Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Significant Role of Long Non-coding RNAs in Parkinson’s Disease

Author(s): Chen Na, Chen Wen-Wen, Wang Li, Zhou Ao-Jia and Wang Ting*

Volume 28, Issue 37, 2022

Published on: 14 October, 2022

Page: [3085 - 3094] Pages: 10

DOI: 10.2174/1381612828666220922110551

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Parkinson's disease (PD) is the second most common neurodegenerative disease in the world, with clinical manifestations of resting tremor, akinesia (or bradykinesia), rigidity, and postural instability. However, the molecular pathogenesis of PD is still unclear, and its effective treatments are limited. Substantial evidence demonstrates that long non-coding RNAs (lncRNAs) have important functions in various human diseases, such as cancer, cardiovascular disease, and neurodegenerative diseases. Therefore, the main purpose of this study is to review the role of lncRNAs in the pathogenesis of PD.

Methods: The role of lncRNAs in the pathogenesis of PD is summarized by reviewing Pubmed.

Results: Thirty different lncRNAs are aberrantly expressed in PD and promote or inhibit PD by mediating ubiquitin-proteasome system, autophagy-lysosomal pathway, dopamine (DA) neuronal apoptosis, mitochondrial function, oxidative stress, and neuroinflammation.

Conclusion: In this direction, lncRNA may contribute to the treatment of PD as a diagnostic and therapeutic target for PD.

Keywords: Parkinson's disease, lncRNA, pathogenesis, neurodegenerative, apoptosis, neuroinflammation.

[1]
Samii A, Nutt JG, Ransom BR. Parkinson’s disease. Lancet 2004; 363(9423): 1783-93.
[http://dx.doi.org/10.1016/S0140-6736(04)16305-8] [PMID: 15172778]
[2]
Dickson DW, Braak H, Duda JE, et al. Neuropathological assessment of Parkinson’s disease: Refining the diagnostic criteria. Lancet Neurol 2009; 8(12): 1150-7.
[http://dx.doi.org/10.1016/S1474-4422(09)70238-8] [PMID: 19909913]
[3]
Jankovic J. Parkinson’s disease: Clinical features and diagnosis. J Neurol Neurosurg Psychiatry 2008; 79(4): 368-76.
[http://dx.doi.org/10.1136/jnnp.2007.131045] [PMID: 18344392]
[4]
Gao T, Wu J, Zheng R, et al. Assessment of three essential tremor genetic loci in sporadic Parkinson’s disease in Eastern China. CNS Neurosci Ther 2020; 26(4): 448-52.
[http://dx.doi.org/10.1111/cns.13272] [PMID: 31755235]
[5]
Kabra A, Sharma R, Kabra R, Baghel US. Emerging and alternative therapies for Parkinson disease: An updated review. Curr Pharm Des 2018; 24(22): 2573-82.
[http://dx.doi.org/10.2174/1381612824666180820150150] [PMID: 30124146]
[6]
Maass PG, Luft FC, Bähring S. Long non-coding RNA in health and disease. J Mol Med 2014; 92(4): 337-46.
[http://dx.doi.org/10.1007/s00109-014-1131-8] [PMID: 24531795]
[7]
Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem 2012; 81(1): 145-66.
[http://dx.doi.org/10.1146/annurev-biochem-051410-092902] [PMID: 22663078]
[8]
Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. Gene regulation by the act of long non-coding RNA transcription. BMC Biol 2013; 11(1): 59.
[http://dx.doi.org/10.1186/1741-7007-11-59] [PMID: 23721193]
[9]
Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci 2009; 106(28): 11667-72.
[http://dx.doi.org/10.1073/pnas.0904715106] [PMID: 19571010]
[10]
Wu P, Zuo X, Deng H, Liu X, Liu L, Ji A. Roles of long noncoding RNAs in brain development, functional diversification and neurodegenerative diseases. Brain Res Bull 2013; 97: 69-80.
[http://dx.doi.org/10.1016/j.brainresbull.2013.06.001] [PMID: 23756188]
[11]
Manecka DL, Vanderperre B, Fon EA, Durcan TM. The neuroprotective role of protein quality control in halting the development of alpha-synuclein pathology. Front Mol Neurosci 2017; 10: 311.
[http://dx.doi.org/10.3389/fnmol.2017.00311] [PMID: 29021741]
[12]
Spillantini MG, Schmidt ML, Lee VMY, Trojanowski JQ, Jakes R, Goedert M. α-Synuclein in Lewy bodies. Nature 1997; 388(6645): 839-40.
[http://dx.doi.org/10.1038/42166] [PMID: 9278044]
[13]
Zhang QS, Wang ZH, Zhang JL, Duan YL, Li GF, Zheng DL. Beta-asarone protects against MPTP-induced Parkinson’s disease via regulating long non-coding RNA MALAT1 and inhibiting α-synuclein protein expression. Biomed Pharmacother 2016; 83: 153-9.
[http://dx.doi.org/10.1016/j.biopha.2016.06.017] [PMID: 27470562]
[14]
Liu Y, Lu Z. Long non-coding RNA NEAT1 mediates the toxic of Parkinson’s disease induced by MPTP/MPP+ via regulation of gene expression. Clin Exp Pharmacol Physiol 2018; 45(8): 841-8.
[http://dx.doi.org/10.1111/1440-1681.12932] [PMID: 29575151]
[15]
Lu M, Sun WL, Shen J, et al. LncRNA-UCA1 promotes PD development by upregulating SNCA. Eur Rev Med Pharmacol Sci 2018; 22(22): 7908-15.
[http://dx.doi.org/10.26355/eurrev_201811_16417] [PMID: 30536337]
[16]
Zhang LM, Wang MH, Yang HC, et al. Dopaminergic neuron injury in Parkinson’s disease is mitigated by interfering lncRNA SNHG14 expression to regulate the miR-133b/α-synuclein pathway. Aging 2019; 11(21): 9264-79.
[http://dx.doi.org/10.18632/aging.102330] [PMID: 31683259]
[17]
Ge B, Li S, Li F. Astragaloside-IV regulates endoplasmic reticulum stress-mediated neuronal apoptosis in a murine model of Parkinson’s disease via the lincRNA-p21/CHOP pathway. Exp Mol Pathol 2020; 115: 104478.
[http://dx.doi.org/10.1016/j.yexmp.2020.104478] [PMID: 32511947]
[18]
Vogiatzi T, Xilouri M, Vekrellis K, Stefanis L. Wild type α-synuclein is degraded by chaperone-mediated autophagy and macroautophagy in neuronal cells. J Biol Chem 2008; 283(35): 23542-56.
[http://dx.doi.org/10.1074/jbc.M801992200] [PMID: 18566453]
[19]
Webb JL, Ravikumar B, Atkins J, Skepper JN, Rubinsztein DC. α-Synuclein is degraded by both autophagy and the proteasome. J Biol Chem 2003; 278(27): 25009-13.
[http://dx.doi.org/10.1074/jbc.M300227200] [PMID: 12719433]
[20]
Kraus TFJ, Haider M, Spanner J, Steinmaurer M, Dietinger V, Kretzschmar HA. Altered long noncoding RNA expression precedes the course of Parkinson’s disease-a preliminary report. Mol Neurobiol 2017; 54(4): 2869-77.
[http://dx.doi.org/10.1007/s12035-016-9854-x] [PMID: 27021022]
[21]
Qian C, Ye Y, Mao H, et al. Downregulated lncRNA-SNHG1 enhances autophagy and prevents cell death through the miR-221/] 222/p27/mTOR pathway in Parkinson’s disease. Exp Cell Res 2019; 384(1): 111614.
[http://dx.doi.org/10.1016/j.yexcr.2019.111614] [PMID: 31499060]
[22]
Shan TD, Xu JH, Yu T, et al. Knockdown of linc-POU3F3 suppresses the proliferation, apoptosis, and migration resistance of colorectal cancer. Oncotarget 2016; 7(1): 961-75.
[http://dx.doi.org/10.18632/oncotarget.5830] [PMID: 26510906]
[23]
Zou J, Guo Y, Wei L, Yu F, Yu B, Xu A. Long noncoding RNA POU3F3 and α-synuclein in plasma L1CAM exosomes combined with β-glucocerebrosidase activity: Potential predictors of parkinson’s disease. Neurotherapeutics 2020; 17(3): 1104-19.
[http://dx.doi.org/10.1007/s13311-020-00842-5] [PMID: 32236821]
[24]
Yan W, Chen ZY, Chen JQ, Chen HM. LncRNA NEAT1 promotes autophagy in MPTP-induced Parkinson’s disease through stabilizing PINK1 protein. Biochem Biophys Res Commun 2018; 496(4): 1019-24.
[http://dx.doi.org/10.1016/j.bbrc.2017.12.149] [PMID: 29287722]
[25]
Dong L, Zheng Y, Gao L, Luo X. lncRNA NEAT1 prompts autophagy and apoptosis in MPTP-induced Parkinson’s disease by impairing miR-374c-5p. Acta Biochim Biophys Sin 2021; 53(7): 870-82.
[http://dx.doi.org/10.1093/abbs/gmab055] [PMID: 33984130]
[26]
Zhao J, Li H, Chang N. lncRNA HOTAIR promotes MPP+-induced neuronal injury in Parkinson’s disease by regulating the miR-874-5p/ATG10 axis. EXCLI J 2020; 19: 1141-53. Available from: https://www.excli.de/vol19/excli2020-2286.pdf
[27]
Wang S, Zhang X, Guo Y, Rong H, Liu T. The long noncoding RNA HOTAIR promotes Parkinson’s disease by upregulating LRRK2 expression. Oncotarget 2017; 8(15): 24449-56.
[http://dx.doi.org/10.18632/oncotarget.15511] [PMID: 28445933]
[28]
Fan Y, Zhao X, Lu K, Cheng G. LncRNA BDNF-AS promotes autophagy and apoptosis in MPTP-induced Parkinson’s disease via ablating microRNA-125b-5p. Brain Res Bull 2020; 157: 119-27.
[http://dx.doi.org/10.1016/j.brainresbull.2020.02.003] [PMID: 32057951]
[29]
Lu Y, Gong Z, Jin X, Zhao P, Zhang Y, Wang Z. LncRNA MALAT1 targeting miR‐124‐3p regulates DAPK1 expression contributes to cell apoptosis in Parkinson’s Disease. J Cell Biochem 2020; 121(12): 4838-48.
[http://dx.doi.org/10.1002/jcb.29711] [PMID: 32277510]
[30]
Lv K, Liu Y, Zheng Y, Dai S, Yin P, Miao H. Long non‐coding RNA MALAT1 regulates cell proliferation and apoptosis via miR-135b-5p/GPNMB axis in Parkinson’s disease cell model. Biol Res 2021; 54(1): 10.
[http://dx.doi.org/10.1186/s40659-021-00332-8] [PMID: 33726823]
[31]
Sun Q, Zhang Y, Wang S, et al. NEAT1 decreasing suppresses Parkinson’s disease progression via acting as miR-1301-3p sponge. J Mol Neurosci 2021; 71(2): 369-78.
[http://dx.doi.org/10.1007/s12031-020-01660-2] [PMID: 32712773]
[32]
Lin Q, Hou S, Dai Y, Jiang N, Lin Y. LncRNA HOTAIR targets miR-126-5p to promote the progression of Parkinson’s disease through RAB3IP. Biol Chem 2019; 400(9): 1217-28.
[http://dx.doi.org/10.1515/hsz-2018-0431] [PMID: 30738012]
[33]
Zhao J, Geng L, Chen Y, Wu C. SNHG1 promotes MPP+-induced cytotoxicity by regulating PTEN/AKT/mTOR signaling pathway in SH-SY5Y cells via sponging miR-153-3p. Biol Res 2020; 53(1): 1.
[http://dx.doi.org/10.1186/s40659-019-0267-y] [PMID: 31907031]
[34]
Wang H, Wang X, Zhang Y, Zhao J. LncRNA SNHG1 promotes neuronal injury in Parkinson’s disease cell model by miR-181a-5p/] CXCL12 axis. J Mol Histol 2021; 52(2): 153-63.
[http://dx.doi.org/10.1007/s10735-020-09931-3] [PMID: 33389428]
[35]
Xu X, Zhuang C, Wu Z, Qiu H, Feng H, Wu J. LincRNA-p21 inhibits cell viability and promotes cell apoptosis in parkinson’s disease through activating α-synuclein expression. BioMed Res Int 2018; 2018: 1-10.
[http://dx.doi.org/10.1155/2018/8181374] [PMID: 30671473]
[36]
Ding XM, Zhao LJ, Qiao HY, Wu SL, Wang XH. Long non-coding RNA-p21 regulates MPP+-induced neuronal injury by targeting miR-625 and derepressing TRPM2 in SH-SY5Y cells. Chem Biol Interact 2019; 307: 73-81.
[http://dx.doi.org/10.1016/j.cbi.2019.04.017] [PMID: 31004593]
[37]
Song Q, Geng Y, Li Y, Wang L, Qin J. Long noncoding RNA NORAD regulates MPP+-induced Parkinson’s disease model cells. J Chem Neuroanat 2019; 101: 101668.
[http://dx.doi.org/10.1016/j.jchemneu.2019.101668] [PMID: 31421205]
[38]
Wang Q, Han CL, Wang KL, et al. Integrated analysis of exosomal lncRNA and mRNA expression profiles reveals the involvement of lnc‐MKRN2‐42:1 in the pathogenesis of Parkinson’s disease. CNS Neurosci Ther 2020; 26(5): 527-37.
[http://dx.doi.org/10.1111/cns.13277] [PMID: 31814304]
[39]
Zhang Y, Xia Q, Lin J. LncRNA H19 attenuates apoptosis in MPTP-induced Parkinson’s disease through regulating miR-585-3p/PIK3R3. Neurochem Res 2020; 45(7): 1700-10.
[http://dx.doi.org/10.1007/s11064-020-03035-w] [PMID: 32356199]
[40]
Jiang J, Piao X, Hu S, Gao J, Bao M. LncRNA H19 diminishes dopaminergic neuron loss by mediating microRNA-301b-3p in Parkinson’s disease via the HPRT1-mediated Wnt/β-catenin signaling pathway. Aging 2020; 12(10): 8820-36.
[http://dx.doi.org/10.18632/aging.102877] [PMID: 32434961]
[41]
Quan Y, Wang J, Wang S, Zhao J. Association of the plasma long non-coding RNA MEG3 with Parkinson’s disease. Front Neurol 2020; 11: 532891.
[http://dx.doi.org/10.3389/fneur.2020.532891] [PMID: 33329296]
[42]
Huang H, Zheng S, Lu M. Downregulation of lncRNA MEG3 is involved in Parkinson’s disease. Metab Brain Dis 2021; 36(8): 2323-8.
[http://dx.doi.org/10.1007/s11011-021-00835-z] [PMID: 34643842]
[43]
Zhou Q, Zhang MM, Liu M, Tan ZG, Qin QL, Jiang YG. LncRNA XIST sponges miR-199a-3p to modulate the Sp1/] LRRK2 signal pathway to accelerate Parkinson’s disease progression. Aging 2021; 13(3): 4115-37.
[http://dx.doi.org/10.18632/aging.202378] [PMID: 33494069]
[44]
Shen Y, Cui X, Hu Y, Zhang Z, Zhang Z. LncRNA-MIAT regulates the growth of SHSY5Y cells by regulating the miR-34-5p-SYT1 axis and exerts a neuroprotective effect in a mouse model of Parkinson’s disease. Am J Transl Res 2021; 13(9): 9993-10013.
[45]
Sun P, Lun P, Ji T, et al. HOTTIP downregulation reduces neuronal damage and microglial activation in Parkinson’s disease cell and mouse models. Neural Regen Res 2022; 17(4): 887-97.
[http://dx.doi.org/10.4103/1673-5374.322475] [PMID: 34472490]
[46]
Bose A, Beal MF. Mitochondrial dysfunction in Parkinson’s disease. J Neurochem 2016; 139(S1): 216-31.
[http://dx.doi.org/10.1111/jnc.13731] [PMID: 27546335]
[47]
Norat P, Soldozy S, Sokolowski JD, et al. Mitochondrial dysfunction in neurological disorders: Exploring mitochondrial transplantation. NPJ Regen Med 2020; 5(1): 22.
[http://dx.doi.org/10.1038/s41536-020-00107-x] [PMID: 33298971]
[48]
Ni Y, Huang H, Chen Y, Cao M, Zhou H, Zhang Y. Investigation of long non-coding RNA expression profiles in the substantia nigra of parkinson’s disease. Cell Mol Neurobiol 2017; 37(2): 329-38.
[http://dx.doi.org/10.1007/s10571-016-0373-0] [PMID: 27151187]
[49]
Jiang T, Sun Q, Chen S. Oxidative stress: A major pathogenesis and potential therapeutic target of antioxidative agents in Parkinson’s disease and Alzheimer’s disease. Prog Neurobiol 2016; 147: 1-19.
[http://dx.doi.org/10.1016/j.pneurobio.2016.07.005] [PMID: 27769868]
[50]
Zhang L, Wang J, Liu Q, Xiao Z, Dai Q. Knockdown of long non-coding RNA AL049437 mitigates MPP+ -induced neuronal injury in SH-SY5Y cells via the microRNA-205-5p/MAPK1 axis. Neurotoxicology 2020; 78: 29-35.
[http://dx.doi.org/10.1016/j.neuro.2020.02.004] [PMID: 32057949]
[51]
Simchovitz A, Hanan M, Niederhoffer N, et al. NEAT1 is overexpressed in Parkinson’s disease substantia nigra and confers drug‐inducible neuroprotection from oxidative stress. FASEB J 2019; 33(10): 11223-34.
[http://dx.doi.org/10.1096/fj.201900830R] [PMID: 31311324]
[52]
Xie N, Qi J, Li S, Deng J, Chen Y, Lian Y. Upregulated lncRNA small nucleolar RNA host gene 1 promotes 1‐methyl‐4‐phenylpyridinium ion‐induced cytotoxicity and reactive oxygen species production through miR‐15b‐5p/GSK3β axis in human dopaminergic SH‐SY5Y cells. J Cell Biochem 2019; 120(4): 5790-801.
[http://dx.doi.org/10.1002/jcb.27865] [PMID: 30302821]
[53]
Cai L, Tu L, Li T, et al. Downregulation of lncRNA UCA1 ameliorates the damage of dopaminergic neurons, reduces oxidative stress and inflammation in Parkinson’s disease through the inhibition of the PI3K/Akt signaling pathway. Int Immunopharmacol 2019; 75: 105734.
[http://dx.doi.org/10.1016/j.intimp.2019.105734] [PMID: 31301558]
[54]
Zheng Y, Liu J, Zhuang J, Dong X, Yu M, Li Z. Silencing of UCA1 protects against MPP+-induced cytotoxicity in SK-N-SH cells via modulating KCTD20 expression by sponging miR-423-5p. Neurochem Res 2021; 46(4): 878-87.
[http://dx.doi.org/10.1007/s11064-020-03214-9] [PMID: 33464446]
[55]
Simchovitz A, Hanan M, Yayon N, et al. A lncRNA survey finds increases in neuroprotective LINC‐PINT in Parkinson’s disease substantia nigra. Aging Cell 2020; 19(3): e13115.
[http://dx.doi.org/10.1111/acel.13115] [PMID: 32080970]
[56]
Li Y, Fang J, Zhou Z, et al. Downregulation of lncRNA BACE1-AS improves dopamine-dependent oxidative stress in rats with Parkinson’s disease by upregulating microRNA-34b-5p and downregulating BACE1. Cell Cycle 2020; 19(10): 1158-71.
[http://dx.doi.org/10.1080/15384101.2020.1749447] [PMID: 32308102]
[57]
Yu S, Liu X, Yu D, et al. Downregulation of long non-coding RNA SNHG7 protects against inflammation and apoptosis in Parkinson’s disease model by targeting miR-425-5p/TRAF5/NF-κB axis. 2020. Available from: https://www.researchsquare.com/article/rs-29077/v1.
[58]
Xu X, Zhang Y, Kang Y, et al. LncRNA MIAT inhibits MPP+-induced neuronal damage through regulating the miR-132/SIRT1 axis in PC12 cells. Neurochem Res 2021; 46(12): 3365-74.
[http://dx.doi.org/10.1007/s11064-021-03437-4] [PMID: 34514556]
[59]
Shen Y, Cui X, Xu N, Hu Y, Zhang Z. lncRNA PART1 mitigates MPP+-induced neuronal injury in SH-SY5Y cells via micRNA-106b-5p/MCL1 axis. Am J Transl Res 2021; 13(8): 8897-908.
[60]
Xie Y, Zhang S, Lv Z, Long T, Luo Y, Li Z. SOX21-AS1 modulates neuronal injury of MMP+-treated SH-SY5Y cells via targeting miR-7-5p and inhibiting IRS2. Neurosci Lett 2021; 746: 135602.
[http://dx.doi.org/10.1016/j.neulet.2020.135602] [PMID: 33421490]
[61]
Gao HM, Kotzbauer PT, Uryu K, Leight S, Trojanowski JQ, Lee VMY. Neuroinflammation and oxidation/nitration of alpha-synuclein linked to dopaminergic neurodegeneration. J Neurosci 2008; 28(30): 7687-98.
[http://dx.doi.org/10.1523/JNEUROSCI.0143-07.2008] [PMID: 18650345]
[62]
Cai LJ, Tu L, Huang XM, et al. LncRNA MALAT1 facilitates inflammasome activation via epigenetic suppression of Nrf2 in Parkinson’s disease. Mol Brain 2020; 13(1): 130.
[http://dx.doi.org/10.1186/s13041-020-00656-8] [PMID: 32972446]
[63]
Liu T, Zhang Y, Liu W, Zhao J. LncRNA NEAT1 regulates the development of Parkinson’s disease by targeting AXIN1 via sponging miR-212-3p. Neurochem Res 2021; 46(2): 230-40.
[http://dx.doi.org/10.1007/s11064-020-03157-1] [PMID: 33241432]
[64]
Wang S, Wen Q, Xiong B, Zhang L, Yu X, Ouyang X. Long noncoding RNA NEAT1 knockdown ameliorates 1-methyl-4-phenylpyridine–induced cell injury through MicroRNA-519a-3p/SP1 axis in Parkinson disease. World Neurosurg 2021; 156: e93-e103.
[http://dx.doi.org/10.1016/j.wneu.2021.08.147] [PMID: 34508910]
[65]
Zhang Q, Huang XM, Liao JX, et al. LncRNA HOTAIR promotes neuronal damage through facilitating NLRP3 mediated-pyroptosis activation in Parkinson’s disease via regulation of miR-326/ELAVL1 axis. Cell Mol Neurobiol 2021; 41(8): 1773-86.
[http://dx.doi.org/10.1007/s10571-020-00946-8] [PMID: 32968928]
[66]
Cao B, Wang T, Qu Q, Kang T, Yang Q. Long noncoding RNA SNHG1 promotes neuroinflammation in parkinson’s disease via regulating miR-7/NLRP3 pathway. Neuroscience 2018; 388: 118-27.
[http://dx.doi.org/10.1016/j.neuroscience.2018.07.019] [PMID: 30031125]
[67]
Xiao X, Tan Z, Jia M, et al. Long noncoding RNA SNHG1 knockdown ameliorates apoptosis, oxidative stress and inflammation in models of Parkinson’s disease by inhibiting the miR-125b-5p/MAPK1 axis. Neuropsychiatr Dis Treat 2021; 17: 1153-63.
[http://dx.doi.org/10.2147/NDT.S286778] [PMID: 33911864]
[68]
Zhou S, Zhang D, Guo J, Zhang J, Chen Y. Knockdown of SNHG14 alleviates MPP+-induced injury in the cell model of Parkinson’s disease by targeting the miR-214-3p/KLF4 Axis. Front Neurosci 2020; 14: 930.
[http://dx.doi.org/10.3389/fnins.2020.00930] [PMID: 33071725]
[69]
Xu W, Zhang L, Geng Y, Liu Y, Zhang N. Long noncoding RNA GAS5 promotes microglial inflammatory response in Parkinson’s disease by regulating NLRP3 pathway through sponging miR-223-3p. Int Immunopharmacol 2020; 85: 106614.
[http://dx.doi.org/10.1016/j.intimp.2020.106614] [PMID: 32470877]
[70]
Cheng J, Duan Y, Zhang F, et al. The role of lncRNA TUG1 in the parkinson disease and its effect on microglial inflammatory response. Neuromolecular Med 2021; 23(2): 327-34.
[http://dx.doi.org/10.1007/s12017-020-08626-y] [PMID: 33085068]
[71]
Zhai K, Liu B, Gao L. Long-Noncoding RNA TUG1 promotes Parkinson’s disease via modulating MiR-152-3p/PTEN pathway. Hum Gene Ther 2020; 31(23-24): 1274-87.
[http://dx.doi.org/10.1089/hum.2020.106] [PMID: 32808542]
[72]
Cao H, Han X, Jia Y, Zhang B. Inhibition of long non-coding RNA HOXA11-AS against neuroinflammation in Parkinson’s disease model via targeting miR-124-3p mediated FSTL1/NF-κB axis. Aging 2021; 13(8): 11455-69.
[http://dx.doi.org/10.18632/aging.202837] [PMID: 33839699]
[73]
Yang X, Zhang Y, Chen Y, et al. LncRNA HOXA-AS2 regulates microglial polarization via recruitment of PRC2 and epigenetic modification of PGC-1α expression. J Neuroinflammation 2021; 18(1): 197.
[http://dx.doi.org/10.1186/s12974-021-02267-z] [PMID: 34511122]
[74]
Guo Y, Liu Y, Wang H, Liu P. Long noncoding RNA SRY-box transcription factor 2 overlapping transcript participates in Parkinson’s disease by regulating the microRNA-942-5p/nuclear apoptosis-inducing factor 1 axis. Bioengineered 2021; 12(1): 8570-82.
[http://dx.doi.org/10.1080/21655979.2021.1987126] [PMID: 34607512]
[75]
Chen C, Zhang S, Wei Y, Sun X. LncRNA RMST regulates neuronal apoptosis and inflammatory response via sponging miR-150-5p in Parkinson’s disease. Neuroimmunomodulation 2022; 29(1): 55-62.
[http://dx.doi.org/10.1159/000518212] [PMID: 34515176]
[76]
Ma X, Wang Y, Yin H, et al. Down-regulated long non-coding RNA RMST ameliorates dopaminergic neuron damage in Parkinson’s disease rats via regulation of TLR/NF-κB signaling pathway. Brain Res Bull 2021; 174: 22-30.
[http://dx.doi.org/10.1016/j.brainresbull.2021.04.026] [PMID: 33933526]
[77]
Chi LM, Wang LP, Jiao D. Identification of differentially expressed genes and long noncoding RNAs associated with Parkinson’s disease. Parkinsons Dis 2019; 2019: 1-7.
[http://dx.doi.org/10.1155/2019/6078251] [PMID: 30867898]
[78]
Akbari M, Gholipour M, Hussen BM, et al. Expression of BDNF-associated lncRNAs in Parkinson’s disease. Metab Brain Dis 2022; 37(4): 901-9.
[http://dx.doi.org/10.1007/s11011-022-00946-1] [PMID: 35305235]
[79]
Elkouris M, Kouroupi G, Vourvoukelis A, et al. Long non-coding RNAs associated with neurodegeneration-linked genes are reduced in Parkinson’s disease patients. Front Cell Neurosci 2019; 13: 58.
[http://dx.doi.org/10.3389/fncel.2019.00058] [PMID: 30853899]
[80]
Soreq L, Guffanti A, Salomonis N, Simchovitz A, Israel Z, Bergman H, et al. Long non-coding RNA and alternative splicing modulations in parkinson’s leukocytes identified by RNA sequencing. PLoS Comput Biol 2014; 10(3): e1003517.
[http://dx.doi.org/10.1371/journal.pcbi.1003517]
[81]
Zhou Y, Gu C, Li J, et al. Aberrantly expressed long noncoding RNAs and genes in Parkinson’s disease. Neuropsychiatr Dis Treat 2018; 14: 3219-29.
[http://dx.doi.org/10.2147/NDT.S178435] [PMID: 30538480]
[82]
Salemi M, Lanza G, Mogavero MP, et al. A transcriptome analysis of mRNAs and long non-coding RNAs in patients with Parkinson’s disease. Int J Mol Sci 2022; 23(3): 1535.
[http://dx.doi.org/10.3390/ijms23031535] [PMID: 35163455]
[83]
Wang Z, Gerstein M, Snyder M. RNA-Seq: A revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10(1): 57-63.
[http://dx.doi.org/10.1038/nrg2484] [PMID: 19015660]
[84]
Charles Richard JL, Eichhorn PJA. Platforms for investigating LncRNA functions. SLAS Technol 2018; 23(6): 493-506.
[http://dx.doi.org/10.1177/2472630318780639] [PMID: 29945466]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy