Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

Molecular Docking Study of Potential Antimicrobial Photodynamic Therapy as a Potent Inhibitor of SARS-CoV-2 Main Protease: An In silico Insight

Author(s): Maryam Pourhajibagher and Abbas Bahador*

Volume 23, Issue 2, 2023

Published on: 10 October, 2022

Article ID: e010922208438 Pages: 10

DOI: 10.2174/1871526522666220901164329

Price: $65

Abstract

Background: Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) is rapidly spreading. Recently, antimicrobial photodynamic therapy (aPDT) using safe and cost-effective photosensitizers has been introduced as a valuable therapy for the eradication of microbial infections.

Objective: This in silico study aimed to investigate the potential of aPDT against SARS-CoV-2 main protease (MPro).

Methods: In this study, to evaluate possible inhibitors of SARS-CoV-2 during aPDT, a computational model of the SARS-CoV-2 MPro was constructed in complex with emodin, resveratrol, pterin, and hypericin as the natural photosensitizers.

Results: According to the molecular docking analysis of protein-ligand complexes, emodin and resveratrol with a high affinity for SARS-CoV-2 MPro showed binding affinity -7.65 and -6.81 kcal/mol, respectively. All natural photosensitizers with ligand efficiency less than 0.3 fulfilled all the criteria of Lipinski’s, Veber’s, and Pfizer’s rules, except hypericin. Also, the results of molecular dynamic simulation confirmed the stability of the SARS-CoV-2 MPro and inhibitor complexes.

Conclusion: As the results showed, emodin, resveratrol, and pterin could efficiently interact with the MPro of SARS CoV-2. It can be concluded that aPDT using these natural photosensitizers may be considered a potential SARS-CoV-2 MPro inhibitor to control COVID-19.

Keywords: Antimicrobial photodynamic therapy, COVID-19, natural photosensitizer, main protease, molecular docking, inhibitors.

Graphical Abstract
[1]
Lai CC, Shih TP, Ko WC, Tang HJ, Hsueh PR. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): The epidemic and the challenges. Int J Antimicrob Agents 2020; 55(3): 105924.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105924] [PMID: 32081636]
[2]
Amin SA, Banerjee S, Singh S, Qureshi IA, Gayen S, Jha T. First structure–activity relationship analysis of SARS-CoV-2 virus main protease (Mpro) inhibitors: An endeavor on COVID-19 drug discovery. Mol Divers 2021; 25(3): 1827-38.
[http://dx.doi.org/10.1007/s11030-020-10166-3] [PMID: 33400085]
[3]
Schoeman D, Fielding BC. Coronavirus envelope protein: Current knowledge. Virol J 2019; 16(1): 69.
[http://dx.doi.org/10.1186/s12985-019-1182-0] [PMID: 31133031]
[4]
Pal M, Berhanu G, Desalegn C, Kandi V. Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): An update. Cureus 2020; 12(3): e7423.
[http://dx.doi.org/10.7759/cureus.7423] [PMID: 32337143]
[5]
V’kovski P, Kratzel A, Steiner S, Stalder H, Thiel V. Coronavirus biology and replication: Implications for SARS-CoV-2. Nat Rev Microbiol 2021; 19(3): 155-70.
[http://dx.doi.org/10.1038/s41579-020-00468-6] [PMID: 33116300]
[6]
Báez-Santos YM. St John SE, Mesecar AD. The SARS-coronavirus papain-like protease: Structure, function and inhibition by designed antiviral compounds. Antiviral Res 2015; 115: 21-38.
[http://dx.doi.org/10.1016/j.antiviral.2014.12.015] [PMID: 25554382]
[7]
Amin SA, Banerjee S, Ghosh K, Gayen S, Jha T. Protease targeted COVID-19 drug discovery and its challenges: Insight into viral main protease (Mpro) and papain-like protease (PLpro) inhibitors. Bioorg Med Chem 2021; 29: 115860.
[http://dx.doi.org/10.1016/j.bmc.2020.115860] [PMID: 33191083]
[8]
Amin SA, Banerjee S, Gayen S, Jha T. Protease targeted COVID-19 drug discovery: What we have learned from the past SARS-CoV inhibitors? Eur J Med Chem 2021; 215: 113294.
[http://dx.doi.org/10.1016/j.ejmech.2021.113294] [PMID: 33618158]
[9]
Jin Z, Du X, Xu Y, et al. Structure of Mpro from SARS-CoV-2 and discovery of its inhibitors. Nature 2020; 582(7811): 289-93.
[http://dx.doi.org/10.1038/s41586-020-2223-y] [PMID: 32272481]
[10]
Pourhajibagher M, Azimi M, Haddadi-Asl V, et al. Robust antimicrobial photodynamic therapy with curcumin-poly (lactic-co-glycolic acid) nanoparticles against COVID-19: A preliminary in vitro study in vero cell line as a model. Photodiagn Photodyn Ther 2021; 34: 102286.
[http://dx.doi.org/10.1016/j.pdpdt.2021.102286] [PMID: 33838311]
[11]
Fekrazad R, Asefi S, Pourhajibagher M, et al. Photobiomodulation and antiviral photodynamic therapy in COVID-19 management. Adv Exp Med Biol 2021; 1318: 517-47.
[http://dx.doi.org/10.1007/978-3-030-63761-3_30] [PMID: 33973198]
[12]
Pourhajibagher M, Bahador A. Computational biology analysis of COVID-19 receptor-binding domains: A target site for indocyanine green through antimicrobial photodynamic therapy. J Lasers Med Sci 2020; 11(4): 433-41.
[http://dx.doi.org/10.34172/jlms.2020.68] [PMID: 33425294]
[13]
Namvar MA, Vahedi M, Abdolsamadi H, Mirzaei A, Mohammadi Y, Jalilian AF. Effect of photodynamic therapy by 810 and 940 nm diode laser on Herpes Simplex Virus 1: An in vitro study. Photodiagn Photodyn Ther 2019; 25: 87-91.
[http://dx.doi.org/10.1016/j.pdpdt.2018.11.011] [PMID: 30447412]
[14]
Cieplik F, Deng D, Crielaard W, et al. Antimicrobial photodynamic therapy – what we know and what we don’t. Crit Rev Microbiol 2018; 44(5): 571-89.
[http://dx.doi.org/10.1080/1040841X.2018.1467876] [PMID: 29749263]
[15]
Golmohamadpour A, Bahramian B, Khoobi M, Pourhajibagher M, Barikani HR, Bahador A. Antimicrobial photodynamic therapy assessment of three indocyanine green-loaded metal-organic frameworks against Enterococcus faecalis. Photodiagn Photodyn Ther 2018; 23: 331-8.
[http://dx.doi.org/10.1016/j.pdpdt.2018.08.004] [PMID: 30077652]
[16]
Polat E, Kang K. Natural photosensitizers in antimicrobial photodynamic therapy. Biomedicines 2021; 9(6): 584.
[http://dx.doi.org/10.3390/biomedicines9060584] [PMID: 34063973]
[17]
Siewert B, Ćurak G, Hammerle F, Huymann L, Fiala J, Peintner U. The photosensitizer emodin is concentrated in the gills of the fungus Cortinarius rubrophyllus. J Photochem Photobiol B 2022; 228: 112390.
[http://dx.doi.org/10.1016/j.jphotobiol.2022.112390] [PMID: 35123160]
[18]
Tsai HY, Ho CT, Chen YK. Biological actions and molecular effects of resveratrol, pterostilbene, and 3′-hydroxypterostilbene. Yao Wu Shi Pin Fen Xi 2017; 25(1): 134-47.
[PMID: 28911531]
[19]
Oliveira AI, Pinho C, Sarmento B, Dias ACP. Neuroprotective activity of hypericum perforatum and its major components. Front Plant Sci 2016; 7: 1004-11.
[http://dx.doi.org/10.3389/fpls.2016.01004] [PMID: 27462333]
[20]
Mahendran R, Thandeeswaran M, Kiran G, et al. Evaluation of pterin, a promising drug candidate from cyanide degrading bacteria. Curr Microbiol 2018; 75(6): 684-93.
[http://dx.doi.org/10.1007/s00284-018-1433-0] [PMID: 29380042]
[21]
Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendli-ness of small molecules. Sci Rep 2017; 7(1): 42717-22.
[http://dx.doi.org/10.1038/srep42717] [PMID: 28256516]
[22]
Stompor-Gorący M. The health benefits of emodin, a natural anthraquinone derived from rhubarb—A summary update. Int J Mol Sci 2021; 22(17): 9522-8.
[http://dx.doi.org/10.3390/ijms22179522] [PMID: 34502424]
[23]
Zhang LX, Li CX, Kakar MU, et al. Resveratrol (RV): A pharmacological review and call for further research. Biomed Pharmacother 2021; 143: 112164.
[http://dx.doi.org/10.1016/j.biopha.2021.112164] [PMID: 34649335]
[24]
Miñán A, Lorente C, Ipiña A, Thomas AH, Fernández Lorenzo de Mele M, Schilardi PL. Photodynamic inactivation induced by carboxypterin: A novel non-toxic bactericidal strategy against planktonic cells and biofilms of Staphylococcus aureus. Biofouling 2015; 31(5): 459-68.
[http://dx.doi.org/10.1080/08927014.2015.1055731] [PMID: 26133959]
[25]
Tosato MG, Schilardi P, Lorenzo de Mele MF, Thomas AH, Lorente C. Miñán A. Synergistic effect of carboxypterin and methylene blue applied to antimicrobial photodynamic therapy against mature biofilm of Klebsiella pneumoniae. Heliyon 2020; 6(3): e03522.
[http://dx.doi.org/10.1016/j.heliyon.2020.e03522] [PMID: 32195387]
[26]
Barroso RA, Navarro R, Tim CR, et al. Antimicrobial photodynamic therapy against Propionibacterium acnes biofilms using hypericin (Hy-pericum perforatum) photosensitizer: In vitro study. Lasers Med Sci 2021; 36(6): 1235-40.
[http://dx.doi.org/10.1007/s10103-020-03163-3] [PMID: 33083912]
[27]
Zhang J, Zhang F, Tang Q, Xu C, Meng X. Effect of photodynamic inactivation of Escherichia coli by hypericin. World J Microbiol Biotechnol 2018; 34(7): 100.
[http://dx.doi.org/10.1007/s11274-018-2464-1] [PMID: 29926201]
[28]
Yang Y, Wang C, Zhuge Y, et al. Photodynamic antifungal activity of hypocrellin A against Candida albicans. Front Microbiol 2019; 10: 1810.
[http://dx.doi.org/10.3389/fmicb.2019.01810] [PMID: 31447816]
[29]
Alam ST, Le TAN, Park JS, Kwon HC, Kang K. Antimicrobial biophotonic treatment of ampicillin-resistant Pseudomonas aeruginosa with hypericin and ampicillin cotreatment followed by orange light. Pharmaceutics 2019; 11(12): 641.
[http://dx.doi.org/10.3390/pharmaceutics11120641] [PMID: 31805742]
[30]
Vera C, Tulli F, Borsarelli CD. Photosensitization with supramolecular arrays for enhanced antimicrobial photodynamic treatments. Front Bioeng Biotechnol 2021; 9: 655370.
[http://dx.doi.org/10.3389/fbioe.2021.655370] [PMID: 34307317]
[31]
Abrahamse H, Hamblin MR. New photosensitizers for photodynamic therapy. Biochem J 2016; 473(4): 347-64.
[http://dx.doi.org/10.1042/BJ20150942] [PMID: 26862179]
[32]
Rivero-Segura NA, Gomez-Verjan JC. In silico screening of natural products isolated from Mexican herbal medicines against COVID-19. Biomolecules 2021; 11(2): 216-22.
[http://dx.doi.org/10.3390/biom11020216] [PMID: 33557097]
[33]
Rolta R, Yadav R, Salaria D, et al. In silico screening of hundred phytocompounds of ten medicinal plants as potential inhibitors of nucleocapsid phosphoprotein of COVID-19: An approach to prevent virus assembly. J Biomol Struct Dyn 2021; 39(18): 7017-34.
[http://dx.doi.org/10.1080/07391102.2020.1804457] [PMID: 32851912]
[34]
Ahmed S, Shohael AM. In silico studies of four anthraquinones of Senna alataL. as potential antifungal compounds. Pharm Online 2019; 2: 259-68.
[35]
Yañez O, Osorio MI, Uriarte E, et al. In silico study of coumarins and quinolines derivatives as potent inhibitors of SARS-CoV-2 main protease. Front Chem 2021; 8: 595097.
[http://dx.doi.org/10.3389/fchem.2020.595097] [PMID: 33614592]
[36]
Peele KA, Durthi PC, Srihansa T, et al. Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A com-putational study. Inform Med Unlocked 2020; 19: 100345.
[http://dx.doi.org/10.1016/j.imu.2020.100345] [PMID: 32395606]
[37]
Sekiou O, Bouziane I, Bouslama Z, Djemel A. In silico identification of potent inhibitors of COVID-19 main protease (Mpro) and angiotensin converting enzyme 2 (ACE2) from natural products: Quercetin, hispidulin, and cirsimaritin exhibited better potential inhibition than hy-droxy-chloroquine against COVID-19 main protease active site and ACE2. ChemRxiv 2020.
[38]
Kumar D, Chandel V, Raj S, Rathi B. In silico identification of potent FDA approved drugs against Coronavirus COVID-19 main protease: A drug repurposing approach. ChemBiol Lett 2020; 7(3): 166-75.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy