Generic placeholder image

Current Neuropharmacology

Editor-in-Chief

ISSN (Print): 1570-159X
ISSN (Online): 1875-6190

Review Article

Boosting Mitochondrial Potential: An Imperative Therapeutic Intervention in Amyotrophic Lateral Sclerosis

Author(s): Swati Dhasmana, Anupam Dhasmana, Sudhir Kotnala, Varsha Mangtani, Acharan S. Narula, Shafiul Haque, Meena Jaggi, Murali M. Yallapu and Subhash C. Chauhan*

Volume 21, Issue 5, 2023

Published on: 17 January, 2023

Page: [1117 - 1138] Pages: 22

DOI: 10.2174/1570159X20666220915092703

Price: $65

Open Access Journals Promotions 2
Abstract

Background: Amyotrophic Lateral Sclerosis (ALS) is a progressive and terminal neurodegenerative disorder. Mitochondrial dysfunction, imbalance of cellular bioenergetics, electron chain transportation and calcium homeostasis are deeply associated with the progression of this disease. Impaired mitochondrial functions are crucial in rapid neurodegeneration. The mitochondria of ALS patients are associated with deregulated Ca2+ homeostasis and elevated levels of reactive oxygen species (ROS), leading to oxidative stress. Overload of mitochondrial calcium and ROS production leads to glutamatereceptor mediated neurotoxicity. This implies mitochondria are an attractive therapeutic target.

Objective: The aim of this review is to brief the latest developments in the understanding of mitochondrial pathogenesis in ALS and emphasize the restorative capacity of therapeutic candidates.

Results: In ALS, mitochondrial dysfunction is a well-known phenomenon. Various therapies targeted towards mitochondrial dysfunction aim at decreasing ROS generation, increasing mitochondrial biogenesis, and inhibiting apoptotic pathways. Some of the therapies briefed in this review may be categorized as synthetic, natural compounds, genetic materials, and cellular therapies.

Conclusion: The overarching goals of mitochondrial therapies in ALS are to benefit ALS patients by slowing down the disease progression and prolonging overall survival. Despite various therapeutic approaches, there are many hurdles in the development of a successful therapy due to the multifaceted nature of mitochondrial dysfunction and ALS progression. Intensive research is required to precisely elucidate the molecular pathways involved in the progression of mitochondrial dysfunctions that ultimately lead to ALS. Because of the multifactorial nature of ALS, a combination therapy approach may hold the key to cure and treat ALS in the future.

Keywords: ALS, mitochondrial dysfunction, neurodegeneration, ROS in ALS, excitotoxicity, mitochondrial biogenesis, mitochondrial reactivation.

Graphical Abstract
[1]
Goutman, S.A. Diagnosis and clinical management of amyotrophic lateral sclerosis and other motor neuron disorders. Continuum (Minneap. Minn.), 2017, 23(5), 1332-1359.
[http://dx.doi.org/10.1212/CON.0000000000000535]
[2]
Masrori, P.; Van Damme, P. Amyotrophic lateral sclerosis: A clinical review. Eur. J. Neurol., 2020, 27(10), 1918-1929.
[http://dx.doi.org/10.1111/ene.14393] [PMID: 32526057]
[3]
Renton, A.E.; Chiò, A.; Traynor, B.J. State of play in amyotrophic lateral sclerosis genetics. Nat. Neurosci., 2014, 17(1), 17-23.
[http://dx.doi.org/10.1038/nn.3584] [PMID: 24369373]
[4]
Boylan, K. Familial amyotrophic lateral sclerosis. Neurol. Clin., 2015, 33(4), 807-830.
[http://dx.doi.org/10.1016/j.ncl.2015.07.001] [PMID: 26515623]
[5]
Richards, D.; Morren, J.A.; Pioro, E.P. Time to diagnosis and factors affecting diagnostic delay in amyotrophic lateral sclerosis. J. Neurol. Sci., 2020, 417117054.
[http://dx.doi.org/10.1016/j.jns.2020.117054] [PMID: 32763509]
[6]
Maskovic, J.; Ilic, A.; Zugic, V.; Stevic, Z.; Stjepanovic, M.I. What is the right moment for noninvasive ventilation in amyotrophic lateral sclerosis? AMS, 2019.
[http://dx.doi.org/10.5114/aoms.2019.90465]
[7]
Phukan, J.; Pender, N.P.; Hardiman, O. Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurol., 2007, 6(11), 994-1003.
[http://dx.doi.org/10.1016/S1474-4422(07)70265-X] [PMID: 17945153]
[8]
Marin, B.; Boumédiene, F.; Logroscino, G.; Couratier, P.; Babron, M.C.; Leutenegger, A.L.; Copetti, M.; Preux, P.M.; Beghi, E. Variation in worldwide incidence of amyotrophic lateral sclerosis: A meta-analysis. Int. J. Epidemiol., 2017, 46(1), 57-74.
[PMID: 27185810]
[9]
Neumann, M.; Sampathu, D.M.; Kwong, L.K.; Truax, A.C.; Micsenyi, M.C.; Chou, T.T.; Bruce, J.; Schuck, T.; Grossman, M.; Clark, C.M.; McCluskey, L.F.; Miller, B.L.; Masliah, E.; Mackenzie, I.R.; Feldman, H.; Feiden, W.; Kretzschmar, H.A.; Trojanowski, J.Q.; Lee, V.M.Y. Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science, 2006, 314(5796), 130-133.
[http://dx.doi.org/10.1126/science.1134108] [PMID: 17023659]
[10]
Brown, R.H.; Al-Chalabi, A. Amyotrophic lateral sclerosis. N. Engl. J. Med., 2017, 377(2), 162-172.
[http://dx.doi.org/10.1056/NEJMra1603471] [PMID: 28700839]
[11]
Taylor, J.P.; Brown, R.H., Jr; Cleveland, D.W. Decoding ALS: From genes to mechanism. Nature, 2016, 539(7628), 197-206.
[http://dx.doi.org/10.1038/nature20413] [PMID: 27830784]
[12]
Sever, B.; Ciftci, H.; DeMirci, H.; Sever, H.; Ocak, F.; Yulug, B.; Tateishi, H.; Tateishi, T.; Otsuka, M.; Fujita, M.; Başak, A.N. Comprehensive research on past and future therapeutic strategies devoted to treatment of amyotrophic lateral sclerosis. Int. J. Mol. Sci., 2022, 23(5), 2400.
[http://dx.doi.org/10.3390/ijms23052400] [PMID: 35269543]
[13]
Pradat, P.F.; Kabashi, E.; Desnuelle, C. Deciphering spreading mechanisms in amyotrophic lateral sclerosis. Curr. Opin. Neurol., 2015, 28(5), 455-461.
[http://dx.doi.org/10.1097/WCO.0000000000000239] [PMID: 26356410]
[14]
Lee, S.; Kim, H.J. Prion-like mechanism in amyotrophic lateral sclerosis: Are protein aggregates the key? Exp. Neurobiol., 2015, 24(1), 1-7.
[http://dx.doi.org/10.5607/en.2015.24.1.1] [PMID: 25792864]
[15]
Xiao, S.; McLean, J.; Robertson, J. Neuronal intermediate filaments and ALS: A new look at an old question. Biochim. Biophys. Acta Mol. Basis Dis., 2006, 1762(11-12), 1001-1012.
[http://dx.doi.org/10.1016/j.bbadis.2006.09.003] [PMID: 17045786]
[16]
Obrador, E.; Salvador-Palmer, R.; López-Blanch, R.; Jihad-Jebbar, A.; Vallés, S.L.; Estrela, J.M. The link between oxidative stress, redox status, bioenergetics and mitochondria in the pathophysiology of ALS. Int. J. Mol. Sci., 2021, 22(12), 6352.
[http://dx.doi.org/10.3390/ijms22126352] [PMID: 34198557]
[17]
Beckman, J.S.; Estévez, A.G.; Crow, J.P.; Barbeito, L. Superoxide dismutase and the death of motoneurons in ALS. Trends Neurosci., 2001, 24(11)(Suppl.), S15-S20.
[http://dx.doi.org/10.1016/S0166-2236(00)01981-0] [PMID: 11881740]
[18]
Appel, S.H.; Zhao, W.; Beers, D.R.; Henkel, J.S. The microglial-motoneuron dialogue in ALS. Acta Myol., 2011, 30(1), 4-8.
[PMID: 21842586]
[19]
Zhao, W.; Beers, D.R.; Appel, S.H. Immune-mediated mechanisms in the pathoprogression of amyotrophic lateral sclerosis. J. Neuroimmune Pharmacol., 2013, 8(4), 888-899.
[http://dx.doi.org/10.1007/s11481-013-9489-x] [PMID: 23881705]
[20]
Shaw, P.; Eggett, C.J. Molecular factors underlying selective vulnerability of motor neurons to neurodegeneration in amyotrophic lateral sclerosis. J. Neurol., 2000, 247(S1)(Suppl. 1), I17-I27.
[http://dx.doi.org/10.1007/BF03161151] [PMID: 10795883]
[21]
Ishigaki, S.; Sobue, G. Importance of functional loss of FUS in FTLD/ALS. Front. Mol. Biosci., 2018, 5, 44.
[http://dx.doi.org/10.3389/fmolb.2018.00044] [PMID: 29774215]
[22]
Prasad, A.; Bharathi, V.; Sivalingam, V.; Girdhar, A.; Patel, B.K. Molecular mechanisms of TDP-43 misfolding and pathology in amyotrophic lateral sclerosis. Front. Mol. Neurosci., 2019, 12, 25.
[http://dx.doi.org/10.3389/fnmol.2019.00025] [PMID: 30837838]
[23]
Dafinca, R.; Barbagallo, P.; Talbot, K. The role of mitochondrial dysfunction and ER stress in TDP-43 and C9orf72 ALS. Front. Cell. Neurosci., 2021, 15, 653688.
[http://dx.doi.org/10.3389/fncel.2021.653688] [PMID: 33867942]
[24]
Dhasmana, S.; Dhasmana, A.; Narula, A.S.; Jaggi, M.; Yallapu, M.M.; Chauhan, S.C. The panoramic view of amyotrophic lateral sclerosis: A fatal intricate neurological disorder. Life Sci., 2022, 288120156.
[http://dx.doi.org/10.1016/j.lfs.2021.120156] [PMID: 34801512]
[25]
Salemi, M.; Cosentino, F.; Lanza, G.; Cantone, M.; Salluzzo, M.G.; Giurato, G. mRNA expression profiling of mitochondrial subunits in subjects with Parkinson’s disease. AMS, 2023, 19(3)
[26]
Higgins, C.M.J.; Jung, C.; Xu, Z. ALS-associated mutant SOD1G93A causes mitochondrial vacuolation by expansion of the intermembrane space and by involvement of SOD1 aggregation and peroxisomes. BMC Neurosci., 2003, 4(1), 16.
[http://dx.doi.org/10.1186/1471-2202-4-16] [PMID: 12864925]
[27]
Calió, M.L.; Henriques, E.; Siena, A.; Bertoncini, C.R.A.; Gil-Mohapel, J.; Rosenstock, T.R. Mitochondrial dysfunction, neurogenesis, and epigenetics: Putative implications for amyotrophic lateral sclerosis neurodegeneration and treatment. Front. Neurosci., 2020, 14, 679.
[http://dx.doi.org/10.3389/fnins.2020.00679] [PMID: 32760239]
[28]
Obrador, E.; Salvador, R.; López-Blanch, R.; Jihad-Jebbar, A.; Vallés, S.L.; Estrela, J.M. Oxidative stress, neuroinflammation and mitochondria in the pathophysiology of amyotrophic lateral sclerosis. Antioxidants, 2020, 9(9), 901.
[http://dx.doi.org/10.3390/antiox9090901] [PMID: 32971909]
[29]
Zeineddine, R.; Farrawell, N.E.; Lambert-Smith, I.A.; Yerbury, J.J. Addition of exogenous SOD1 aggregates causes TDP-43 mislocalisation and aggregation. Cell Stress Chaperones, 2017, 22(6), 893-902.
[http://dx.doi.org/10.1007/s12192-017-0804-y] [PMID: 28560609]
[30]
Vance, C.; Rogelj, B.; Hortobágyi, T.; De Vos, K.J.; Nishimura, A.L.; Sreedharan, J.; Hu, X.; Smith, B.; Ruddy, D.; Wright, P.; Ganesalingam, J.; Williams, K.L.; Tripathi, V.; Al-Saraj, S.; Al-Chalabi, A.; Leigh, P.N.; Blair, I.P.; Nicholson, G.; de Belleroche, J.; Gallo, J.M.; Miller, C.C.; Shaw, C.E. Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science, 2009, 323(5918), 1208-1211.
[http://dx.doi.org/10.1126/science.1165942] [PMID: 19251628]
[31]
Chen, W.; Guo, L.; Li, M.; Wei, C.; Li, S.; Xu, R. The pathogenesis of amyotrophic lateral sclerosis: Mitochondrial dysfunction, protein misfolding and epigenetics. Brain Res., 2022, 1786147904.
[http://dx.doi.org/10.1016/j.brainres.2022.147904] [PMID: 35390335]
[32]
Kwiatkowski, T.J., Jr; Bosco, D.A.; LeClerc, A.L.; Tamrazian, E.; Vanderburg, C.R.; Russ, C.; Davis, A.; Gilchrist, J.; Kasarskis, E.J.; Munsat, T.; Valdmanis, P.; Rouleau, G.A.; Hosler, B.A.; Cortelli, P.; de Jong, P.J.; Yoshinaga, Y.; Haines, J.L.; Pericak-Vance, M.A.; Yan, J.; Ticozzi, N.; Siddique, T.; McKenna-Yasek, D.; Sapp, P.C.; Horvitz, H.R.; Landers, J.E.; Brown, R.H., Jr Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science, 2009, 323(5918), 1205-1208.
[http://dx.doi.org/10.1126/science.1166066] [PMID: 19251627]
[33]
Kausar, S.; Wang, F.; Cui, H. The role of mitochondria in reactive oxygen species generation and its implications for neurodegenerative diseases. Cells, 2018, 7(12), 274.
[http://dx.doi.org/10.3390/cells7120274] [PMID: 30563029]
[34]
Pasinelli, P.; Belford, M.E.; Lennon, N.; Bacskai, B.J.; Hyman, B.T.; Trotti, D.; Brown, R.H., Jr Amyotrophic lateral sclerosis-associated SOD1 mutant proteins bind and aggregate with Bcl-2 in spinal cord mitochondria. Neuron, 2004, 43(1), 19-30.
[http://dx.doi.org/10.1016/j.neuron.2004.06.021] [PMID: 15233914]
[35]
Deng, J.; Wang, P.; Chen, X.; Cheng, H.; Liu, J.; Fushimi, K.; Zhu, L.; Wu, J.Y. FUS interacts with ATP synthase beta subunit and induces mitochondrial unfolded protein response in cellular and animal models. Proc. Natl. Acad. Sci. USA, 2018, 115(41), E9678-E9686.
[http://dx.doi.org/10.1073/pnas.1806655115] [PMID: 30249657]
[36]
Kodavati, M.; Wang, H.; Hegde, M.L. Altered mitochondrial dynamics in motor neuron disease: An emerging perspective. Cells, 2020, 9(4), 1065.
[http://dx.doi.org/10.3390/cells9041065] [PMID: 32344665]
[37]
Lopez-Gonzalez, R.; Lu, Y.; Gendron, T.F.; Karydas, A.; Tran, H.; Yang, D.; Petrucelli, L.; Miller, B.L.; Almeida, S.; Gao, F.B. Poly(GR) in C9orf72-related ALS/FTD compromises mitochondrial function and increases oxidative stress and DNA damage in iPSC-derived motor neurons. Neuron, 2016, 92(2), 383-391.
[http://dx.doi.org/10.1016/j.neuron.2016.09.015] [PMID: 27720481]
[38]
Choi, S.Y.; Lopez-Gonzalez, R.; Krishnan, G.; Phillips, H.L.; Li, A.N.; Seeley, W.W.; Yao, W.D.; Almeida, S.; Gao, F.B. C9orf72-ALS/FTD-associated poly(GR) binds Atp5a1 and compromises mitochondrial function in vivo. Nat. Neurosci., 2019, 22(6), 851-862.
[http://dx.doi.org/10.1038/s41593-019-0397-0] [PMID: 31086314]
[39]
Onesto, E.; Colombrita, C.; Gumina, V.; Borghi, M.O.; Dusi, S.; Doretti, A.; Fagiolari, G.; Invernizzi, F.; Moggio, M.; Tiranti, V.; Silani, V.; Ratti, A. Gene-specific mitochondria dysfunctions in human TARDBP and C9orf72 fibroblasts. Acta Neuropathol. Commun., 2016, 4(1), 47.
[http://dx.doi.org/10.1186/s40478-016-0316-5] [PMID: 27151080]
[40]
Bannwarth, S.; Ait-El-Mkadem, S.; Chaussenot, A.; Genin, E.C.; Lacas-Gervais, S.; Fragaki, K.; Berg-Alonso, L.; Kageyama, Y.; Serre, V.; Moore, D.G.; Verschueren, A.; Rouzier, C.; Le Ber, I.; Augé, G.; Cochaud, C.; Lespinasse, F.; N’Guyen, K.; de Septenville, A.; Brice, A.; Yu-Wai-Man, P.; Sesaki, H.; Pouget, J.; Paquis-Flucklinger, V. A mitochondrial origin for frontotemporal dementia and amyotrophic lateral sclerosis through CHCHD10 involvement. Brain, 2014, 137(8), 2329-2345.
[http://dx.doi.org/10.1093/brain/awu138] [PMID: 24934289]
[41]
Deng, J.; Yang, M.; Chen, Y.; Chen, X.; Liu, J.; Sun, S.; Cheng, H.; Li, Y.; Bigio, E.H.; Mesulam, M.; Xu, Q.; Du, S.; Fushimi, K.; Zhu, L.; Wu, J.Y. FUS Interacts with HSP60 to Promote Mitochondrial Damage. PLoS Genet., 2015, 11(9), e1005357.
[http://dx.doi.org/10.1371/journal.pgen.1005357] [PMID: 26335776]
[42]
Fivenson, E.M.; Lautrup, S.; Sun, N.; Scheibye-Knudsen, M.; Stevnsner, T.; Nilsen, H.; Bohr, V.A.; Fang, E.F. Mitophagy in neurodegeneration and aging. Neurochem. Int., 2017, 109, 202-209.
[http://dx.doi.org/10.1016/j.neuint.2017.02.007] [PMID: 28235551]
[43]
Smith, E.F.; Shaw, P.J.; De Vos, K.J. The role of mitochondria in amyotrophic lateral sclerosis. Neurosci. Lett., 2019, 710132933.
[http://dx.doi.org/10.1016/j.neulet.2017.06.052] [PMID: 28669745]
[44]
Moldovan, M.; Rosberg, M.R.; Alvarez, S.; Klein, D.; Martini, R.; Krarup, C. Aging-associated changes in motor axon voltage-gated Na+ channel function in mice. Neurobiol. Aging, 2016, 39, 128-139.
[http://dx.doi.org/10.1016/j.neurobiolaging.2015.12.005] [PMID: 26923409]
[45]
Valentine, J.M.; Li, M.E.; Shoelson, S.E.; Zhang, N.; Reddick, R.L.; Musi, N. NFκB regulates muscle development and mitochondrial function. J. Gerontol. A Biol. Sci. Med. Sci., 2020, 75(4), 647-653.
[http://dx.doi.org/10.1093/gerona/gly262] [PMID: 30423026]
[46]
Kim, G.H.; Kim, J.E.; Rhie, S.J.; Yoon, S. The role of oxidative stress in neurodegenerative diseases. Exp. Neurobiol., 2015, 24(4), 325-340.
[http://dx.doi.org/10.5607/en.2015.24.4.325] [PMID: 26713080]
[47]
Halpern, M.; Brennand, K.J.; Gregory, J. Examining the relationship between astrocyte dysfunction and neurodegeneration in ALS using hiPSCs. Neurobiol. Dis., 2019, 132104562.
[http://dx.doi.org/10.1016/j.nbd.2019.104562] [PMID: 31381978]
[48]
Loeffler, J.P.; Picchiarelli, G.; Dupuis, L.; Gonzalez De Aguilar, J.L. The role of skeletal muscle in amyotrophic lateral sclerosis. Brain Pathol., 2016, 26(2), 227-236.
[http://dx.doi.org/10.1111/bpa.12350] [PMID: 26780251]
[49]
Avci, D.; Lemberg, M.K. Clipping or extracting: Two ways to membrane protein degradation. Trends Cell Biol., 2015, 25(10), 611-622.
[http://dx.doi.org/10.1016/j.tcb.2015.07.003] [PMID: 26410407]
[50]
Webster, C.P.; Smith, E.F.; Shaw, P.J.; De Vos, K.J. Protein homeostasis in amyotrophic lateral sclerosis: Therapeutic opportunities? Front. Mol. Neurosci., 2017, 10, 123.
[http://dx.doi.org/10.3389/fnmol.2017.00123] [PMID: 28512398]
[51]
Stoica, R.; Paillusson, S.; Gomez-Suaga, P.; Mitchell, J.C.; Lau, D.H.W.; Gray, E.H.; Sancho, R.M.; Vizcay-Barrena, G.; De Vos, K.J.; Shaw, C.E.; Hanger, D.P.; Noble, W.; Miller, C.C.J. ALS/FTD-associated FUS activates GSK-3β to disrupt the VAPB- PTPIP 51 interaction and ER-mitochondria associations. EMBO Rep., 2016, 17(9), 1326-1342.
[http://dx.doi.org/10.15252/embr.201541726] [PMID: 27418313]
[52]
Stoica, R.; De Vos, K.J.; Paillusson, S.; Mueller, S.; Sancho, R.M.; Lau, K.F.; Vizcay-Barrena, G.; Lin, W.L.; Xu, Y.F.; Lewis, J.; Dickson, D.W.; Petrucelli, L.; Mitchell, J.C.; Shaw, C.E.; Miller, C.C.J. ER–mitochondria associations are regulated by the VAPB–PTPIP51 interaction and are disrupted by ALS/FTD-associated TDP-43. Nat. Commun., 2014, 5(1), 3996.
[http://dx.doi.org/10.1038/ncomms4996] [PMID: 24893131]
[53]
Al-Saif, A.; Al-Mohanna, F.; Bohlega, S. A mutation in sigma-1 receptor causes juvenile amyotrophic lateral sclerosis. Ann. Neurol., 2011, 70(6), 913-919.
[http://dx.doi.org/10.1002/ana.22534] [PMID: 21842496]
[54]
Bernard-Marissal, N.; Médard, J.J.; Azzedine, H.; Chrast, R. Dysfunction in endoplasmic reticulum-mitochondria crosstalk underlies SIGMAR1 loss of function mediated motor neuron degeneration. Brain, 2015, 138(4), 875-890.
[http://dx.doi.org/10.1093/brain/awv008] [PMID: 25678561]
[55]
Vollrath, J.T.; Sechi, A.; Dreser, A.; Katona, I.; Wiemuth, D.; Vervoorts, J.; Dohmen, M.; Chandrasekar, A.; Prause, J.; Brauers, E.; Jesse, C.M.; Weis, J.; Goswami, A. Loss of function of the ALS protein SigR1 leads to ER pathology associated with defective autophagy and lipid raft disturbances. Cell Death Dis., 2014, 5(6), e1290.
[http://dx.doi.org/10.1038/cddis.2014.243] [PMID: 24922074]
[56]
Hamacher-Brady, A.; Brady, N.R. Mitophagy programs: mechanisms and physiological implications of mitochondrial targeting by autophagy. Cell. Mol. Life Sci., 2016, 73(4), 775-795.
[http://dx.doi.org/10.1007/s00018-015-2087-8] [PMID: 26611876]
[57]
Radke, S.; Chander, H.; Schäfer, P.; Meiss, G.; Krüger, R.; Schulz, J.B.; Germain, D. Mitochondrial protein quality control by the proteasome involves ubiquitination and the protease Omi. J. Biol. Chem., 2008, 283(19), 12681-12685.
[http://dx.doi.org/10.1074/jbc.C800036200] [PMID: 18362145]
[58]
Majcher, V; Goode, A; James, V; Layfield, R Autophagy receptor defects and ALS-FTLD. Mol Cell Neurosci., 2015, 66(Pt A), 43-52.
[http://dx.doi.org/10.1016/j.mcn.2015.01.002]
[59]
Ravikumar, B.; Sarkar, S.; Davies, J.E.; Futter, M.; Garcia-Arencibia, M.; Green-Thompson, Z.W.; Jimenez-Sanchez, M.; Korolchuk, V.I.; Lichtenberg, M.; Luo, S.; Massey, D.C.O.; Menzies, F.M.; Moreau, K.; Narayanan, U.; Renna, M.; Siddiqi, F.H.; Underwood, B.R.; Winslow, A.R.; Rubinsztein, D.C. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol. Rev., 2010, 90(4), 1383-1435.
[http://dx.doi.org/10.1152/physrev.00030.2009] [PMID: 20959619]
[60]
Richter, B.; Sliter, D.A.; Herhaus, L.; Stolz, A.; Wang, C.; Beli, P.; Zaffagnini, G.; Wild, P.; Martens, S.; Wagner, S.A.; Youle, R.J.; Dikic, I. Phosphorylation of OPTN by TBK1 enhances its binding to Ub chains and promotes selective autophagy of damaged mitochondria. Proc. Natl. Acad. Sci. USA, 2016, 113(15), 4039-4044.
[http://dx.doi.org/10.1073/pnas.1523926113] [PMID: 27035970]
[61]
Freischmidt, A.; Wieland, T.; Richter, B.; Ruf, W.; Schaeffer, V.; Müller, K.; Marroquin, N.; Nordin, F.; Hübers, A.; Weydt, P.; Pinto, S.; Press, R.; Millecamps, S.; Molko, N.; Bernard, E.; Desnuelle, C.; Soriani, M.H.; Dorst, J.; Graf, E.; Nordström, U.; Feiler, M.S.; Putz, S.; Boeckers, T.M.; Meyer, T.; Winkler, A.S.; Winkelman, J.; de Carvalho, M.; Thal, D.R.; Otto, M.; Brännström, T.; Volk, A.E.; Kursula, P.; Danzer, K.M.; Lichtner, P.; Dikic, I.; Meitinger, T.; Ludolph, A.C.; Strom, T.M.; Andersen, P.M.; Weishaupt, J.H. Haploinsufficiency of TBK1 causes familial ALS and fronto-temporal dementia. Nat. Neurosci., 2015, 18(5), 631-636.
[http://dx.doi.org/10.1038/nn.4000] [PMID: 25803835]
[62]
Xiao, Y.; Ma, C.; Yi, J.; Wu, S.; Luo, G.; Xu, X.; Lin, P.H.; Sun, J.; Zhou, J. Suppressed autophagy flux in skeletal muscle of an amyotrophic lateral sclerosis mouse model during disease progression. Physiol. Rep., 2015, 3(1), e12271.
[http://dx.doi.org/10.14814/phy2.12271] [PMID: 25602021]
[63]
Goode, A.; Butler, K.; Long, J.; Cavey, J.; Scott, D.; Shaw, B.; Sollenberger, J.; Gell, C.; Johansen, T.; Oldham, N.J.; Searle, M.S.; Layfield, R. Defective recognition of LC3B by mutant SQSTM1/p62 implicates impairment of autophagy as a pathogenic mechanism in ALS-FTLD. Autophagy, 2016, 12(7), 1094-1104.
[http://dx.doi.org/10.1080/15548627.2016.1170257] [PMID: 27158844]
[64]
Wang, S.; Chen, Y.; Li, X.; Zhang, W.; Liu, Z.; Wu, M.; Pan, Q.; Liu, H. Emerging role of transcription factor EB in mitochondrial quality control. Biomed. Pharmacother., 2020, 128110272.
[http://dx.doi.org/10.1016/j.biopha.2020.110272] [PMID: 32447212]
[65]
Moya, G.E.; Rivera, P.D.; Dittenhafer-Reed, K.E. Evidence for the role of mitochondrial DNA release in the inflammatory response in neurological disorders. Int. J. Mol. Sci., 2021, 22(13), 7030.
[http://dx.doi.org/10.3390/ijms22137030] [PMID: 34209978]
[66]
Grazioli, S.; Pugin, J. Mitochondrial damage-associated molecular patterns: From inflammatory signaling to human diseases. Front. Immunol., 2018, 9, 832.
[http://dx.doi.org/10.3389/fimmu.2018.00832] [PMID: 29780380]
[67]
Itagaki, K.; Kaczmarek, E.; Lee, Y.T.; Tang, I.T.; Isal, B.; Adibnia, Y.; Sandler, N.; Grimm, M.J.; Segal, B.H.; Otterbein, L.E.; Hauser, C.J. Mitochondrial DNA released by trauma induces neutrophil extracellular traps. PLoS One, 2015, 10(3), e0120549.
[http://dx.doi.org/10.1371/journal.pone.0120549] [PMID: 25774524]
[68]
Shimada, K.; Crother, T.R.; Karlin, J.; Dagvadorj, J.; Chiba, N.; Chen, S.; Ramanujan, V.K.; Wolf, A.J.; Vergnes, L.; Ojcius, D.M.; Rentsendorj, A.; Vargas, M.; Guerrero, C.; Wang, Y.; Fitzgerald, K.A.; Underhill, D.M.; Town, T.; Arditi, M. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity, 2012, 36(3), 401-414.
[http://dx.doi.org/10.1016/j.immuni.2012.01.009] [PMID: 22342844]
[69]
Franchi, L.; Eigenbrod, T.; Muñoz-Planillo, R.; Nuñez, G. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat. Immunol., 2009, 10(3), 241-247.
[http://dx.doi.org/10.1038/ni.1703] [PMID: 19221555]
[70]
van de Veerdonk, F.L.; Netea, M.G.; Dinarello, C.A.; Joosten, L.A.B. Inflammasome activation and IL-1β and IL-18 processing during infection. Trends Immunol., 2011, 32(3), 110-116.
[http://dx.doi.org/10.1016/j.it.2011.01.003] [PMID: 21333600]
[71]
Mishra, S.R.; Mahapatra, K.K.; Behera, B.P.; Patra, S.; Bhol, C.S.; Panigrahi, D.P.; Praharaj, P.P.; Singh, A.; Patil, S.; Dhiman, R.; Bhutia, S.K. Mitochondrial dysfunction as a driver of NLRP3 inflammasome activation and its modulation through mitophagy for potential therapeutics. Int. J. Biochem. Cell Biol., 2021, 136106013.
[http://dx.doi.org/10.1016/j.biocel.2021.106013] [PMID: 34022434]
[72]
Trias, E.; King, P.H.; Si, Y.; Kwon, Y.; Varela, V.; Ibarburu, S.; Kovacs, M.; Moura, I.C.; Beckman, J.S.; Hermine, O.; Barbeito, L. Mast cells and neutrophils mediate peripheral motor pathway degeneration in ALS. JCI Insight, 2018, 3(19), e123249.
[http://dx.doi.org/10.1172/jci.insight.123249] [PMID: 30282815]
[73]
Joshi, A.U.; Minhas, P.S.; Liddelow, S.A.; Haileselassie, B.; Andreasson, K.I.; Dorn, G.W., II; Mochly-Rosen, D. Fragmented mitochondria released from microglia trigger A1 astrocytic response and propagate inflammatory neurodegeneration. Nat. Neurosci., 2019, 22(10), 1635-1648.
[http://dx.doi.org/10.1038/s41593-019-0486-0] [PMID: 31551592]
[74]
Agarwal, A.; Wu, P.H.; Hughes, E.G.; Fukaya, M.; Tischfield, M.A.; Langseth, A.J.; Wirtz, D.; Bergles, D.E. Transient opening of the mitochondrial permeability transition pore induces microdomain calcium transients in astrocyte processes. Neuron, 2017, 93(3), 587-605.e7.
[http://dx.doi.org/10.1016/j.neuron.2016.12.034] [PMID: 28132831]
[75]
Pehar, M.; Beeson, G.; Beeson, C.C.; Johnson, J.A.; Vargas, M.R. Mitochondria-targeted catalase reverts the neurotoxicity of hSOD1G93A astrocytes without extending the survival of ALS-linked mutant hSOD1 mice. PLoS One, 2014, 9(7), e103438.
[http://dx.doi.org/10.1371/journal.pone.0103438] [PMID: 25054289]
[76]
Allen, S.P.; Hall, B.; Woof, R.; Francis, L.; Gatto, N.; Shaw, A.C.; Myszczynska, M.; Hemingway, J.; Coldicott, I.; Willcock, A.; Job, L.; Hughes, R.M.; Boschian, C.; Bayatti, N.; Heath, P.R.; Bandmann, O.; Mortiboys, H.; Ferraiuolo, L.; Shaw, P.J. C9orf72 expansion within astrocytes reduces metabolic flexibility in amyotrophic lateral sclerosis. Brain, 2019, 142(12), 3771-3790.
[http://dx.doi.org/10.1093/brain/awz302] [PMID: 31647549]
[77]
Murray, P.J.; Wynn, T.A. Protective and pathogenic functions of macrophage subsets. Nat. Rev. Immunol., 2011, 11(11), 723-737.
[http://dx.doi.org/10.1038/nri3073] [PMID: 21997792]
[78]
Lall, D.; Baloh, R.H. Microglia and C9orf72 in neuroinflammation and ALS and frontotemporal dementia. J. Clin. Invest., 2017, 127(9), 3250-3258.
[http://dx.doi.org/10.1172/JCI90607] [PMID: 28737506]
[79]
Månberg, A.; Skene, N.; Sanders, F.; Trusohamn, M.; Remnestål, J.; Szczepińska, A.; Aksoylu, I.S.; Lönnerberg, P.; Ebarasi, L.; Wouters, S.; Lehmann, M.; Olofsson, J.; von Gohren Antequera, I.; Domaniku, A.; De Schaepdryver, M.; De Vocht, J.; Poesen, K.; Uhlén, M.; Anink, J.; Mijnsbergen, C.; Vergunst-Bosch, H.; Hübers, A.; Kläppe, U.; Rodriguez-Vieitez, E.; Gilthorpe, J.D.; Hedlund, E.; Harris, R.A.; Aronica, E.; Van Damme, P.; Ludolph, A.; Veldink, J.; Ingre, C.; Nilsson, P.; Lewandowski, S.A. Altered perivascular fibroblast activity precedes ALS disease onset. Nat. Med., 2021, 27(4), 640-646.
[http://dx.doi.org/10.1038/s41591-021-01295-9] [PMID: 33859435]
[80]
Elbaz, Y.; Schuldiner, M. Staying in touch: the molecular era of organelle contact sites. Trends Biochem. Sci., 2011, 36(11), 616-623.
[http://dx.doi.org/10.1016/j.tibs.2011.08.004] [PMID: 21958688]
[81]
Lin, S.; Meng, T.; Huang, H.; Zhuang, H.; He, Z.; Yang, H.; Feng, D. Molecular machineries and physiological relevance of ER-mediated membrane contacts. Theranostics, 2021, 11(2), 974-995.
[http://dx.doi.org/10.7150/thno.51871] [PMID: 33391516]
[82]
Liu, J.; Yang, J. Mitochondria-associated membranes: A hub for neurodegenerative diseases. Biomed. Pharmacother., 2022, 149112890.
[http://dx.doi.org/10.1016/j.biopha.2022.112890] [PMID: 35367757]
[83]
Maday, S.; Twelvetrees, A.E.; Moughamian, A.J.; Holzbaur, E.L.F. Axonal transport: cargo-specific mechanisms of motility and regulation. Neuron, 2014, 84(2), 292-309.
[http://dx.doi.org/10.1016/j.neuron.2014.10.019] [PMID: 25374356]
[84]
Schon, E.A.; Area-Gomez, E. Is Alzheimer’s disease a disorder of mitochondria-associated membranes? J. Alzheimers Dis., 2010, 20(s2)(Suppl. 2), S281-S292.
[http://dx.doi.org/10.3233/JAD-2010-100495] [PMID: 20421691]
[85]
Yamanaka, K.; Boillee, S.; Roberts, E.A.; Garcia, M.L.; McAlonis-Downes, M.; Mikse, O.R.; Cleveland, D.W.; Goldstein, L.S.B. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc. Natl. Acad. Sci. USA, 2008, 105(21), 7594-7599.
[http://dx.doi.org/10.1073/pnas.0802556105] [PMID: 18492803]
[86]
Reddi, A.R.; Culotta, V.C. SOD1 integrates signals from oxygen and glucose to repress respiration. Cell, 2013, 152(1-2), 224-235.
[http://dx.doi.org/10.1016/j.cell.2012.11.046] [PMID: 23332757]
[87]
Shoshan-Barmatz, V.; Ben-Hail, D. VDAC, a multi-functional mitochondrial protein as a pharmacological target. Mitochondrion, 2012, 12(1), 24-34.
[http://dx.doi.org/10.1016/j.mito.2011.04.001] [PMID: 21530686]
[88]
Rosencrans, W.M.; Rajendran, M.; Bezrukov, S.M.; Rostovtseva, T.K. VDAC regulation of mitochondrial calcium flux: From channel biophysics to disease. Cell Calcium, 2021, 94102356.
[http://dx.doi.org/10.1016/j.ceca.2021.102356] [PMID: 33529977]
[89]
Varughese, J.T.; Buchanan, S.K.; Pitt, A.S. The role of voltage-dependent anion channel in mitochondrial dysfunction and human disease. Cells, 2021, 10(7), 1737.
[http://dx.doi.org/10.3390/cells10071737] [PMID: 34359907]
[90]
Watanabe, S.; Ilieva, H.; Tamada, H.; Nomura, H.; Komine, O.; Endo, F.; Jin, S.; Mancias, P.; Kiyama, H.; Yamanaka, K. Mitochondria-associated membrane collapse is a common pathomechanism in SIGMAR1- and SOD1-linked ALS. EMBO Mol. Med., 2016, 8(12), 1421-1437.
[http://dx.doi.org/10.15252/emmm.201606403] [PMID: 27821430]
[91]
Ruan, Y.; Hu, J.; Che, Y.; Liu, Y.; Luo, Z.; Cheng, J.; Han, Q.; He, H.; Zhou, Q. CHCHD2 and CHCHD10 regulate mitochondrial dynamics and integrated stress response. Cell Death Dis., 2022, 13(2), 156.
[http://dx.doi.org/10.1038/s41419-022-04602-5] [PMID: 35173147]
[92]
Gautam, M.; Gunay, A.; Chandel, N.S.; Ozdinler, P.H. Mitochondrial dysregulation occurs early in ALS motor cortex with TDP-43 pathology and suggests maintaining NAD(+) balance as a therapeutic strategy. Sci Rep-Uk., 2022, 12(1), 4287.
[93]
Gautam, M.; Xie, E.F.; Kocak, N.; Ozdinler, P.H. Mitoautophagy: A unique self-destructive path mitochondria of upper motor neurons with TDP-43 pathology take, very early in ALS. Front. Cell. Neurosci., 2019, 13, 489.
[http://dx.doi.org/10.3389/fncel.2019.00489] [PMID: 31787882]
[94]
Cantó-Santos, J.; Grau-Junyent, J.M.; Garrabou, G. The impact of mitochondrial deficiencies in neuromuscular diseases. Antioxidants, 2020, 9(10), 964.
[http://dx.doi.org/10.3390/antiox9100964] [PMID: 33050147]
[95]
Jiang, Z.; Wang, W.; Perry, G.; Zhu, X.; Wang, X. Mitochondrial dynamic abnormalities in amyotrophic lateral sclerosis. Transl. Neurodegener., 2015, 4(1), 14.
[http://dx.doi.org/10.1186/s40035-015-0037-x] [PMID: 26225210]
[96]
McCombe, P.A.; Henderson, R.D. Effects of gender in amyotrophic lateral sclerosis. Gend. Med., 2010, 7(6), 557-570.
[http://dx.doi.org/10.1016/j.genm.2010.11.010] [PMID: 21195356]
[97]
Trojsi, F.; Siciliano, M.; Femiano, C.; Santangelo, G.; Lunetta, C.; Calvo, A.; Moglia, C.; Marinou, K.; Ticozzi, N.; Ferro, C.; Scialò, C.; Sorarù, G.; Conte, A.; Falzone, Y.M.; Tortelli, R.; Russo, M.; Sansone, V.A.; Chiò, A.; Mora, G.; Silani, V.; Volanti, P.; Caponnetto, C.; Querin, G.; Sabatelli, M.; Riva, N.; Logroscino, G.; Messina, S.; Fasano, A.; Monsurrò, M.R.; Tedeschi, G.; Mandrioli, J. Comparative analysis of C9orf72 and sporadic disease in a large multicenter ALS population: The effect of male sex on survival of C9orf72 positive patients. Front. Neurosci., 2019, 13, 485.
[http://dx.doi.org/10.3389/fnins.2019.00485] [PMID: 31156370]
[98]
Choi, C.I.; Lee, Y.D.; Gwag, B.J.; Cho, S.I.; Kim, S.S.; Suh-Kim, H. Effects of estrogen on lifespan and motor functions in female hSOD1 G93A transgenic mice. J. Neurol. Sci., 2008, 268(1-2), 40-47.
[http://dx.doi.org/10.1016/j.jns.2007.10.024] [PMID: 18054961]
[99]
Kim, H.J.; Magranè, J.; Starkov, A.A.; Manfredi, G. The mitochondrial calcium regulator cyclophilin D is an essential component of oestrogen-mediated neuroprotection in amyotrophic lateral sclerosis. Brain, 2012, 135(9), 2865-2874.
[http://dx.doi.org/10.1093/brain/aws208] [PMID: 22961554]
[100]
Ventura-Clapier, R.; Moulin, M.; Piquereau, J.; Lemaire, C.; Mericskay, M.; Veksler, V.; Garnier, A. Mitochondria: a central target for sex differences in pathologies. Clin. Sci. (Lond.), 2017, 131(9), 803-822.
[http://dx.doi.org/10.1042/CS20160485] [PMID: 28424375]
[101]
Cacabelos, D.; Ramírez-Núñez, O.; Granado-Serrano, A.B.; Torres, P.; Ayala, V.; Moiseeva, V.; Povedano, M.; Ferrer, I.; Pamplona, R.; Portero-Otin, M.; Boada, J. Early and gender-specific differences in spinal cord mitochondrial function and oxidative stress markers in a mouse model of ALS. Acta Neuropathol. Commun., 2016, 4(1), 3.
[http://dx.doi.org/10.1186/s40478-015-0271-6] [PMID: 26757991]
[102]
Riar, A.K.; Burstein, S.R.; Palomo, G.M.; Arreguin, A.; Manfredi, G.; Germain, D. Sex specific activation of the ERα axis of the mitochondrial UPR (UPRmt) in the G93A-SOD1 mouse model of familial ALS. Hum. Mol. Genet., 2017, 26(7), 1318-1327.
[http://dx.doi.org/10.1093/hmg/ddx049] [PMID: 28186560]
[103]
Calabrese, V.; Cornelius, C.; Cuzzocrea, S.; Iavicoli, I.; Rizzarelli, E.; Calabrese, E.J. Hormesis, cellular stress response and vitagenes as critical determinants in aging and longevity. Mol. Aspects Med., 2011, 32(4-6), 279-304.
[http://dx.doi.org/10.1016/j.mam.2011.10.007] [PMID: 22020114]
[104]
Trovato, S.A.; Pennisi, M.; Di Paola, R.; Scuto, M.; Crupi, R.; Cambria, M.T.; Ontario, M.L.; Tomasello, M.; Uva, M.; Maiolino, L.; Calabrese, E.J.; Cuzzocrea, S.; Calabrese, V. Neuroinflammation and neurohormesis in the pathogenesis of Alzheimer’s disease and Alzheimer-linked pathologies: modulation by nutritional mushrooms. Immun. Ageing, 2018, 15(1), 8.
[http://dx.doi.org/10.1186/s12979-017-0108-1] [PMID: 29456585]
[105]
Miquel, S.; Champ, C.; Day, J.; Aarts, E.; Bahr, B.A.; Bakker, M.; Bánáti, D.; Calabrese, V.; Cederholm, T.; Cryan, J.; Dye, L.; Farrimond, J.A.; Korosi, A.; Layé, S.; Maudsley, S.; Milenkovic, D.; Mohajeri, M.H.; Sijben, J.; Solomon, A.; Spencer, J.P.E.; Thuret, S.; Vanden Berghe, W.; Vauzour, D.; Vellas, B.; Wesnes, K.; Willatts, P.; Wittenberg, R.; Geurts, L. Poor cognitive ageing: Vulnerabilities, mechanisms and the impact of nutritional interventions. Ageing Res. Rev., 2018, 42, 40-55.
[http://dx.doi.org/10.1016/j.arr.2017.12.004] [PMID: 29248758]
[106]
Calabrese, V.; Giordano, J.; Ruggieri, M.; Berritta, D.; Trovato, A.; Ontario, M.L.; Bianchini, R.; Calabrese, E.J. Hormesis, cellular stress response, and redox homeostasis in autism spectrum disorders. J. Neurosci. Res., 2016, 94(12), 1488-1498.
[http://dx.doi.org/10.1002/jnr.23893] [PMID: 27642708]
[107]
Calabrese, E.J.; Mattson, M.P. How does hormesis impact biology, toxicology, and medicine? NPJ Aging Mech. Dis., 2017, 3(1), 13.
[http://dx.doi.org/10.1038/s41514-017-0013-z] [PMID: 28944077]
[108]
Calabrese, V.; Giordano, J.; Signorile, A.; Laura, O.M.; Castorina, S.; De Pasquale, C.; Eckert, G.; Calabrese, E.J. Major pathogenic mechanisms in vascular dementia: Roles of cellular stress response and hormesis in neuroprotection. J. Neurosci. Res., 2016, 94(12), 1588-1603.
[http://dx.doi.org/10.1002/jnr.23925] [PMID: 27662637]
[109]
Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Giuffrida Stella, A.M. Nitric oxide in the central nervous system: neuroprotection versus neurotoxicity. Nat. Rev. Neurosci., 2007, 8(10), 766-775.
[http://dx.doi.org/10.1038/nrn2214] [PMID: 17882254]
[110]
Mancuso, C.; Pani, G.; Calabrese, V. Bilirubin: an endogenous scavenger of nitric oxide and reactive nitrogen species. Redox Rep., 2006, 11(5), 207-213.
[http://dx.doi.org/10.1179/135100006X154978] [PMID: 17132269]
[111]
Milane, A.; Vautier, S.; Chacun, H.; Meininger, V.; Bensimon, G.; Farinotti, R.; Fernandez, C. Interactions between riluzole and ABCG2/BCRP transporter. Neurosci. Lett., 2009, 452(1), 12-16.
[http://dx.doi.org/10.1016/j.neulet.2008.12.061] [PMID: 19146924]
[112]
Deng, Y.; Xu, Z.F.; Liu, W.; Xu, B.; Yang, H.B.; Wei, Y.G. Riluzole-triggered GSH synthesis via activation of glutamate transporters to antagonize methylmercury-induced oxidative stress in rat cerebral cortex. Oxid. Med. Cell. Longev., 2012, 2012, 1-12.
[http://dx.doi.org/10.1155/2012/534705] [PMID: 22966415]
[113]
Swerdlow, R.H.; Parks, J.K.; Pattee, G.; Parker, W.D., Jr Role of mitochondria in amyotrophic lateral sclerosis. Amyotrophic lateral sclerosis and other motor neuron disorders: official publication of the World Federation of Neurology. Research Group on Motor Neuron Diseases., 2000, 1(3), 185-190.
[114]
Cruz, M.P. Edaravone (Radicava): A novel neuroprotective agent for the treatment of amyotrophic lateral sclerosis. P T, 2018, 43(1), 25-28.
[115]
Ikeda, K.; Iwasaki, Y. Edaravone, a free radical scavenger, delayed symptomatic and pathological progression of motor neuron disease in the wobbler mouse. PLoS One, 2015, 10(10), e0140316.
[http://dx.doi.org/10.1371/journal.pone.0140316] [PMID: 26469273]
[116]
Paganoni, S.; Hendrix, S.; Dickson, S.P.; Knowlton, N.; Berry, J.D.; Elliott, M.A.; Maiser, S.; Karam, C.; Caress, J.B.; Owegi, M.A.; Quick, A.; Wymer, J.; Goutman, S.A.; Heitzman, D.; Heiman-Patterson, T.D.; Jackson, C.; Quinn, C.; Rothstein, J.D.; Kasarskis, E.J.; Katz, J.; Jenkins, L.; Ladha, S.S.; Miller, T.M.; Scelsa, S.N.; Vu, T.H.; Fournier, C.; Johnson, K.M.; Swenson, A.; Goyal, N.; Pattee, G.L.; Babu, S.; Chase, M.; Dagostino, D.; Hall, M.; Kittle, G.; Eydinov, M.; Ostrow, J.; Pothier, L.; Randall, R.; Shefner, J.M.; Sherman, A.V.; Tustison, E.; Vigneswaran, P.; Yu, H.; Cohen, J.; Klee, J.; Tanzi, R.; Gilbert, W.; Yeramian, P.; Cudkowicz, M. Effect of sodium phenylbutyrate/taurursodiol on tracheostomy/ventilation-free survival and hospitalisation in amyotrophic lateral sclerosis: long-term results from the CENTAUR trial. J. Neurol. Neurosurg. Psychiatry, 2022, 93(8), 871-875.
[http://dx.doi.org/10.1136/jnnp-2022-329024] [PMID: 35577511]
[117]
Paganoni, S.; Hendrix, S.; Dickson, S.P.; Knowlton, N.; Macklin, E.A.; Berry, J.D.; Elliott, M.A.; Maiser, S.; Karam, C.; Caress, J.B.; Owegi, M.A.; Quick, A.; Wymer, J.; Goutman, S.A.; Heitzman, D.; Heiman-Patterson, T.D.; Jackson, C.E.; Quinn, C.; Rothstein, J.D.; Kasarskis, E.J.; Katz, J.; Jenkins, L.; Ladha, S.; Miller, T.M.; Scelsa, S.N.; Vu, T.H.; Fournier, C.N.; Glass, J.D.; Johnson, K.M.; Swenson, A.; Goyal, N.A.; Pattee, G.L.; Andres, P.L.; Babu, S.; Chase, M.; Dagostino, D.; Hall, M.; Kittle, G.; Eydinov, M.; McGovern, M.; Ostrow, J.; Pothier, L.; Randall, R.; Shefner, J.M.; Sherman, A.V.; St Pierre, M.E.; Tustison, E.; Vigneswaran, P.; Walker, J.; Yu, H.; Chan, J.; Wittes, J.; Yu, Z.F.; Cohen, J.; Klee, J.; Leslie, K.; Tanzi, R.E.; Gilbert, W.; Yeramian, P.D.; Schoenfeld, D.; Cudkowicz, M.E. Long-term survival of participants in the CENTAUR trial of sodium phenylbutyrate-taurursodiol in amyotrophic lateral sclerosis. Muscle Nerve, 2021, 63(1), 31-39.
[http://dx.doi.org/10.1002/mus.27091] [PMID: 33063909]
[118]
Paganoni, S.; Macklin, E.A.; Hendrix, S.; Berry, J.D.; Elliott, M.A.; Maiser, S.; Karam, C.; Caress, J.B.; Owegi, M.A.; Quick, A.; Wymer, J.; Goutman, S.A.; Heitzman, D.; Heiman-Patterson, T.; Jackson, C.E.; Quinn, C.; Rothstein, J.D.; Kasarskis, E.J.; Katz, J.; Jenkins, L.; Ladha, S.; Miller, T.M.; Scelsa, S.N.; Vu, T.H.; Fournier, C.N.; Glass, J.D.; Johnson, K.M.; Swenson, A.; Goyal, N.A.; Pattee, G.L.; Andres, P.L.; Babu, S.; Chase, M.; Dagostino, D.; Dickson, S.P.; Ellison, N.; Hall, M.; Hendrix, K.; Kittle, G.; McGovern, M.; Ostrow, J.; Pothier, L.; Randall, R.; Shefner, J.M.; Sherman, A.V.; Tustison, E.; Vigneswaran, P.; Walker, J.; Yu, H.; Chan, J.; Wittes, J.; Cohen, J.; Klee, J.; Leslie, K.; Tanzi, R.E.; Gilbert, W.; Yeramian, P.D.; Schoenfeld, D.; Cudkowicz, M.E. Trial of sodium phenylbutyrate-taurursodiol for amyotrophic lateral sclerosis. N. Engl. J. Med., 2020, 383(10), 919-930.
[http://dx.doi.org/10.1056/NEJMoa1916945] [PMID: 32877582]
[119]
Hirano, M.; Emmanuele, V.; Quinzii, C.M. Emerging therapies for mitochondrial diseases. Essays Biochem., 2018, 62(3), 467-481.
[http://dx.doi.org/10.1042/EBC20170114] [PMID: 29980632]
[120]
Taivassalo, T.; Shoubridge, E.A.; Chen, J.; Kennaway, N.G.; DiMauro, S.; Arnold, D.L.; Haller, R.G. Aerobic conditioning in patients with mitochondrial myopathies: Physiological, biochemical, and genetic effects. Ann. Neurol., 2001, 50(2), 133-141.
[http://dx.doi.org/10.1002/ana.1050] [PMID: 11506394]
[121]
Siciliano, G; Simoncini, C; Lo Gerfo, A; Orsucci, D; Ricci, G; Mancuso, M Effects of aerobic training on exercise-related oxidative stress in mitochondrial myopathies. Neuromuscular Disorders: NMD., 2012, 3(3-3), S172-7.
[http://dx.doi.org/10.1016/j.nmd.2012.10.005]
[122]
Taivassalo, T.; Gardner, J.L.; Taylor, R.W.; Schaefer, A.M.; Newman, J.; Barron, M.J.; Haller, R.G.; Turnbull, D.M. Endurance training and detraining in mitochondrial myopathies due to single large-scale mtDNA deletions. Brain, 2006, 129(12), 3391-3401.
[http://dx.doi.org/10.1093/brain/awl282] [PMID: 17085458]
[123]
Merico, A.; Cavinato, M.; Gregorio, C.; Lacatena, A.; Gioia, E.; Piccione, F.; Angelini, C. Effects of combined endurance and resistance training in Amyotrophic Lateral Sclerosis: A pilot, randomized, controlled study. Eur. J. Transl. Myol., 2018, 28(1), 7278.
[http://dx.doi.org/10.4081/ejtm.2018.7278] [PMID: 29686818]
[124]
Esmaeili, M.A.; Yadav, S.; Gupta, R.K.; Waggoner, G.R.; Deloach, A.; Calingasan, N.Y.; Beal, M.F.; Kiaei, M. Preferential PPAR-α activation reduces neuroinflammation, and blocks neurodegeneration in vivo. Hum. Mol. Genet., 2016, 25(2), 317-327.
[http://dx.doi.org/10.1093/hmg/ddv477] [PMID: 26604138]
[125]
Paraskevas, G.P.; Kapaki, E.; Libitaki, G.; Zournas, C.; Segditsa, I.; Papageorgiou, C. Ascorbate in healthy subjects, amyotrophic lateral sclerosis and Alzheimer’s disease. Acta Neurol. Scand., 1997, 96(2), 88-90.
[http://dx.doi.org/10.1111/j.1600-0404.1997.tb00245.x] [PMID: 9272183]
[126]
Gurney, M.E.; Cutting, F.B.; Zhai, P.; Doble, A.; Taylor, C.P.; Andrus, P.K.; Hall, E.D. Benefit of vitamin E, riluzole, and gababapentin in a transgenic model of familial amyotrophic lateral sclerosis. Ann. Neurol., 1996, 39(2), 147-157.
[http://dx.doi.org/10.1002/ana.410390203] [PMID: 8967745]
[127]
Desnuelle, C.; Dib, M.; Garrel, C.; Favier, A. A double-blind, placebo-controlled randomized clinical trial of alpha-tocopherol (vitamin E) in the treatment of amyotrophic lateral sclerosis. Amyotroph. Lateral Scler., 2001, 2(1), 9-18.
[128]
Stacpoole, P.W.; deGrauw, T.J.; Feigenbaum, A.S.; Hoppel, C.; Kerr, D.S.; McCandless, S.E.; Miles, M.V.; Robinson, B.H.; Tang, P.H. Design and implementation of the first randomized controlled trial of coenzyme Q10 in children with primary mitochondrial diseases. Mitochondrion, 2012, 12(6), 623-629.
[http://dx.doi.org/10.1016/j.mito.2012.09.005] [PMID: 23022402]
[129]
Tanaka, T.; Inagaki, M.; Hidaka, H. Calcium-dependent interactions with calmodulin of a fluorescent calmodulin antagonist: N2-dansyl-l-arginine-4-t-butylpiperidine amide. Arch. Biochem. Biophys., 1983, 220(1), 188-192.
[http://dx.doi.org/10.1016/0003-9861(83)90399-5] [PMID: 6830230]
[130]
Littarru, G.P.; Tiano, L. Bioenergetic and antioxidant properties of coenzyme Q10: recent developments. Mol. Biotechnol., 2007, 37(1), 31-37.
[http://dx.doi.org/10.1007/s12033-007-0052-y] [PMID: 17914161]
[131]
D’Antona, S.; Caramenti, M.; Porro, D.; Castiglioni, I.; Cava, C. Amyotrophic lateral sclerosis: A diet review. Foods, 2021, 10(12), 3128.
[132]
Kim, K. Glutathione in the nervous system as a potential therapeutic target to control the development and progression of amyotrophic lateral sclerosis. Antioxidants, 2021, 10(7), 1011.
[http://dx.doi.org/10.3390/antiox10071011]
[133]
Mancuso, R.; del Valle, J.; Modol, L.; Martinez, A.; Granado-Serrano, A.B.; Ramirez-Núñez, O.; Pallás, M.; Portero-Otin, M.; Osta, R.; Navarro, X. Resveratrol improves motoneuron function and extends survival in SOD1G93A ALS mice. Neurotherapeutics, 2014, 11(2), 419-432.
[PMID: 24414863]
[134]
Mizuguchi, Y.; Hatakeyama, H.; Sueoka, K.; Tanaka, M.; Goto, Y. Low dose resveratrol ameliorates mitochondrial respiratory dysfunction and enhances cellular reprogramming. Mitochondrion, 2017, 34, 43-48.
[http://dx.doi.org/10.1016/j.mito.2016.12.006] [PMID: 28093354]
[135]
Mancuso, R.; del Valle, J.; Morell, M.; Pallás, M.; Osta, R.; Navarro, X. Lack of synergistic effect of resveratrol and sigma-1 receptor agonist (PRE-084) in SOD1G93A ALS mice: overlapping effects or limited therapeutic opportunity? Orphanet J. Rare Dis., 2014, 9(1), 78.
[http://dx.doi.org/10.1186/1750-1172-9-78] [PMID: 24885036]
[136]
Krishnaraj, R.N.; Kumari, S.S.S.; Mukhopadhyay, S.S. Antagonistic molecular interactions of photosynthetic pigments with molecular disease targets: a new approach to treat AD and ALS. J. Recept. Signal Transduct. Res., 2016, 36(1), 67-71.
[http://dx.doi.org/10.3109/10799893.2015.1024851] [PMID: 26053508]
[137]
Korkmaz, O.T.; Aytan, N.; Carreras, I.; Choi, J.K.; Kowall, N.W.; Jenkins, B.G.; Dedeoglu, A. 7,8-Dihydroxyflavone improves motor performance and enhances lower motor neuronal survival in a mouse model of amyotrophic lateral sclerosis. Neurosci. Lett., 2014, 566, 286-291.
[http://dx.doi.org/10.1016/j.neulet.2014.02.058] [PMID: 24637017]
[138]
Koh, S.H.; Lee, S.M.; Kim, H.Y.; Lee, K.Y.; Lee, Y.J.; Kim, H.T.; Kim, J.; Kim, M.H.; Hwang, M.S.; Song, C.; Yang, K.W.; Lee, K.W.; Kim, S.H.; Kim, O.H. The effect of epigallocatechin gallate on suppressing disease progression of ALS model mice. Neurosci. Lett., 2006, 395(2), 103-107.
[http://dx.doi.org/10.1016/j.neulet.2005.10.056] [PMID: 16356650]
[139]
Xu, Z.; Chen, S.; Li, X.; Luo, G.; Li, L.; Le, W. Neuroprotective effects of (-)-epigallocatechin-3-gallate in a transgenic mouse model of amyotrophic lateral sclerosis. Neurochem. Res., 2006, 31(10), 1263-1269.
[http://dx.doi.org/10.1007/s11064-006-9166-z] [PMID: 17021948]
[140]
Carrera-Juliá, S.; Moreno, M.L.; Barrios, C.; de la Rubia Ortí, J.E.; Drehmer, E. Antioxidant alternatives in the treatment of amyotrophic lateral sclerosis: A comprehensive review. Front. Physiol., 2020, 11.
[http://dx.doi.org/10.3389/fphys.2020.00063]
[141]
Ahmadi, M.; Agah, E.; Nafissi, S.; Jaafari, M.R.; Harirchian, M.H.; Sarraf, P.; Faghihi-Kashani, S.; Hosseini, S.J.; Ghoreishi, A.; Aghamollaii, V.; Hosseini, M.; Tafakhori, A. Safety and efficacy of nanocurcumin as add-on therapy to riluzole in patients with amyotrophic lateral sclerosis: A pilot randomized clinical trial. Neurotherapeutics, 2018, 15(2), 430-438.
[http://dx.doi.org/10.1007/s13311-018-0606-7] [PMID: 29352425]
[142]
Weishaupt, J.H.; Bartels, C.; Pölking, E.; Dietrich, J.; Rohde, G.; Poeggeler, B.; Mertens, N.; Sperling, S.; Bohn, M.; Hüther, G.; Schneider, A.; Bach, A.; Sirén, A.L.; Hardeland, R.; Bähr, M.; Nave, K.A.; Ehrenreich, H. Reduced oxidative damage in ALS by high-dose enteral melatonin treatment. J. Pineal Res., 2006, 41(4), 313-323.
[http://dx.doi.org/10.1111/j.1600-079X.2006.00377.x] [PMID: 17014688]
[143]
Zhang, Y.; Cook, A.; Kim, J.; Baranov, S.V.; Jiang, J.; Smith, K.; Cormier, K.; Bennett, E.; Browser, R.P.; Day, A.L.; Carlisle, D.L.; Ferrante, R.J.; Wang, X.; Friedlander, R.M. Melatonin inhibits the caspase-1/cytochrome c/caspase-3 cell death pathway, inhibits MT1 receptor loss and delays disease progression in a mouse model of amyotrophic lateral sclerosis. Neurobiol. Dis., 2013, 55, 26-35.
[http://dx.doi.org/10.1016/j.nbd.2013.03.008] [PMID: 23537713]
[144]
Miquel, E.; Cassina, A.; Martínez-Palma, L.; Souza, J.M.; Bolatto, C.; Rodríguez-Bottero, S.; Logan, A.; Smith, R.A.J.; Murphy, M.P.; Barbeito, L.; Radi, R.; Cassina, P. Neuroprotective effects of the mitochondria-targeted antioxidant MitoQ in a model of inherited amyotrophic lateral sclerosis. Free Radic. Biol. Med., 2014, 70, 204-213.
[http://dx.doi.org/10.1016/j.freeradbiomed.2014.02.019] [PMID: 24582549]
[145]
Cudkowicz, M.E.; van den Berg, L.H.; Shefner, J.M.; Mitsumoto, H.; Mora, J.S.; Ludolph, A.; Hardiman, O.; Bozik, M.E.; Ingersoll, E.W.; Archibald, D.; Meyers, A.L.; Dong, Y.; Farwell, W.R.; Kerr, D.A. Dexpramipexole versus placebo for patients with amyotrophic lateral sclerosis (EMPOWER): a randomised, double-blind, phase 3 trial. Lancet Neurol., 2013, 12(11), 1059-1067.
[http://dx.doi.org/10.1016/S1474-4422(13)70221-7] [PMID: 24067398]
[146]
Zhang, G.; Zha, J.; Liu, J.; Di, J. Minocycline impedes mitochondrial-dependent cell death and stabilizes expression of hypoxia inducible factor-1α in spinal cord injury. Arch. Med. Sci., 2019, 15(2), 475-483.
[http://dx.doi.org/10.5114/aoms.2018.73520]
[147]
Orsucci, D.; Ienco, E.C.; Siciliano, G.; Mancuso, M. Mitochondrial disorders and drugs: what every physician should know. Drugs Context, 2019, 8, 1-16.
[http://dx.doi.org/10.7573/dic.212588] [PMID: 31391854]
[148]
Tourniaire, F.; Musinovic, H.; Gouranton, E.; Astier, J.; Marcotorchino, J.; Arreguin, A.; Bernot, D.; Palou, A.; Bonet, M.L.; Ribot, J.; Landrier, J.F. All-trans retinoic acid induces oxidative phosphorylation and mitochondria biogenesis in adipocytes. J. Lipid Res., 2015, 56(6), 1100-1109.
[http://dx.doi.org/10.1194/jlr.M053652] [PMID: 25914170]
[149]
Janssen, M.C.H.; Koene, S.; Laat, P.; Hemelaar, P.; Pickkers, P.; Spaans, E.; Beukema, R.; Beyrath, J.; Groothuis, J.; Verhaak, C.; Smeitink, J. The KHENERGY study: Safety and efficacy of KH 176 in mitochondrial m.3243A>G spectrum disorders. Clin. Pharmacol. Ther., 2019, 105(1), 101-111.
[http://dx.doi.org/10.1002/cpt.1197] [PMID: 30058726]
[150]
Steele, H.; Gomez-Duran, A.; Pyle, A.; Hopton, S.; Newman, J.; Stefanetti, R.J.; Charman, S.J.; Parikh, J.D.; He, L.; Viscomi, C.; Jakovljevic, D.G.; Hollingsworth, K.G.; Robinson, A.J.; Taylor, R.W.; Bottolo, L.; Horvath, R.; Chinnery, P.F. Metabolic effects of bezafibrate in mitochondrial disease. EMBO Mol. Med., 2020, 12(3), e11589.
[http://dx.doi.org/10.15252/emmm.201911589] [PMID: 32107855]
[151]
Barros, C.D.S.; Livramento, J.B.; Mouro, M.G.; Higa, E.M.S.; Moraes, C.T.; Tengan, C.H. L-Arginine reduces nitro-oxidative stress in cultured cells with mitochondrial deficiency. Nutrients, 2021, 13(2), 534.
[http://dx.doi.org/10.3390/nu13020534] [PMID: 33562042]
[152]
Civiletto, G.; Dogan, S.A.; Cerutti, R.; Fagiolari, G.; Moggio, M.; Lamperti, C.; Benincá, C.; Viscomi, C.; Zeviani, M. Rapamycin rescues mitochondrial myopathy via coordinated activation of autophagy and lysosomal biogenesis. EMBO Mol. Med., 2018, 10(11), e8799.
[http://dx.doi.org/10.15252/emmm.201708799] [PMID: 30309855]
[153]
Martinelli, D.; Catteruccia, M.; Piemonte, F.; Pastore, A.; Tozzi, G.; Dionisi-Vici, C.; Pontrelli, G.; Corsetti, T.; Livadiotti, S.; Kheifets, V.; Hinman, A.; Shrader, W.D.; Thoolen, M.; Klein, M.B.; Bertini, E.; Miller, G. EPI-743 reverses the progression of the pediatric mitochondrial disease—Genetically defined Leigh Syndrome. Mol. Genet. Metab., 2012, 107(3), 383-388.
[http://dx.doi.org/10.1016/j.ymgme.2012.09.007] [PMID: 23010433]
[154]
Giorgio, V.; Petronilli, V.; Ghelli, A.; Carelli, V.; Rugolo, M.; Lenaz, G.; Bernardi, P. The effects of idebenone on mitochondrial bioenergetics. Biochim. Biophys. Acta Bioenerg., 2012, 1817(2), 363-369.
[http://dx.doi.org/10.1016/j.bbabio.2011.10.012] [PMID: 22086148]
[155]
Guha, S.; Konkwo, C.; Lavorato, M.; Mathew, N.D.; Peng, M.; Ostrovsky, J.; Kwon, Y.J.; Polyak, E.; Lightfoot, R.; Seiler, C.; Xiao, R.; Bennett, M.; Zhang, Z.; Nakamaru-Ogiso, E.; Falk, M.J. Pre-clinical evaluation of cysteamine bitartrate as a therapeutic agent for mitochondrial respiratory chain disease. Hum. Mol. Genet., 2019, 28(11), 1837-1852.
[http://dx.doi.org/10.1093/hmg/ddz023] [PMID: 30668749]
[156]
Abeti, R.; Baccaro, A.; Esteras, N.; Giunti, P. Novel Nrf2-inducer prevents mitochondrial defects and oxidative stress in Friedreich’s ataxia models. Front. Cell. Neurosci., 2018, 12, 188.
[http://dx.doi.org/10.3389/fncel.2018.00188] [PMID: 30065630]
[157]
Wu, H.; Jin, Y.; Wei, J.; Jin, H.; Sha, D.; Wu, J.Y. Mode of action of taurine as a neuroprotector. Brain Res., 2005, 1038(2), 123-131.
[http://dx.doi.org/10.1016/j.brainres.2005.01.058] [PMID: 15757628]
[158]
Rikimaru, M.; Ohsawa, Y.; Wolf, A.M.; Nishimaki, K.; Ichimiya, H.; Kamimura, N.; Nishimatsu, S.; Ohta, S.; Sunada, Y. Taurine ameliorates impaired the mitochondrial function and prevents stroke-like episodes in patients with MELAS. Intern. Med., 2012, 51(24), 3351-3357.
[http://dx.doi.org/10.2169/internalmedicine.51.7529] [PMID: 23257519]
[159]
Virmani, M.A.; Cirulli, M. The role of l-carnitine in mitochondria, prevention of metabolic inflexibility and disease initiation. Int. J. Mol. Sci., 2022, 23(5), 2717.
[http://dx.doi.org/10.3390/ijms23052717] [PMID: 35269860]
[160]
Liufu, T.; Wang, Z. Treatment for mitochondrial diseases. Rev. Neurosci., 2021, 32(10), 35-47.
[PMID: 32903211]
[161]
Perry, E.A.; Bennett, C.F.; Luo, C.; Balsa, E.; Jedrychowski, M.; O’Malley, K.E.; Latorre-Muro, P.; Ladley, R.P.; Reda, K.; Wright, P.M.; Gygi, S.P.; Myers, A.G.; Puigserver, P. Tetracyclines promote survival and fitness in mitochondrial disease models. Nat. Metab., 2021, 3(1), 33-42.
[http://dx.doi.org/10.1038/s42255-020-00334-y] [PMID: 33462515]
[162]
Yeh, J.H.; Wang, K.C.; Kaizaki, A.; Lee, J.W.; Wei, H.C.; Tucci, M.A.; Ojeda, N.B.; Fan, L.W.; Tien, L.T. Pioglitazone ameliorates lipopolysaccharide-induced behavioral impairment, brain inflammation, white matter injury and mitochondrial dysfunction in neonatal rats. Int. J. Mol. Sci., 2021, 22(12), 6306.
[http://dx.doi.org/10.3390/ijms22126306] [PMID: 34208374]
[163]
Zhang, Z.; Zhang, X.; Meng, L.; Gong, M.; Li, J.; Shi, W.; Qiu, J.; Yang, Y.; Zhao, J.; Suo, Y.; Liang, X.; Wang, X.; Tse, G.; Jiang, N.; Li, G.; Zhao, Y.; Liu, T. Pioglitazone inhibits diabetes-induced atrial mitochondrial oxidative stress and improves mitochondrial biogenesis, dynamics, and function through the PPAR-γ/PGC-1α signaling pathway. Front. Pharmacol., 2021, 12, 658362.
[http://dx.doi.org/10.3389/fphar.2021.658362] [PMID: 34194324]
[164]
Klein Gunnewiek, T.M.; Verboven, A.H.A.; Pelgrim, I.; Hogeweg, M.; Schoenmaker, C.; Renkema, H.; Beyrath, J.; Smeitink, J.; de Vries, B.B.A.; Hoen, P.B.A.C.; Kozicz, T.; Nadif Kasri, N. Sonlicromanol improves neuronal network dysfunction and transcriptome changes linked to m.3243A>G heteroplasmy in iPSC-derived neurons. Stem Cell Reports, 2021, 16(9), 2197-2212.
[http://dx.doi.org/10.1016/j.stemcr.2021.07.002] [PMID: 34329596]
[165]
Gong, Y.; Luo, Y.F.; Liu, S.Q.; Ma, J.P.; Liu, F.P.; Fang, Y. Pentacyclic triterpene oleanolic acid protects against cardiac aging through regulation of mitophagy and mitochondrial integrity. Bba-Mol. Basis Dis., 2022, 1868(7)
[166]
Fogleman, S.; Santana, C.; Bishop, C.; Miller, A.; Capco, D.G. CRISPR/Cas9 and mitochondrial gene replacement therapy: promising techniques and ethical considerations. Am. J. Stem Cells, 2016, 5(2), 39-52.
[PMID: 27725916]
[167]
Rai, P.K.; Craven, L.; Hoogewijs, K.; Russell, O.M.; Lightowlers, R.N. Advances in methods for reducing mitochondrial DNA disease by replacing or manipulating the mitochondrial genome. Essays Biochem., 2018, 62(3), 455-465.
[http://dx.doi.org/10.1042/EBC20170113] [PMID: 29950320]
[168]
Cámara, Y.; González-Vioque, E.; Scarpelli, M.; Torres-Torronteras, J.; Caballero, A.; Hirano, M.; Martí, R. Administration of deoxyribonucleosides or inhibition of their catabolism as a pharmacological approach for mitochondrial DNA depletion syndrome. Hum. Mol. Genet., 2014, 23(9), 2459-2467.
[http://dx.doi.org/10.1093/hmg/ddt641] [PMID: 24362886]
[169]
González-Vioque, E.; Torres-Torronteras, J.; Andreu, A.L.; Martí, R. Limited dCTP availability accounts for mitochondrial DNA depletion in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). PLoS Genet., 2011, 7(3), e1002035.
[http://dx.doi.org/10.1371/journal.pgen.1002035] [PMID: 21483760]
[170]
Bax, B.E.; Bain, M.D.; Scarpelli, M.; Filosto, M.; Tonin, P.; Moran, N. Clinical and biochemical improvements in a patient with MNGIE following enzyme replacement. Neurology, 2013, 81(14), 1269-1271.
[http://dx.doi.org/10.1212/WNL.0b013e3182a6cb4b] [PMID: 23966250]
[171]
Halter, J.P.; Michael, W.; Schüpbach, M.; Mandel, H.; Casali, C.; Orchard, K.; Collin, M.; Valcarcel, D.; Rovelli, A.; Filosto, M.; Dotti, M.T.; Marotta, G.; Pintos, G.; Barba, P.; Accarino, A.; Ferra, C.; Illa, I.; Beguin, Y.; Bakker, J.A.; Boelens, J.J.; de Coo, I.F.M.; Fay, K.; Sue, C.M.; Nachbaur, D.; Zoller, H.; Sobreira, C.; Pinto Simoes, B.; Hammans, S.R.; Savage, D.; Martí, R.; Chinnery, P.F.; Elhasid, R.; Gratwohl, A.; Hirano, M. Allogeneic haematopoietic stem cell transplantation for mitochondrial neurogastrointestinal encephalomyopathy. Brain, 2015, 138(10), 2847-2858.
[http://dx.doi.org/10.1093/brain/awv226] [PMID: 26264513]
[172]
Peverelli, L.; Catania, A.; Marchet, S.; Ciasca, P.; Cammarata, G.; Melzi, L. Leber’s hereditary optic neuropathy: A report on novel mtDNA pathogenic variants. Front. Neurol., 2021, 12, 657317.
[http://dx.doi.org/10.3389/fneur.2021.657317]
[173]
Slone, J.; Huang, T. The special considerations of gene therapy for mitochondrial diseases. NPJ Genom. Med., 2020, 5(1), 7.
[http://dx.doi.org/10.1038/s41525-020-0116-5] [PMID: 32140258]
[174]
Srivastava, S.; Moraes, C.T. Manipulating mitochondrial DNA heteroplasmy by a mitochondrially targeted restriction endonuclease. Hum. Mol. Genet., 2001, 10(26), 3093-3099.
[http://dx.doi.org/10.1093/hmg/10.26.3093] [PMID: 11751691]
[175]
Alexeyev, M.F.; Venediktova, N.; Pastukh, V.; Shokolenko, I.; Bonilla, G.; Wilson, G.L. Selective elimination of mutant mitochondrial genomes as therapeutic strategy for the treatment of NARP and MILS syndromes. Gene Ther., 2008, 15(7), 516-523.
[http://dx.doi.org/10.1038/gt.2008.11] [PMID: 18256697]
[176]
Tanaka, M.; Borgeld, H-J.; Zhang, J.; Shin-ichi, M.; Gong, J-S.; Yoneda, M.; Maruyama, W.; Naoi, M.; Ibi, T.; Sahashi, K.; Shamoto, M.; Fuku, N.; Kurata, M.; Yamada, Y.; Nishizawa, K.; Akao, Y.; Ohishi, N.; Miyabayashi, S.; Umemoto, H.; Muramatsu, T.; Furukawa, K.; Kikuchi, A.; Nakano, I.; Ozawa, K.; Yagi, K. Gene therapy for mitochondrial disease by delivering restriction endonuclease SmaI into mitochondria. J. Biomed. Sci., 2002, 9(6 Pt 1), 534-541.
[http://dx.doi.org/10.1159/000064726] [PMID: 12372991]
[177]
Li, R.; Guan, M.X. Human mitochondrial leucyl-tRNA synthetase corrects mitochondrial dysfunctions due to the tRNA Leu(UUR) A3243G mutation, associated with mitochondrial encephalomyopathy, lactic acidosis, and stroke-like symptoms and diabetes. Mol. Cell. Biol., 2010, 30(9), 2147-2154.
[http://dx.doi.org/10.1128/MCB.01614-09] [PMID: 20194621]
[178]
Sabbah, H.N.; Gupta, R.C.; Kohli, S.; Wang, M.; Hachem, S.; Zhang, K. Chronic therapy with elamipretide (MTP-131), a novel mitochondria-targeting peptide, improves left ventricular and mitochondrial function in dogs with advanced heart failure. Circ. Heart Fail., 2016, 9(2), e002206.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.115.002206] [PMID: 26839394]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy