Research Article

2-核碱基取代的4,6-二氨基三嗪类似物:5-氟尿嘧啶敏感和耐药结直肠癌细胞的合成和抗癌活性

卷 30, 期 26, 2023

发表于: 10 November, 2022

页: [3032 - 3049] 页: 18

弟呕挨: 10.2174/0929867329666220914112042

价格: $65

conference banner
摘要

背景:癌症仍然是全球第二大死因,结直肠癌(CRC)是第三大常见类型。尽管癌症治疗取得了重大进展,但目前对 CRC 的治疗仍然不理想。此外,5-氟尿嘧啶(5-FU)等可用化疗药物的有效性受到 CRC 获得性耐药性的限制。 方法:在这项研究中,我们提供了用于合成四种新型核碱基类似物的创新方法。同样,我们描述了这些化合物对 5-FU 敏感(HCT116)和抗性(5-FU-R-HCT116)人类 CRC 细胞增殖、迁移、聚集和粘附的影响。在这两种细胞类型中,我们合成的新型类似物以浓度和时间依赖性方式显着抑制细胞活力。这凸显了这些新型类似物的更高效力。此外,这些化合物减弱了两种细胞类型的迁移和粘附,同时促进了同型细胞间的相互作用。 结果:这些变化反映在基质金属蛋白酶(MMP-2 和 MMP-9)的下调上。此外,我们的类似物在体内表现出有效的抗血管生成活性。 结论:这些新型核碱基类似物降低了 5-FU 敏感和耐药 CRC 细胞分泌的血管内皮生长因子(VEGF)和一氧化氮(NO)的水平。总而言之,我们的数据突出了我们针对 CRC 的新型类似物的潜在化学治疗特性,包括 5-FU 抗性形式。

关键词: 结直肠癌,5-氟尿嘧啶,核碱基,类似物,2-核碱基取代的4,6-二氨基-s-三嗪类似物,恶性肿瘤。

« Previous
[1]
World Health Organization cancer. Available from: https://www.who.int/cancer/en/2018 [Accessed on: Dec 1, 2018].
[2]
Rassool, G.H. Global cancer rates could increase by 50% to 15 million by 2020. J. Adv. Nurs., 2003, 44(1), 7-8.
[http://dx.doi.org/10.1046/j.1365-2648.2003.02584.x-i1]
[3]
Gustavsson, B.; Carlsson, G.; Machover, D.; Petrelli, N.; Roth, A.; Schmoll, H.J.; Tveit, K.M.; Gibson, F. A review of the evolution of systemic chemotherapy in the management of colorectal cancer. Clin. Colorectal Cancer, 2015, 14(1), 1-10.
[http://dx.doi.org/10.1016/j.clcc.2014.11.002] [PMID: 25579803]
[4]
McQuade, R.M.; Stojanovska, V.; Bornstein, J.C.; Nurgali, K. Colorectal cancer chemotherapy: The evolution of treatment and new approaches. Curr. Med. Chem., 2017, 24(15), 1537-1557.
[PMID: 28079003]
[5]
Bose, D.; Zimmerman, L.J.; Pierobon, M.; Petricoin, E.; Tozzi, F.; Parikh, A.; Fan, F.; Dallas, N.; Xia, L.; Gaur, P.; Samuel, S.; Liebler, D.C.; Ellis, L.M. Chemoresistant colorectal cancer cells and cancer stem cells mediate growth and survival of bystander cells. Br. J. Cancer, 2011, 105(11), 1759-1767.
[http://dx.doi.org/10.1038/bjc.2011.449] [PMID: 22045189]
[6]
Diab, R.; Degobert, G.; Hamoudeh, M.; Dumontet, C.; Fessi, H. Nucleoside analogue delivery systems in cancer therapy. Expert Opin. Drug Deliv., 2007, 4(5), 513-531.
[http://dx.doi.org/10.1517/17425247.4.5.513] [PMID: 17880274]
[7]
Galmarini, C.M.; Mackey, J.R.; Dumontet, C. Nucleoside analogues and nucleobases in cancer treatment. Lancet Oncol., 2002, 3(7), 415-424.
[http://dx.doi.org/10.1016/S1470-2045(02)00788-X] [PMID: 12142171]
[8]
Parker, W.B. Enzymology of purine and pyrimidine antimetabolites used in the treatment of cancer. Chem. Rev., 2009, 109(7), 2880-2893.
[http://dx.doi.org/10.1021/cr900028p] [PMID: 19476376]
[9]
Sampath, D.; Rao, V.A.; Plunkett, W. Mechanisms of apoptosis induction by nucleoside analogs. Oncogene, 2003, 22(56), 9063-9074.
[http://dx.doi.org/10.1038/sj.onc.1207229] [PMID: 14663485]
[10]
Plunkett, W.; Gandhi, V. Purine and pyrimidine nucleoside analogs. Cancer Chemother. Biol. Response Modif., 2001, 19, 21-45.
[PMID: 11686015]
[11]
Longley, D.B.; Harkin, D.P.; Johnston, P.G. 5-Fluorouracil: mechanisms of action and clinical strategies. Nat. Rev. Cancer, 2003, 3(5), 330-338.
[http://dx.doi.org/10.1038/nrc1074] [PMID: 12724731]
[12]
Vodenkova, S.; Buchler, T.; Cervena, K.; Veskrnova, V.; Vodicka, P.; Vymetalkova, V. 5-fluorouracil and other fluoropyrimidines in colorectal cancer: Past, present and future. Pharmacol. Ther., 2020, 206, 107447.
[http://dx.doi.org/10.1016/j.pharmthera.2019.107447] [PMID: 31756363]
[13]
Bertino, J.R. Chemotherapy of colorectal cancer: History and new themes. Semin Oncol, 1997, 24(5 Suppl 18), S18-13-s18-17.
[14]
The American Cancer Society How Chemotherapy Drugs Work. 2018. Available from: https://www.cancer.org/treatment/treatments-and-side-effects/treatment-types/chemotherapy/how-chemotherapy-drugs-work.html [Accessed on: Dec 1, 2018].
[15]
Burke, M.P.; Borland, K.M.; Litosh, V.A. Base-modified nucleosides as chemotherapeutic agents: Past and future. Curr. Top. Med. Chem., 2016, 16(11), 1231-1241.
[http://dx.doi.org/10.2174/1568026615666150915111933] [PMID: 26369814]
[16]
Abdel-Samad, R.; Aouad, P.; Gali-Muhtasib, H.; Sweidan, Z.; Hmadi, R.; Kadara, H.; D’Andrea, E.L.; Fucci, A.; Pisano, C.; Darwiche, N. Mechanism of action of the atypical retinoid ST1926 in colorectal cancer: DNA damage and DNA polymerase α. Am. J. Cancer Res., 2018, 8(1), 39-55.
[PMID: 29416919]
[17]
Fardoun, M.; Al-Shehabi, T.; El-Yazbi, A.; Issa, K.; Zouein, F.; Maaliki, D.; Iratni, R.; Eid, A.H. Ziziphus nummularia Inhibits Inflammation-Induced Atherogenic Phenotype of Human Aortic Smooth Muscle Cells. Oxid. Med. Cell. Longev., 2017, 2017, 1-10.
[http://dx.doi.org/10.1155/2017/4134093] [PMID: 28593025]
[18]
Karabanovich, G.; Zemanová, J.; Smutný, T.; Székely, R.; Šarkan, M.; Centárová, I.; Vocat, A.; Pávková, I.; Čonka, P.; Němeček, J.; Stolaříková, J.; Vejsová, M.; Vávrová, K.; Klimešová, V.; Hrabálek, A.; Pávek, P.; Cole, S.T.; Mikušová, K.; Roh, J. Development of 3,5-dinitrobenzylsulfanyl-1,3,4-oxadiazoles and thiadiazoles as selective antitubercular agents active against replicating and nonreplicating mycobacterium tuberculosis. J. Med. Chem., 2016, 59(6), 2362-2380.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00608] [PMID: 26948407]
[19]
Bouhadir, K.H.; Koubeissi, A.; Mohsen, F.A.; El-Harakeh, M.D.; Cheaib, R.; Younes, J.; Azzi, G.; Eid, A.A. Novel carbocyclic nucleoside analogs suppress glomerular mesangial cells proliferation and matrix protein accumulation through ROS-dependent mechanism in the diabetic milieu. II. Acylhydrazone-functionalized pyrimidines. Bioorg. Med. Chem. Lett., 2016, 26(3), 1020-1024.
[http://dx.doi.org/10.1016/j.bmcl.2015.12.042] [PMID: 26733477]
[20]
Lira, E.P.; Huffman, C.W. Some Michael-Type Reactions with Adenine. J. Org. Chem., 1966, 31(7), 2188-2191.
[http://dx.doi.org/10.1021/jo01345a028]
[21]
Gialeli, C.; Theocharis, A.D.; Karamanos, N.K. Roles of matrix metalloproteinases in cancer progression and their pharmacological targeting. FEBS J., 2011, 278(1), 16-27.
[http://dx.doi.org/10.1111/j.1742-4658.2010.07919.x] [PMID: 21087457]
[22]
Pranteda, A.; Piastra, V.; Stramucci, L.; Fratantonio, D.; Bossi, G. The p38 MAPKsignaling activation in colorectal cancer upon therapeutic treatments. Int. J. Mol. Sci., 2020, 21(8), 2773.
[http://dx.doi.org/10.3390/ijms21082773] [PMID: 32316313]
[23]
Hickok, J.; Thomas, D. Nitric oxide and cancer therapy: the emperor has NO clothes. Curr. Pharm. Des., 2010, 16(4), 381-391.
[http://dx.doi.org/10.2174/138161210790232149] [PMID: 20236067]
[24]
Siegel, R.L.; Miller, K.D.; Goding Sauer, A.; Fedewa, S.A.; Butterly, L.F.; Anderson, J.C.; Cercek, A.; Smith, R.A.; Jemal, A. Colorectal cancer statistics, 2020. CA Cancer J. Clin., 2020, 70(3), 145-164.
[http://dx.doi.org/10.3322/caac.21601] [PMID: 32133645]
[25]
Kugimiya, N.; Nishimoto, A.; Hosoyama, T.; Ueno, K.; Enoki, T.; Li, T.S.; Hamano, K. The c-MYC-ABCB5 axis plays a pivotal role in 5-fluorouracil resistance in human colon cancer cells. J. Cell. Mol. Med., 2015, 19(7), 1569-1581.
[http://dx.doi.org/10.1111/jcmm.12531] [PMID: 25689483]
[26]
Zhang, S.; Chatterjee, T.; Godoy, C.; Wu, L.; Liu, Q.J.; Carmon, K.S. GPR56 Drives Colorectal Tumor Growth and Promotes Drug Resistance through Upregulation of MDR1 Expression via a RhoA-Mediated Mechanism. Mol. Cancer Res., 2019, 17(11), 2196-2207.
[http://dx.doi.org/10.1158/1541-7786.MCR-19-0436] [PMID: 31444231]
[27]
Wang, Z.; Li, Y.; Mao, R.; Zhang, Y.; Wen, J.; Liu, Q.; Liu, Y.; Zhang, T. DNAJB8 in small extracellular vesicles promotes Oxaliplatin resistance through TP53/MDR1 pathway in colon cancer. Cell Death Dis., 2022, 13(2), 151.
[http://dx.doi.org/10.1038/s41419-022-04599-x] [PMID: 35165262]
[28]
Bhardwaj, M.; Cho, H.J.; Paul, S.; Jakhar, R.; Khan, I.; Lee, S.J.; Kim, B.Y.; Krishnan, M.; Khaket, T.P.; Lee, H.G.; Kang, S.C. Vitexin induces apoptosis by suppressing autophagy in multi-drug resistant colorectal cancer cells. Oncotarget, 2018, 9(3), 3278-3291.
[http://dx.doi.org/10.18632/oncotarget.22890] [PMID: 29423046]
[29]
Juliano, R.L.; Ling, V. A surface glycoprotein modulating drug permeability in Chinese hamster ovary cell mutants. Biochim. Biophys. Acta Biomembr., 1976, 455(1), 152-162.
[http://dx.doi.org/10.1016/0005-2736(76)90160-7] [PMID: 990323]
[30]
Chen, C.; Chin, J.E.; Ueda, K.; Clark, D.P.; Pastan, I.; Gottesman, M.M.; Roninson, I.B. Internal duplication and homology with bacterial transport proteins in the mdr1 (P-glycoprotein) gene from multidrug-resistant human cells. Cell, 1986, 47(3), 381-389.
[http://dx.doi.org/10.1016/0092-8674(86)90595-7] [PMID: 2876781]
[31]
Volpicelli, E.R.; Lezcano, C.; Zhan, Q.; Girouard, S.D.; Kindelberger, D.W.; Frank, M.H.; Frank, N.Y.; Crum, C.P.; Murphy, G.F. The multidrug-resistance transporter ABCB5 is expressed in human placenta. Int. J. Gynecol. Pathol., 2014, 33(1), 45-51.
[http://dx.doi.org/10.1097/PGP.0b013e31829c677f] [PMID: 24300535]
[32]
Ndreshkjana, B.; Çapci, A.; Klein, V.; Chanvorachote, P.; Muenzner, J.K.; Huebner, K.; Steinmann, S.; Erlenbach-Wuensch, K.; Geppert, C.I.; Agaimy, A.; Ballout, F.; El-Baba, C.; Gali-Muhtasib, H.; Roehe, A.V.; Hartmann, A.; Tsogoeva, S.B.; Schneider-Stock, R. Combination of 5-fluorouracil and thymoquinone targets stem cell gene signature in colorectal cancer cells. Cell Death Dis., 2019, 10(6), 379.
[http://dx.doi.org/10.1038/s41419-019-1611-4] [PMID: 31097715]
[33]
Pedrosa, P.; Corvo, M.L.; Ferreira-Silva, M.; Martins, P.; Carvalheiro, M.C.; Costa, P.M.; Martins, C.; Martins, L.M.D.R.S.; Baptista, P.V.; Fernandes, A.R. Targeting cancer resistance via multifunctional gold nanoparticles. Int. J. Mol. Sci., 2019, 20(21), 5510.
[http://dx.doi.org/10.3390/ijms20215510] [PMID: 31694227]
[34]
Thorat, N.D.; Bauer, J.; Tofail, S.A.M.; Gascón Pérez, V.; Bohara, R.A.; Yadav, H.M. Silica nano supra-assembly for the targeted delivery of therapeutic cargo to overcome chemoresistance in cancer. Colloids Surf. B Biointerfaces, 2020, 185, 110571.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110571] [PMID: 31683204]
[35]
Shen, C.J.; Lin, P.L.; Lin, H.C.; Cheng, Y.W.; Huang, H.S.; Lee, H. RV-59 suppresses cytoplasmic Nrf2-mediated 5-fluorouracil resistance and tumor growth in colorectal cancer. Am. J. Cancer Res., 2019, 9(12), 2789-2796.
[PMID: 31911862]
[36]
Adwan, H.; Elharouni, D.; Habashy, D.; Banna, N.; Georges, R.; Pervaiz, A.; Berger, M. Early Metastasis in Colorectal Cancer Poses an Option for New Diagnostic and Treatment Strategies in: Cancer metastatis; Intech Open: london 2018.
[37]
Sebolt-Leopold, J.S.; Dudley, D.T.; Herrera, R.; Becelaere, K.V.; Wiland, A.; Gowan, R.C.; Tecle, H.; Barrett, S.D.; Bridges, A.; Przybranowski, S.; Leopold, W.R.; Saltiel, A.R. Blockade of the MAP kinase pathway suppresses growth of colon tumors in vivo. Nat. Med., 1999, 5(7), 810-816.
[http://dx.doi.org/10.1038/10533] [PMID: 10395327]
[38]
Hoshino, R.; Chatani, Y.; Yamori, T.; Tsuruo, T.; Oka, H.; Yoshida, O.; Shimada, Y.; Ari-i, S.; Wada, H.; Fujimoto, J.; Kohno, M. Constitutive activation of the 41-/43-kDa mitogen-activated protein kinase signaling pathway in human tumors. Oncogene, 1999, 18(3), 813-822.
[http://dx.doi.org/10.1038/sj.onc.1202367] [PMID: 9989833]
[39]
Chen, Y.; Deng, G.; Fu, Y.; Han, Y.; Guo, C.; Yin, L.; Cai, C.; Shen, H.; Wu, S.; Zeng, S. FOXC2 Promotes Oxaliplatin Resistance by Inducing Epithelial-Mesenchymal Transition via MAPK/ERK Signaling in Colorectal Cancer. OncoTargets Ther., 2020, 13, 1625-1635.
[http://dx.doi.org/10.2147/OTT.S241367] [PMID: 32110058]
[40]
Huang, L.; Chen, S.; Fan, H.; Ai, F.; Sheng, W. BZW2 promotes the malignant progression of colorectal cancer via activating the ERK/MAPK pathway. J. Cell. Physiol., 2020, 235(5), 4834-4842.
[http://dx.doi.org/10.1002/jcp.29361] [PMID: 31643092]
[41]
Vinot, S.; Anguille, C.; de Toledo, M.; Gadea, G.; Roux, P. Analysis of cell migration and its regulation by Rho GTPases and p53 in a three-dimensional environment. Methods Enzymol., 2008, 439, 413-424.
[http://dx.doi.org/10.1016/S0076-6879(07)00429-6] [PMID: 18374180]
[42]
Lin, T.H.; Kuo, H.C.; Chou, F.P.; Lu, F.J. Berberine enhances inhibition of glioma tumor cell migration and invasiveness mediated by arsenic trioxide. BMC Cancer, 2008, 8(1), 58.
[http://dx.doi.org/10.1186/1471-2407-8-58] [PMID: 18294404]
[43]
Park, J.M.; Kim, A.; Oh, J.H.; Chung, A.S. Methylseleninic acid inhibits PMA-stimulated pro-MMP-2 activation mediated by MT1-MMP expression and further tumor invasion through suppression of NF- B activation. Carcinogenesis, 2006, 28(4), 837-847.
[http://dx.doi.org/10.1093/carcin/bgl203] [PMID: 17071627]
[44]
Nabeshima, K.; Inoue, T.; Shimao, Y.; Sameshima, T. Matrix metalloproteinases in tumor invasion: Role for cell migration. Pathol. Int., 2002, 52(4), 255-264.
[http://dx.doi.org/10.1046/j.1440-1827.2002.01343.x] [PMID: 12031080]
[45]
Said, A.; Raufman, J.P.; Xie, G. The role of matrix metalloproteinases in colorectal cancer. Cancers (Basel), 2014, 6(1), 366-375.
[http://dx.doi.org/10.3390/cancers6010366] [PMID: 24518611]
[46]
Dai, F.; Chen, Y.; Huang, L.; Wang, J.; Zhang, T.; Li, J.; Tong, W.; Liu, M.; Yi, Z. A novel synthetic small molecule YH -306 suppresses colorectal tumour growth and metastasis viaFAK pathway. J. Cell. Mol. Med., 2015, 19(2), 383-395.
[http://dx.doi.org/10.1111/jcmm.12450] [PMID: 25351103]
[47]
Saias, L.; Gomes, A.; Cazales, M.; Ducommun, B.; Lobjois, V. Cell–Cell Adhesion and Cytoskeleton Tension Oppose Each Other in Regulating Tumor Cell Aggregation. Cancer Res., 2015, 75(12), 2426-2433.
[http://dx.doi.org/10.1158/0008-5472.CAN-14-3534] [PMID: 25855380]
[48]
Mui, K.L.; Chen, C.S.; Assoian, R.K. The mechanical regulation of integrin–cadherin crosstalk organizes cells, signaling and forces. J. Cell Sci., 2016, 129(6), jcs.183699.
[http://dx.doi.org/10.1242/jcs.183699] [PMID: 26919980]
[49]
Canel, M.; Serrels, A.; Frame, M.C.; Brunton, V.G. E-cadherin–integrin crosstalk in cancer invasion and metastasis. J. Cell Sci., 2013, 126(2), 393-401.
[http://dx.doi.org/10.1242/jcs.100115] [PMID: 23525005]
[50]
Weber, G.F.; Bjerke, M.A.; DeSimone, D.W. Integrins and cadherins join forces to form adhesive networks. J. Cell Sci., 2011, 124(8), 1183-1193.
[http://dx.doi.org/10.1242/jcs.064618] [PMID: 21444749]
[51]
Ahn, J.Y.; Lee, J.S.; Min, H.Y.; Lee, H.Y. Acquired resistance to 5-fluorouracil via HSP90/Src-mediated increase in thymidylate synthase expression in colon cancer. Oncotarget, 2015, 6(32), 32622-32633.
[http://dx.doi.org/10.18632/oncotarget.5327] [PMID: 26416450]
[52]
Gasiulė, S.; Dreize, N.; Kaupinis, A.; Ražanskas, R.; Čiupas, L.; Stankevičius, V.; Kapustina, Ž.; Laurinavičius, A.; Valius, M.; Vilkaitis, G. Molecular insights into mirna-driven resistance to 5-fluorouracil and oxaliplatin chemotherapy: miR-23b modulates the epithelial–mesenchymal transition of colorectal cancer cells. J. Clin. Med., 2019, 8(12), 2115.
[http://dx.doi.org/10.3390/jcm8122115] [PMID: 31810268]
[53]
Du, B.; Shim, J. Targeting epithelial–mesenchymal transition (EMT) to overcome drug resistance in cancer. Molecules, 2016, 21(7), 965.
[http://dx.doi.org/10.3390/molecules21070965] [PMID: 27455225]
[54]
Roche, J. Theepithelial-to-mesenchymal transition in cancer. Cancers (Basel), 2018, 10(2), 52.
[http://dx.doi.org/10.3390/cancers10020052] [PMID: 29462906]
[55]
Seeber, A.; Gunsilius, E.; Gastl, G.; Pircher, A. Anti-angiogenics: Their value in colorectal cancer therapy. Oncol. Res. Treat., 2018, 41(4), 188-193.
[http://dx.doi.org/10.1159/000488301] [PMID: 29562227]
[56]
Hasan, M.R.; Ho, S.H.Y.; Owen, D.A.; Tai, I.T. Inhibition of VEGF induces cellular senescence in colorectal cancer cells. Int. J. Cancer, 2011, 129(9), 2115-2123.
[http://dx.doi.org/10.1002/ijc.26179] [PMID: 21618508]
[57]
Qiu, Y-Y.; Hu, S-J.; Bao, Y-J.; Liang, B.; Yan, C-N.; Shi, X-J.; Yu, H.; Zou, Y.; Tang, L-R.; Tang, Q-F.; Feng, W.; Yin, P-H. Anti-angiogenic and anti-proliferative effects of inhibition of HIF-1α by p-HIF-1α RNAi in colorectal cancer. Int. J. Clin. Exp. Pathol., 2015, 8(7), 7913-7920.
[PMID: 26339356]
[58]
Mavria, G.; Vercoulen, Y.; Yeo, M.; Paterson, H.; Karasarides, M.; Marais, R.; Bird, D.; Marshall, C.J. ERK-MAPK signaling opposes Rho-kinase to promote endothelial cell survival and sprouting during angiogenesis. Cancer Cell, 2006, 9(1), 33-44.
[http://dx.doi.org/10.1016/j.ccr.2005.12.021] [PMID: 16413470]
[59]
Xu, Z.; Zhu, C.; Chen, C.; Zong, Y.; Feng, H.; Liu, D.; Feng, W.; Zhao, J.; Lu, A. CCL19 suppresses angiogenesis through promoting miR-206 and inhibiting Met/ERK/ Elk-1/HIF-1α/VEGF-A pathway in colorectal cancer. Cell Death Dis., 2018, 9(10), 974.
[http://dx.doi.org/10.1038/s41419-018-1010-2] [PMID: 30250188]
[60]
Oláh, G.; Módis, K.; Törö, G.; Hellmich, M.R.; Szczesny, B.; Szabo, C. Role of endogenous and exogenous nitric oxide, carbon monoxide and hydrogen sulfide in HCT116 colon cancer cell proliferation. Biochem. Pharmacol., 2018, 149, 186-204.
[http://dx.doi.org/10.1016/j.bcp.2017.10.011] [PMID: 29074106]
[61]
Gao, Y.; Zhou, S.; Xu, Y.; Sheng, S.; Qian, S.Y.; Huo, X. Nitric oxide synthase inhibitors 1400W and L-NIO inhibit angiogenesis pathway of colorectal cancer. Nitric Oxide, 2019, 83, 33-39.
[http://dx.doi.org/10.1016/j.niox.2018.12.008] [PMID: 30590117]
[62]
Zhou, Q.; Qi, C.L.; Li, Y.; He, X.D.; Li, J.C.; Zhang, Q.Q.; Tian, L.; Zhang, M.; Han, Z.; Wang, H.; Yang, X.; Wang, L.J. A novel four-step system for screening angiogenesis inhibitors. Mol. Med. Rep., 2013, 8(6), 1734-1740.
[http://dx.doi.org/10.3892/mmr.2013.1704] [PMID: 24068303]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy