, X.Y.; Gan, R.Y.; Tang, G.Y.; Corke, H.; Mavumengwana, V.; Li, H.B. Bioactive compounds and biological functions of garlic (Allium sativum L.). Foods, 2019, 8(7), 246.
[http://dx.doi.org/10.3390/foods8070246] [PMID: 31284512]
[73]
Nakasone, Y.; Nakamura, Y.; Yamamoto, T.; Yamaguchi, H. Effect of a traditional Japanese garlic preparation on blood pressure in prehypertensive and mildly hypertensive adults. Exp. Ther. Med., 2013, 5(2), 399-405.
[http://dx.doi.org/10.3892/etm.2012.819] [PMID: 23404465]
[74]
Asdaq, S.M.; Inamdar, M.N. Potential of garlic and its active constituent, S-allyl cysteine, as antihypertensive and cardioprotective in presence of captopril. Phytomedicine, 2010, 17(13), 1016-1026.
[http://dx.doi.org/10.1016/j.phymed.2010.07.012] [PMID: 20739164]
[75]
Kartika, I.G.A.A.; Bang, I.J.; Riani, C.; Insanu, M.; Kwak, J.H.; Chung, K.H.; Adnyana, I.K. Isolation and characterization of phenylpropanoid and lignan compounds from Peperomia pellucida [L. kunth with estrogenic activities. Molecules, 2020, 25(21), 4914.
[http://dx.doi.org/10.3390/molecules25214914] [PMID: 33114252]
[76]
Xu, S.; Li, N.; Ning, M.M.; Zhou, C.H.; Yang, Q.R.; Wang, M.W. Bioactive compounds from Peperomia p ellucida. J. Nat. Prod., 2006, 69(2), 247-250.
[http://dx.doi.org/10.1021/np050457s] [PMID: 16499324]
[77]
Saputri, F.; Mun’im, A.; Lukmanto, D.; Aisyah, S.; Rinandy, J. Inhibition of angiotensin converting enzyme (ACE)activity by some Indonesia edible plants. Int. J. Pharm. Sci. Res., 2015, 6(3), 1054-1059.
[78]
Kurniawan, A.; Saputri, F.C. Rissyelly, Ahmad, I.; Mun’im, A. Isolation of angiotensin-converting enzyme (ACE)inhibitory activity quercetin from Peperomia pellucida. Int. J. Pharm. Tech. Res., 2016, 9(7), 115-121.
[79]
de Fátima Arrigoni-Blank, M.; Dmitrieva, E.G.; Franzotti, E.M.; Antoniolli, A.R.; Andrade, M.R.; Marchioro, M. Anti-inflammatory and analgesic activity of Peperomia pellucida (L.) HBK (Piperaceae). J. Ethnopharmacol., 2004, 91(2-3), 215-218.
[http://dx.doi.org/10.1016/j.jep.2003.12.030] [PMID: 15120441]
[80]
T, A.A.; S, O.O. Pharmacognostic evaluation and antisickling activity of the leaves of Peperomia pellucida (L.) HBK (Piperaceae). Afr. J. Pharm. Pharmacol., 2015, 9(21), 561-566. [Piperaceae]
[http://dx.doi.org/10.5897/AJPP2015.4277]
[81]
Oloyede, G.K.; Onocha, P.A.; Olaniran, B.B. Phytochemical, toxicity, antimicrobial and antioxidant screening of leaf extracts of Peperomia pellucida from Nigeria. Adv. Environ. Biol., 2011, 5(12), 3700-3709.
[82]
Bayma, J.D.; Arruda, M.S.; Müller, A.H.; Arruda, A.C.; Canto, W.C. A dimeric ArC2 compound from Peperomia pellucida. Phytochemistry, 2000, 55(7), 779-782.
[http://dx.doi.org/10.1016/S0031-9422(00)00224-7] [PMID: 11190395]
[83]
Susilawati, Y.; Nugraha, R.; Muhtadi, A.; Soetardjo, S.; Supratman, U. [S]-2-Methyl-2-[4-methylpent-3-enyl]-6-[propan-2-ylidene]-3,4,6,7-tetrahydropyrano[4,3-g]chromen-9[2H]-one. Molbank, 2015, 2015(2), 1-6.
[http://dx.doi.org/10.3390/M855]
[84]
Ahmad, I.; Ambarwati, N.S.; Elya, B.; Omar, H.; Mulia, K.; Yanuar, A.; Negishi, O.; Mun’im, A. A new angiotensin-converting enzyme inhibitor from Peperomia pellucida (L.). Kunth. Asian Pac. J. Trop. Biomed., 2019, 9(6), 257-262. [a]
[http://dx.doi.org/10.4103/2221-1691.260398]
[85]
Ahmad, I. Azminah; Mulia, K.; Yanuar, A.; Mun’im, A. Angiotensin-converting enzyme inhibitory activity of polyphenolic compounds from Peperomia pellucida [L] Kunth: An in silico molecular docking study. J. Appl. Pharm. Sci., 2019, 9(8), 25-31. [b]
[86]
Hettihewa, S.; Hemar, Y.; Rupasinghe, H. Flavonoid-rich extract of Actinidia macrosperma (a wild kiwifruit) inhibits angiotensin-converting enzyme in vitro. Foods, 2018, 7(9), 146.
[http://dx.doi.org/10.3390/foods7090146] [PMID: 30189590]
[87]
Sornwatana, T.; Bangphoomi, K.; Roytrakul, S.; Wetprasit, N.; Choowongkomon, K.; Ratanapo, S. Chebulin: Terminalia chebula Retz. fruit-derived peptide with angiotensin-I-converting enzyme inhibitory activity. Biotechnol. Appl. Biochem., 2015, 62(6), 746-753.
[http://dx.doi.org/10.1002/bab.1321] [PMID: 25410725]
[88]
Venkatesan, A.; Kathirvel, A.; Prakash, S.; Sujatha, V. Antioxidant, antibacterial activities and identification of bioactive compounds from terminalia chebula bark extracts. Free Radic. Antioxid., 2016, 7(1), 43-49.
[http://dx.doi.org/10.5530/fra.2017.1.7]
[89]
Fidelis, M.; Santos, J.S.; Escher, G.B.; Vieira do Carmo, M.; Azevedo, L.; Cristina da Silva, M.; Putnik, P.; Granato, D. In vitro antioxidant and antihypertensive compounds from camu-camu (Myrciaria dubia McVaugh, Myrtaceae) seed coat: A multivariate structure-activity study. Food Chem. Toxicol., 2018, 120, 479-490.
[http://dx.doi.org/10.1016/j.fct.2018.07.043] [PMID: 30055315]
[90]
Senica, M.; Mlinsek, G.; Veberic, R.; Mikulic-Petkovsek, M. Which plant part of purple coneflower [Echinacea purpurea [L. Moench] should be used for tea and which for tincture? J. Med. Food, 2019, 22(1), 102-108.
[http://dx.doi.org/10.1089/jmf.2018.0026] [PMID: 30222488]
[91]
Sultan, M.T.; Buttxs, M.S.; Qayyum, M.M.N.; Suleria, H.A.R. Immunity: Plants as effective mediators. Crit. Rev. Food Sci. Nutr., 2014, 54(10), 1298-1308.
[http://dx.doi.org/10.1080/10408398.2011.633249] [PMID: 24564587]
[92]
Nguyen Dinh Cat, A.; Touyz, R.M. A new look at the renin–angiotensin system—Focusing on the vascular system. Peptides, 2011, 32(10), 2141-2150.
[http://dx.doi.org/10.1016/j.peptides.2011.09.010] [PMID: 21945916]
[93]
Li, G.H.; Qu, M.R.; Wan, J.Z.; You, J.M. Antihypertensive effect of rice protein hydrolysate with in vitro angiotensin I-converting enzyme inhibitory activity in spontaneously hypertensive rats. Asia Pac. J. Clin. Nutr., 2007, 16(1)(Suppl. 1), 275-280.
[PMID: 17392118]
[94]
Aarland, R.C.; Bañuelos-Hernández, A.E.; Fragoso-Serrano, M.; Sierra-Palacios, E.C.; Díaz de León-Sánchez, F.; Pérez-Flores, L.J.; Rivera-Cabrera, F.; Mendoza-Espinoza, J.A. Studies on phytochemical, antioxidant, anti-inflammatory, hypoglycaemic and antiproliferative activities of Echinacea purpurea and Echinacea angustifolia extracts. Pharm. Biol., 2017, 55(1), 649-656.
[http://dx.doi.org/10.1080/13880209.2016.1265989] [PMID: 27951745]
[95]
Chiou, S.Y.; Sung, J.M.; Huang, P.W.; Lin, S.D. Antioxidant, antidiabetic, and antihypertensive properties of Echinacea purpurea flower extract and caffeic acid derivatives using in vitro models. J. Med. Food, 2017, 20(2), 171-179.
[http://dx.doi.org/10.1089/jmf.2016.3790] [PMID: 28061036]
[96]
Wilson, J.; Hayes, M.; Carney, B. Angiotensin-I-converting enzyme and prolyl endopeptidase inhibitory peptides from natural sources with a focus on marine processing by-products. Food Chem., 2011, 129(2), 235-244.
[http://dx.doi.org/10.1016/j.foodchem.2011.04.081] [PMID: 30634221]
[97]
Al Shukor, N.; Van Camp, J.; Gonzales, G.B.; Staljanssens, D.; Struijs, K.; Zotti, M.J.; Raes, K.; Smagghe, G. Angiotensin-converting enzyme inhibitory effects by plant phenolic compounds: A study of structure activity relationships. J. Agric. Food Chem., 2013, 61(48), 11832-11839.
[http://dx.doi.org/10.1021/jf404641v] [PMID: 24219111]
[98]
Saleh, A.S.M.; Zhang, Q.; Shen, Q. Recent research in antihypertensive activity of food protein-derived hydrolyzates and peptides. Crit. Rev. Food Sci. Nutr., 2016, 56(5), 760-787.
[http://dx.doi.org/10.1080/10408398.2012.724478] [PMID: 25036695]
[99]
Burnier, M. Angiotensin II type 1 receptor blockers. Circulation, 2001, 103(6), 904-912.
[http://dx.doi.org/10.1161/01.CIR.103.6.904] [PMID: 11171802]
[100]
Verdecchia, P.; Reboldi, G.; Angeli, F.; Gattobigio, R.; Bentivoglio, M.; Thijs, L.; Staessen, J.A.; Porcellati, C. Angiotensin-converting enzyme inhibitors and calcium channel blockers for coronary heart disease and stroke prevention. Hypertension, 2005, 46(2), 386-392.
[http://dx.doi.org/10.1161/01.HYP.0000174591.42889.a2] [PMID: 16009786]
[101]
Susalit, E.; Agus, N.; Effendi, I.; Tjandrawinata, R.R.; Nofiarny, D.; Perrinjaquet-Moccetti, T.; Verbruggen, M. Olive (Olea europaea) leaf extract effective in patients with stage-1 hypertension: Comparison with Captopril. Phytomedicine, 2011, 18(4), 251-258.
[http://dx.doi.org/10.1016/j.phymed.2010.08.016] [PMID: 21036583]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy