Generic placeholder image

Anti-Cancer Agents in Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 1871-5206
ISSN (Online): 1875-5992

Research Article

Anti-Cancer Activity of Synthesized 5-Benzyl juglone on Selected Human Cancer Cell Lines

Author(s): Chenhao Wang, Yuqi Hu, Yang Sun, Shouyan Xiang, Jiajun Qian, Zhizhuo Liu, Yufeng Ji, Chenglin Cai, Gege Sun and Jiahua Cui*

Volume 24, Issue 11, 2024

Published on: 15 April, 2024

Page: [845 - 852] Pages: 8

DOI: 10.2174/1871520622666220926110858

Price: $65

Abstract

Background: Cancer is a malignant disease that causes millions of deaths each year worldwide. As one of the cancer therapeutic strategies, chemotherapy is a means to destroy rapidly dividing cells. The main problem with cancer chemotherapy is the lack of selectivity of conventional chemotherapeutic drugs, leading to toxicity towards normal cells. Therefore, the discovery of anti-cancer agents with selectivity for fast-growing cancer cells is desirable.

Objective: In this study, we report the synthesis and identification of synthesized 5-benzyl juglone as a potential anticancer agent with selectivity toward certain cancer cell lines.

Methods: An efficient synthetic method for 5-benzyl juglone was established. The proliferation of cancer cell lines and a normal cell line treated by the target compound was studied using an MTT assay. In addition, the cell cycle arrest and apoptosis were determined by flow cytometry.

Results: Based on the Diels-Alder (D-A) reaction between 3,6-dimethoxy benzyne intermediate and furan, further acid-catalyzed intramolecular rearrangement, and CAN-mediated oxidation, a convenient synthesis of 5-benzyl juglone was achieved with high overall yield. The results from in vitro biological evaluation indicated that the juglone derivative exhibited potent antiproliferative activity against HCT-15 human colorectal cancer cells with an IC50 value of 12.27 μM. It exerted high inhibitory activity toward MCF-7 human breast cancer cells and, to a much lesser extent, to corresponding MCF-10A human breast epithelial normal cells with an IC50 ratio (IC50 in MCF-7 divided by IC50 in MCF-10A) of 0.62.

Conclusion: The mechanistic investigations indicated that 5-benzyl juglone could induce cell cycle arrest at the G0/G1 phase and promote apoptosis of HCT-15 cells. The apoptotic effects possibly contributed to its higher selectivity toward cancer cells than normal cell lines.

Keywords: Juglone derivatives, chemotherapy, cell cycle analysis, apoptosis, 5-benzyl juglone, anticancer.

Graphical Abstract
[1]
Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin., 2021, 71(3), 209-249.
[http://dx.doi.org/10.3322/caac.21660] [PMID: 33538338]
[2]
Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2019. CA Cancer J. Clin., 2019, 69(1), 7-34.
[http://dx.doi.org/10.3322/caac.21551] [PMID: 30620402]
[3]
Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin., 2022, 72(1), 7-33.
[http://dx.doi.org/10.3322/caac.21708] [PMID: 35020204]
[4]
Medina, M.A.; Oza, G.; Sharma, A.; Arriaga, L.G.; Hernández Hernández, J.M.; Rotello, V.M.; Ramirez, J.T. Triple-negative breast cancer: a review of conventional and advanced therapeutic strategies. Int. J. Environ. Res. Public Health, 2020, 17(6), 2078.
[http://dx.doi.org/10.3390/ijerph17062078] [PMID: 32245065]
[5]
Ahmad, R.; Khan, M.A.; Srivastava, A.N.; Gupta, A.; Srivastava, A.; Jafri, T.R.; Siddiqui, Z.; Chaubey, S.; Khan, T.; Srivastava, A.K. Anticancer potential of dietary natural products: a comprehensive review. Anticancer. Agents Med. Chem., 2020, 20(2), 122-236.
[http://dx.doi.org/10.2174/1871520619666191015103712] [PMID: 31749433]
[6]
Qian, J.; Cui, J.; Li, S.; Chen, J.; Jia, J. Anticancer natural products with collateral sensitivity: a review. Mini Rev. Med. Chem., 2021, 21(12), 1465-1486.
[http://dx.doi.org/10.2174/1389557521666210112141455] [PMID: 33438535]
[7]
Zhou, Y.; Liu, Y.; Jiang, Y.; Liu, Z.; Yang, B.; Xiao, H. Studies on anti-tumor chemical constituents in exocarps of Juglans mandshurica. Chin. Tradit. Herb. Drugs, 2016, 47, 2979-2983.
[8]
Cui, J.; Qian, J.; Chow, L.M.C.; Jia, J. Natural products targeting cancer stem cells: a revisit. Curr. Med. Chem., 2021, 28(33), 6773-6804.
[http://dx.doi.org/10.2174/0929867328666210405111913] [PMID: 33820513]
[9]
Aithal, K.B.; Kumar, S.; Rao, B.N.; Udupa, N.; Rao, S.B.S. Tumor growth inhibitory effect of juglone and its radiation sensitizing potential: In vivo and in vitro studies. Integr. Cancer Ther., 2012, 11(1), 68-80.
[http://dx.doi.org/10.1177/1534735411403477] [PMID: 21498474]
[10]
Aithal, K.B.; Kumar, S.M.R.; Rao, N.B.; Udupa, N.; Rao, S.B.S. Juglone, a naphthoquinone from walnut, exerts cytotoxic and genotoxic effects against cultured melanoma tumor cells. Cell Biol. Int., 2009, 33(10), 1039-1049.
[http://dx.doi.org/10.1016/j.cellbi.2009.06.018] [PMID: 19555768]
[11]
Karki, N.; Aggarwal, S.; Laine, R.A.; Greenway, F.; Losso, J.N. Cytotoxicity of juglone and thymoquinone against pancreatic cancer cells. Chem. Biol. Interact., 2020, 327, 109142.
[http://dx.doi.org/10.1016/j.cbi.2020.109142]
[12]
Paulsen, M.T.; Ljungman, M. The natural toxin juglone causes degradation of p53 and induces rapid H2AX phosphorylation and cell death in human fibroblasts. Toxicol. Appl. Pharmacol., 2005, 209(1), 1-9.
[http://dx.doi.org/10.1016/j.taap.2005.03.005] [PMID: 16271620]
[13]
Androutsopoulos, V.P.; Papakyriakou, A.; Vourloumis, D.; Tsatsakis, A.M.; Spandidos, D.A. Dietary flavonoids in cancer therapy and prevention: Substrates and inhibitors of cytochrome P450 CYP1 enzymes. Pharmacol. Ther., 2010, 126(1), 9-20.
[http://dx.doi.org/10.1016/j.pharmthera.2010.01.009] [PMID: 20153368]
[14]
Orlikova, B.; Menezes, J.C.; Ji, S.; Kamat, S.P.; Cavaleiro, J.A.; Diederich, M. Methylenedioxy flavonoids: assessment of cytotoxic and anti-cancer potential in human leukemia cells. Eur. J. Med. Chem., 2014, 84, 173-180.
[http://dx.doi.org/10.1016/j.ejmech.2014.07.003]
[15]
Zhou, W.; Peng, Y.; Li, S.S. Semi-synthesis and anti-tumor activity of 5,8-O-dimethyl acylshikonin derivatives. Eur. J. Med. Chem., 2010, 45(12), 6005-6011.
[http://dx.doi.org/10.1016/j.ejmech.2010.09.068] [PMID: 20970893]
[16]
Armarego, W.L.F.; Chai, C.L.L. Purification of Laboratory Chemicals, 6th ed; Butterworth-Heinemann: Burlington, USA, 2009.
[17]
Yang, Z.; Cui, Y.X.; Wong, H.N.C.; Wang, R.J.; Mak, T.C.W.; Chang, H.M.; Lee, C.M. Anodic oxidation as a synthetic expedient to naphthoquinone and anthraquinone ketals. Tetrahedron, 1992, 48(16), 3293-3302.
[http://dx.doi.org/10.1016/0040-4020(92)85005-Y]
[18]
Arbuzov, Y.A.; Bilevich, K.A.; Bolesova, I.N.; Volkov, Y.P.; Kolosov, M.N.; Shemyakin, M.M. Tetracyclines. Bull. Acad. Sci. USSR, Div. Chem. Sci., 1964, 13(3), 450-457.
[http://dx.doi.org/10.1007/BF00844160]
[19]
Cui, J.; Meng, Q.; Zhang, X.; Cui, Q.; Zhou, W.; Li, S. Design and synthesis of new α-naphthoflavones as cytochrome P450 (CYP) 1B1 inhibitors to overcome docetaxel-resistance associated with CYP1B1 overexpression. J. Med. Chem., 2015, 58(8), 3534-3547.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00265] [PMID: 25799264]
[20]
Cui, J.; Cui, Q.; Zhang, Q.; Li, S. An efficient multigram synthesis of juglone methyl ether. J. Chem. Res., 2015, 39(9), 553-554.
[http://dx.doi.org/10.3184/174751915X14405203456709]
[21]
Cui, J.; Jia, J. Discovery of juglone and its derivatives as potent SARS-CoV-2 main proteinase inhibitors. Eur. J. Med. Chem., 2021, 225, 113789.
[http://dx.doi.org/10.1016/j.ejmech.2021.113789]
[22]
Cui, J.; Zhang, X.; Huang, G.; Zhang, Q.; Dong, J.; Sun, G.; Meng, Q.; Li, S. DMAKO-20 as a new multi-target anticancer prodrug activated by the tumor specific CYP1B1 enzyme. Mol. Pharm., 2019, 16(1), 409-421.
[http://dx.doi.org/10.1021/acs.molpharmaceut.8b01062] [PMID: 30481041]
[23]
Brimble, M.A.; Brenstrum, T.J. C-Glycosylation of tri-O-benzyl-2-deoxy-D-glucose: synthesis of naphthyl-substituted 3,6-dioxabicyclo[3.2.2]nonanes. J. Chem. Soc., Perkin Trans. 1, 2001, 2001(14), 1612-1623.
[http://dx.doi.org/10.1039/b102807n]
[24]
Mezeiova, E.; Janockova, J.; Andrys, R.; Soukup, O.; Kobrlova, T.; Muckova, L.; Pejchal, J.; Simunkova, M.; Handl, J.; Micankova, P.; Capek, J.; Rousar, T.; Hrabinova, M.; Nepovimova, E.; Marco-Contelles, J.L.; Valko, M.; Korabecny, J. 2-Propargylamino-naphthoquinone derivatives as multipotent agents for the treatment of Alzheimer’s disease. Eur. J. Med. Chem., 2021, 211, 113112.
[25]
Laatsch, H. Dimere naphthochinone, IV. Synthese von biramentaceon, mamegakinon und rotundichinon. Liebigs Ann. Chem., 1980, 1980(8), 1321-1347.
[http://dx.doi.org/10.1002/jlac.198019800815]
[26]
Sánchez-Calvo, J.M.; Barbero, G.R.; Guerrero-Vásquez, G.; Durán, A.G.; Macías, M.; Rodríguez-Iglesias, M.A.; Molinillo, J.M.G.; Macías, F.A. Synthesis, antibacterial and antifungal activities of naphthoquinone derivatives: a structure-activity relationship study. Med. Chem. Res., 2016, 25(6), 1274-1285.
[http://dx.doi.org/10.1007/s00044-016-1550-x]
[27]
Zhang, J.; Fu, M.; Wu, J.; Fan, F.; Zhang, X.; Li, C.; Yang, H.; Wu, Y.; Yin, Y.; Hua, W. The anti-glioma effect of juglone derivatives through ROS generation. Front. Pharmacol., 2022, 13, 911760.
[http://dx.doi.org/10.3389/fphar.2022.911760] [PMID: 35774612]
[28]
Zhang, Q.; Dong, J.; Cui, Q.; Li, S.; Cui, J. Synthesis of 4,8-dimethoxy-1-naphthol via an acetyl migration. Synth. Commun., 2017, 47(6), 536-540.
[http://dx.doi.org/10.1080/00397911.2016.1199807]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy