[1]
Byanyima, W. Global AIDS update; UNAIDS, Programme on HIV/AIDS, Joint United Nations, 2021.
[3]
Pierson, T.; McArthur, J.; Siliciano, R.F. Reservoirs for HIV-1: Mechanisms for viral persistence in the presence of antiviral immune responses and antiretroviral therapy. Annu. Rev. Immunol., 2000, 18, 665-708.
[4]
Brojan, L.E.F.; Marca, L.M.; Dias, F.A.; Rattmann, Y.D. Antiretroviral drug use by individuals living with HIV/AIDS and compliance with the Clinical Protocol and Therapy Guidelines. Einstein (Sao Paulo), 2020, 18, 1-7.
[5]
Vidal, F.; Gutiérrez, F.; Gutiérrez, M.; Olona, M.; Sánchez, V.; Mateo, G.; Peraire, J.; Viladés, C.; Veloso, S.; López-Dupla, M. Pharmacogenetics of adverse effects due to antiretroviral drugs. AIDS Rev., 2010, 12(1), 15-30.
[6]
Mandas, A.; Iorio, E.L.; Congiu, M.G.; Balestrieri, C.; Mereu, A.; Cau, D.; Dessì, S.; Curreli, N. Oxidative imbalance in HIV-1 infected patients treated with antiretroviral therapy. J. Biomed. Biotechnol., 2009, 2009, 1-7.
[7]
Sharma, B. Oxidative stress in HIV patients receiving antiretroviral therapy. Curr. HIV Res., 2014, 12, 13-21.
[8]
Ngondi, J.L.; Oben, J.; Forkah, D.M.; Etame, L.H.; Mbanya, D. The effect of different combination therapies on oxidative stress markers in HIV infected patients in cameroon. AIDS Res. Ther., 2006, 3, 19.
[9]
Shahar, E.; Pollack, S.; Kedem, E.; Hassoun, G.; Nagler, R. Effect of HAART on salivary composition and oxidative profile in HIV infected patients. Curr. HIV Res., 2008, 6, 447-451.
[10]
Sundaram, M.; Saghayam, S.; Priya, B.; Venkatesh, K.K.; Balakrishnan, P.; Shankar, E.M.; Murugavel, K.G.; Solomon, S.; Kumarasamy, N. Changes in antioxidant profile among HIV-infected individuals on generic highly active antiretroviral therapy in southern India. Int. J. Infect. Dis., 2008, 12, e61-e66.
[11]
García de la Asunción, J.; del Olmo, L.; Gómez-Cambronero, L.G.; Sastre, J.; Pallardó, F.V.; Viña, J. AZT induces oxidative damage to cardiac mitochondria: Protective effect of vitamins C and E. Life Sci., 2004, 76, 47-56.
[12]
Halliwell, B. Free radicals, antioxidants, and human disease: Curiosity, cause, or consequence? Lancet, 1994, 344, 721-724.
[13]
Schreck, R.; Rieber, P.; Baeuerle, P.A. Reactive oxygen intermediates as apparently widely used messengers in the activation of the NF-kappa B transcription factor and HIV-1. EMBO J., 1991, 10, 2247-2258.
[14]
Kruman, I.I.; Nath, A.; Mattson, M.P. HIV-1 protein tat induces apoptosis of hippocampal neurons by a mechanism involving caspase activation, calcium overload, and oxidative stress. Exp. Neurol., 1998, 154, 276-288.
[15]
Martin, J.A. Hepatic γ-cystathionase deficiency in patients with AIDS. JAMA, 2001, 285, 1444-1445.
[16]
Wang, S.; Ukhtary, M.S.; Saito, R. Strain effect on circularly polarized electroluminescence in transition metal dichalcogenides. Phys. Rev. Res., 2020, 2, 033340.
[17]
Wang, S.; Ren, S.; Tian, H.; Yu, J.; Sun, M. MoS2/ZnO van der Waals heterostructure as a high-efficiency water splitting photocatalyst: A first-principles study. Phys. Chem. Chem. Phys., 2018, 20, 13394-13399.
[18]
Wang, S.; Tian, H.; Ren, C. Electronic and optical properties of heterostructures based on transition metal dichalcogenides and graphene-like zinc oxide. Sci. Rep., 2018, 8, 12009.
[19]
Pacuła, A.J.; Mangiavacchi, F.; Sancineto, L.; Lenardão, J.; Ścianowski, J.; Santi, C. An update on “Selenium containing compounds from poison to drug candidates: A review on the GPx-like activity”. Curr. Chem. Biol., 2016, 9, 97-112.
[20]
Soares, L.C.; Alberto, E.E.; Schwab, R.S.; Taube, P.S.; Nascimento, V.; Rodrigues, O.E.D.; Braga, A.L. Ephedrine-based diselenide: A promiscuous catalyst suitable to mimic the enzyme glutathione peroxidase (GPx) and to promote enantioselective C–C coupling reactions. Org. Biomol. Chem., 2012, 10, 6595-6599.
[21]
Santi, C.; Scimmi, C.; Sancineto, L. Ebselen and analogues: Pharmacological properties and synthetic strategies for their preparation. Molecules, 2021, 26, 4230-4255.
[22]
Baba, M. Cellular factors as alternative targets for inhibition of HIV-1. Antiviral Res., 1997, 33, 141-152.
[23]
Zhan, P.; Liu, X.; Fang, Z.; Pannecouque, C.; De Clercq, E. 1,2,3-Selenadiazole thioacetanilides: Synthesis and anti-HIV activity evaluation. Bioorg. Med. Chem., 2009, 17, 6374-6379.
[24]
Sancineto, L.; Mariotti, A.; Bagnoli, L.; Marini, F.; Desantis, J.; Iraci, N.; Santi, C.; Pannecouque, C.; Tabarrini, O. Design and synthesis of diselenobisbenzamides (DISeBAs) as nucleocapsid protein 7 (NCp7) inhibitors with anti-HIV activity. J. Med. Chem., 2015, 58, 9601-9614.
[25]
Sancineto, L.; Iraci, N.; Tabarrini, O.; Santi, C. NCp7: Targeting a multitasking protein for next-generation anti-HIV drug development part 1: Covalent inhibitors. Drug Discov. Today, 2018, 23, 260-271.
[26]
Iraci, N.; Tabarrini, O.; Santi, C.; Sancineto, L. NCp7: Targeting a multitask protein for next-generation anti-HIV drug development part 2. Noncovalent inhibitors and nucleic acid binders. Drug Discov. Today, 2018, 23, 687-695.
[27]
Sancineto, L.; Iraci, N.; Barreca, M.L.; Massari, S.; Manfroni, G.; Corazza, G.; Cecchetti, V.; Marcello, A.; Daelemans, D.; Pannecouque, C. Exploiting the anti-HIV 6-desfluoroquinolones to design multiple ligands. Bioorg. Med. Chem., 2014, 22, 4658-4666.
[28]
Sancineto, L.; Iraci, N.; Massari, S.; Attanasio, V.; Corazza, G.; Barreca, M.L.; Sabatini, S.; Manfroni, G.; Avanzi, N.R.; Cecchetti, V. Computer-aided design, synthesis and validation of 2-phenylquinazolinone fragments as CDK9 inhibitors with anti-HIV-1 tat-mediated transcription activity. ChemMedChem, 2013, 8, 1941-1953.
[29]
Morris, G.M.; Huey, R.; Lindstrom, W.; Sanner, M.F.; Belew, R.K.; Goodsell, D.S.; Olson, A.J. Autodock4 and AutoDockTools4: Automated docking with selective receptor flexiblity. J. Comput. Chem., 2009, 16, 2785-2791.
[30]
Stewart, J.J.P. MOPAC: A semiempirical molecular orbital program. J. Comput. Aided Mol. Des., 1990, 4, 1-103.
[31]
DeLano, W.L. The PyMOL Molecular Graphics System; Version 2.3; Schrödinger LLC, 2020.
[32]
Salentin, S.; Schreiber, S.; Haupt, V.J.; Adasme, M.F.; Schroeder, M. PLIP: Fully automated protein-ligand interaction profiler. Nucleic Acids Res., 2015, 43, W443-W447.
[33]
Mitsuya, H.; Weinhold, K.J.; Furman, P.A.; St Clair, M.H.; Lehrman, S.N.; Gallo, R.C.; Bolognesi, D.; Barry, D.W.; Broder, S. 3′-Azido-3′-deoxythymidine (BW A509U): An antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc. Natl. Acad. Sci. USA, 1985, 82, 7096-7100.
[34]
Battivelli, E.; Dahabieh, M.S.; Abdel-Mohsen, M.; Svensson, J.P.; Da Silva, T.J.; Cohn, L.B.; Gramatica, A.; Deeks, S.; Greene, W.C.; Pillai, S.K.; Verdin, E. Distinct chromatin functional states correlate with HIV latency reactivation in infected primary CD4+ T cells. eLife, 2018, 7, e34655.
[35]
Quoos, N.; Dornelles, L.; Buss, J.; Begnini, K.R.; Collares, T.; Seixas, F.K.; Garcia, F.D.; Rodrigues, O.E.D. Synthesis and antiproliferative evaluation of 5′-Arylchalcogenyl-3-(phenylselanyl-triazoyl)-thymidine. ChemistrySelect, 2020, 5, 324-329.
[36]
Lopes, E.F.; Dalberto, B.T.; Perin, G.; Alves, D.; Barcellos, T.; Lenardão, E.J. Synthesis of terminal Ethynyl Aryl Selenides and Sulfides based on the Retro-Favorskii reaction of Hydroxypropargyl precursors. Chemistry, 2017, 23, 13760-13765.
[37]
Alves, D.; Goldani, B.; Lenardão, E.J.; Perin, G.; Schumacher, R.F.; Paixão, M.W. Copper catalysis and organocatalysis showing the way: Synthesis of selenium-containing highly functionalized 1,2,3-Triazoles. Chem. Rec., 2018, 18, 527-542.
[38]
Gao, P.; Sun, L.; Zhou, J.; Li, X.; Zhan, P.; Liu, X. Discovery of novel anti-HIV agents via Cu(I)-catalyzed azidealkyne cycloaddition (CuAAC) click chemistry-based approach. Expert Opin. Drug Discov., 2016, 11, 857-871.
[39]
Breugst, M.; Reissig, H.U. The Huisgen Reaction: Milestones of, the 1,3-Dipolar Cycloaddition. Angew. Chem. Int. Ed. Engl., 2020, 59, 12293-12307.
[40]
Wang, X.; Huang, B.; Liu, X.; Zhan, P. Discovery of bioactive molecules from CuAAC click-chemistry-based combinatorial libraries. Drug Discov. Today, 2016, 21, 118-132.
[41]
Ohkawa, H.; Ohishi, N.; Yagi, K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem., 1979, 95, 351-358.
[42]
Barbosa, N.V.; Nogueira, C.W.; Nogara, P.A.; de Bem, A.F.; Aschner, M.; Rocha, J.B.T. Organoselenium compounds as mimics of selenoproteins and thiol modifier agents. Metallomics, 2017, 9, 1703-1734.
[43]
Nogueira, C.W.; Zeni, G.; Rocha, J.B.T. Organoselenium and organotellurium compounds: Toxicology and pharmacology. Chem. Rev., 2004, 104, 6255-6286.
[44]
Esposito, F.; Corona, A.; Tramontano, E. HIV-1 reverse transcriptase still remains a new drug target: Structure, function, classical inhibitors, and new inhibitors with innovative mechanisms of actions. Mol. Biol. Int., 2012, 2012, 1-23.
[45]
Hang, J.; Rajendran, S.; Yang, Y.; Li, Y.; In, P.W.; Overton, H.; Parkes, K.E.; Cammack, N.; Martin, J.A.; Klumpp, K. Activity of the isolated HIV RNase H domain and specific inhibition by N-hydroxyimides. Biochem. Biophys. Res. Commun., 2004, 317(2), 321-329.
[46]
Kirschberg, T.A.; Balakrishnan, M.; Squires, N.H.; Barnes, T.; Brendza, K.M.; Chen, X.; Eisenberg, E.J.; Jin, W.; Kutty, N.; Leavitt, S. RNase H active site inhibitors of human immunodeficiency Virus Type 1 Reverse Transcriptase: Design, biochemical activity, and structural information. J. Med. Chem., 2009, 52, 5781-5784.
[47]
Varga, Z.V.; Ferdinandy, P.; Liaudet, L.; Pacher, P. Drug induced mitochondrial dysfunction and cardiotoxicity. Am. J. Physiol. Heart Circ. Physiol., 2015, 309(9), H1453-H1467.