Research Article

选择性NLRP3-炎症小体抑制剂CY-09通过抑制NLRP3-炎症小体活化来改善糖尿病肾病的肾损伤

卷 30, 期 28, 2023

发表于: 23 November, 2022

页: [3261 - 3270] 页: 10

弟呕挨: 10.2174/0929867329666220922104654

价格: $65

Open Access Journals Promotions 2
摘要

背景:糖尿病肾病(DN)是糖尿病最严重的并发症之一,也是导致终末期肾病(ESRD)的主要原因。 NLRP3 炎症小体的激活已被证明在 DN 的发展中起重要作用。因此,NLRP3 炎性体组装的特异性和直接靶标可能具有治疗潜力。 CY-09 是一种新的 NLRP3 炎症小体特异性抑制剂,已被证明可通过抑制 NLRP3 炎症小体的激活来预防非酒精性脂肪肝疾病 (NAFLD)。然而,其在肾脏疾病,尤其是 DN 中的作用尚未见报道。 方法: 本研究采用HE染色评估各组肾脏病理损伤,RT-PCR、免疫荧光和WB检测炎症蛋白和纤维化蛋白的表达变化。 TUNEL染色检测细胞凋亡水平。 结果:在这里,我们显示 db/db 小鼠的炎症、氧化应激、细胞凋亡和纤维化增加,而 CY-09 通过抑制 NLRP3 炎性体激活发挥肾脏保护作用。在体外,CY-09 还以剂量依赖的方式抑制 NLRP3 并减少 caspase-1、IL-18、IL-1β 和细胞凋亡。 结论:CY-09通过抑制NLRP3炎性体有效保护肾脏免受高血糖引起的损伤,可能是一种很有前景的预防DKD进展的治疗策略。

关键词: NLRP3炎症小体,CY-09DN,炎症,肾脏病理,高血糖症。

« Previous
[1]
Kato, M.; Natarajan, R. Epigenetics and epigenomics in diabetic kidney disease and metabolic memory. Nat. Rev. Nephrol., 2019, 15(6), 327-345.
[http://dx.doi.org/10.1038/s41581-019-0135-6] [PMID: 30894700]
[2]
Ogurtsova, K.; da Rocha Fernandes, J.D.; Huang, Y.; Linnenkamp, U.; Guariguata, L.; Cho, N.H.; Cavan, D.; Shaw, J.E.; Makaroff, L.E. IDF diabetes atlas: Global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res. Clin. Pract., 2017, 128, 40-50.
[http://dx.doi.org/10.1016/j.diabres.2017.03.024] [PMID: 28437734]
[3]
Jiao, F.; Wong, C.K.H.; Tang, S.C.W.; Fung, C.S.C.; Tan, K.C.B.; McGhee, S.; Gangwani, R.; Lam, C.L.K. Annual direct medical costs associated with diabetes-related complications in the event year and in subsequent years in Hong Kong. Diabet. Med., 2017, 34(9), 1276-1283.
[http://dx.doi.org/10.1111/dme.13416] [PMID: 28636749]
[4]
Oshima, M.; Shimizu, M.; Yamanouchi, M.; Toyama, T.; Hara, A.; Furuichi, K.; Wada, T. Trajectories of kidney function in diabetes: A clinicopathological update. Nat. Rev. Nephrol., 2021, 17(11), 740-750.
[http://dx.doi.org/10.1038/s41581-021-00462-y] [PMID: 34363037]
[5]
Tang, S.C.W.; Chan, L.Y.Y.; Leung, J.C.K.; Cheng, A.S.; Chan, K.W.; Lan, H.Y.; Lai, K.N. Bradykinin and high glucose promote renal tubular inflammation. Nephrol. Dial. Transplant., 2010, 25(3), 698-710.
[http://dx.doi.org/10.1093/ndt/gfp599] [PMID: 19923143]
[6]
Klessens, C.Q.F.; Zandbergen, M.; Wolterbeek, R.; Bruijn, J.A.; Rabelink, T.J.; Bajema, I.M.; IJpelaar, D.H.T. Macrophages in diabetic nephropathy in patients with type 2 diabetes. Nephrol. Dial. Transplant., 2017, 32(8), 1322-1329.
[PMID: 27416772]
[7]
Tang, P.M.K.; Nikolic-Paterson, D.J.; Lan, H.Y. Macrophages: Versatile players in renal inflammation and fibrosis. Nat. Rev. Nephrol., 2019, 15(3), 144-158.
[http://dx.doi.org/10.1038/s41581-019-0110-2] [PMID: 30692665]
[8]
Meng, X.M.; Nikolic-Paterson, D.J.; Lan, H.Y. Inflammatory processes in renal fibrosis. Nat. Rev. Nephrol., 2014, 10(9), 493-503.
[http://dx.doi.org/10.1038/nrneph.2014.114] [PMID: 24981817]
[9]
Swanson, K.V.; Deng, M.; Ting, J.P.Y. The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat. Rev. Immunol., 2019, 19(8), 477-489.
[http://dx.doi.org/10.1038/s41577-019-0165-0] [PMID: 31036962]
[10]
Li, N.; Zhou, H.; Wu, H.; Wu, Q.; Duan, M.; Deng, W.; Tang, Q. STING-IRF3 contributes to lipopolysaccharide-induced cardiac dys-function, inflammation, apoptosis and pyroptosis by activating NLRP3. Redox Biol., 2019, 24, 101215.
[http://dx.doi.org/10.1016/j.redox.2019.101215] [PMID: 31121492]
[11]
Tang, S.C.W.; Yiu, W.H. Innate immunity in diabetic kidney disease. Nat. Rev. Nephrol., 2020, 16(4), 206-222.
[http://dx.doi.org/10.1038/s41581-019-0234-4] [PMID: 31942046]
[12]
Song, S.; Qiu, D.; Luo, F.; Wei, J.; Wu, M.; Wu, H.; Du, C.; Du, Y.; Ren, Y.; Chen, N.; Duan, H.; Shi, Y. Knockdown of NLRP3 alleviates high glucose or TGFB1-induced EMT in human renal tubular cells. J. Mol. Endocrinol., 2018, 61(3), 101-113.
[http://dx.doi.org/10.1530/JME-18-0069] [PMID: 30307163]
[13]
Ding, H.; Li, J.; Li, Y.; Yang, M.; Nie, S.; Zhou, M.; Zhou, Z.; Yang, X.; Liu, Y.; Hou, F.F. MicroRNA-10 negatively regulates inflammation in diabetic kidney via targeting activation of the NLRP3 inflammasome. Mol. Ther., 2021, 29(7), 2308-2320.
[http://dx.doi.org/10.1016/j.ymthe.2021.03.012] [PMID: 33744467]
[14]
Wu, M.; Han, W.; Song, S.; Du, Y.; Liu, C.; Chen, N.; Wu, H.; Shi, Y.; Duan, H. NLRP3 deficiency ameliorates renal inflammation and fibrosis in diabetic mice. Mol. Cell. Endocrinol., 2018, 478, 115-125.
[http://dx.doi.org/10.1016/j.mce.2018.08.002] [PMID: 30098377]
[15]
Jiang, H.; He, H.; Chen, Y.; Huang, W.; Cheng, J.; Ye, J.; Wang, A.; Tao, J.; Wang, C.; Liu, Q.; Jin, T.; Jiang, W.; Deng, X.; Zhou, R. Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J. Exp. Med., 2017, 214(11), 3219-3238.
[http://dx.doi.org/10.1084/jem.20171419] [PMID: 29021150]
[16]
Sun, K.; Wang, J.; Lan, Z.; Li, L.; Wang, Y.; Li, A.; Liu, S.; Li, Y. Sleeve gastroplasty combined with the NLRP3 inflammasome inhibitor CY-09 reduces body weight, improves insulin resistance and alleviates hepatic steatosis in mouse model. Obes. Surg., 2020, 30(9), 3435-3443.
[http://dx.doi.org/10.1007/s11695-020-04571-8] [PMID: 32266697]
[17]
Pan, L.L.; Liang, W.; Ren, Z.; Li, C.; Chen, Y.; Niu, W.; Fang, X.; Liu, Y.; Zhang, M.; Diana, J.; Agerberth, B.; Sun, J. Cathelicidin‐related antimicrobial peptide protects against ischaemia reperfusion‐induced acute kidney injury in mice. Br. J. Pharmacol., 2020, 177(12), 2726-2742.
[http://dx.doi.org/10.1111/bph.14998] [PMID: 31976546]
[18]
Forbes, J.M.; Thorburn, D.R. Mitochondrial dysfunction in diabetic kidney disease. Nat. Rev. Nephrol., 2018, 14(5), 291-312.
[http://dx.doi.org/10.1038/nrneph.2018.9] [PMID: 29456246]
[19]
Han, Y.; Xu, X.; Tang, C.; Gao, P.; Chen, X.; Xiong, X.; Yang, M.; Yang, S.; Zhu, X.; Yuan, S.; Liu, F.; Xiao, L.; Kanwar, Y.S.; Sun, L. Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol., 2018, 16, 32-46.
[http://dx.doi.org/10.1016/j.redox.2018.02.013] [PMID: 29475133]
[20]
Gao, P.; Yang, M.; Chen, X.; Xiong, S.; Liu, J.; Sun, L. DsbA-L deficiency exacerbates mitochondrial dysfunction of tubular cells in diabetic kidney disease. Clin. Sci. (Lond.), 2020, 134(7), 677-694.
[http://dx.doi.org/10.1042/CS20200005] [PMID: 32167139]
[21]
Yang, M.; Zhao, L.; Gao, P.; Zhu, X.; Han, Y.; Chen, X.; Li, L.; Xiao, Y.; Wei, L.; Li, C.; Xiao, L.; Yuan, S.; Liu, F.; Dong, L.Q.; Kanwar, Y.S.; Sun, L. DsbA-L ameliorates high glucose induced tubular damage through maintaining MAM integrity. EBioMedicine, 2019, 43, 607-619.
[http://dx.doi.org/10.1016/j.ebiom.2019.04.044] [PMID: 31060900]
[22]
Chen, X.; Han, Y.; Gao, P.; Yang, M.; Xiao, L.; Xiong, X.; Zhao, H.; Tang, C.; Chen, G.; Zhu, X.; Yuan, S.; Liu, F.; Dong, L.Q.; Liu, F.; Kanwar, Y.S.; Sun, L. Disulfide-bond A oxidoreductase-like protein protects against ectopic fat deposition and lipid-related kidney damage in diabetic nephropathy. Kidney Int., 2019, 95(4), 880-895.
[http://dx.doi.org/10.1016/j.kint.2018.10.038] [PMID: 30791996]
[23]
Afsar, B.; Covic, A.; Ortiz, A.; Afsar, R.E.; Kanbay, M. The future of IL-1 targeting in kidney disease. Drugs, 2018, 78(11), 1073-1083.
[http://dx.doi.org/10.1007/s40265-018-0942-2] [PMID: 29968152]
[24]
Zahid, A.; Li, B.; Kombe, A.J.K.; Jin, T.; Tao, J. Pharmacological inhibitors of the NLRP3 inflammasome. Front. Immunol., 2019, 10, 2538.
[http://dx.doi.org/10.3389/fimmu.2019.02538] [PMID: 31749805]
[25]
Lin, H.B.; Wei, G.S.; Li, F.X.; Guo, W.J.; Hong, P.; Weng, Y.Q.; Zhang, Q.Q.; Xu, S.Y.; Liang, W.B.; You, Z.J.; Zhang, H.F. Macrophage–NLRP3 inflammasome activation exacerbates cardiac dysfunction after ischemic stroke in a mouse model of diabetes. Neurosci. Bull., 2020, 36(9), 1035-1045.
[http://dx.doi.org/10.1007/s12264-020-00544-0] [PMID: 32683554]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy