Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Regulatory Mechanisms of Vanillic Acid in Cardiovascular Diseases: A Review

Author(s): Naser-Aldin Lashgari, Nazanin M. Roudsari, Saeideh Momtaz*, Amir H. Abdolghaffari*, Stephen L. Atkin* and Amirhossein Sahebkar*

Volume 30, Issue 22, 2023

Published on: 21 October, 2022

Page: [2562 - 2576] Pages: 15

DOI: 10.2174/0929867329666220831152608

Price: $65

conference banner
Abstract

Cardiovascular diseases (CVD) are the primary cause of death globally. Activation of oxidative stress and inflammatory pathways are contributory to the development of CVD. Pharmacological activities of vanillic acid have been investigated suggesting that they may have therapeutic utility clinically. Given its phenolic nature, the anti-inflammatory and antioxidant properties of vanillic acid have been shown to exert potent inhibitory activity against Adenosine Monophosphate-Activated Protein Kinase (AMPK), Nuclear Factor Kappa B (NF- κB), the Janus kinase (JAK)/signal transducer and activator of transcription (STAT), Nod‐like receptor family protein (NLRP), Toll-like receptors (TLRs), Mitogen-Activated Signaling Proteins (MAPK) and Mammalian Target of Rapamycin (mTOR) signaling pathways. Vanillic acid has been shown to block pro-inflammatory cytokines and suppress inflammatory cascades. The inhibitory impact of vanillic acid on reactive oxygen species (ROS) and nitric oxygen synthase (iNOS) expression has also been demonstrated. Vanillic acid reduces oxidative-related markers such as superoxide dismutase (SOD), glutathione (GSH), Heme Oxygenase 1 (HO-1), and glutathione peroxidase (GSH-Px). Here, we review the cardioprotective effects and mechanisms of action of vanillic acid in CVD. Current potential applications of vanillic acid in CVD are discussed concerning preclinical and clinical studies.

Keywords: Cardiovascular diseases, myocardial infarction, cardiomyopathy, hypertension, atherosclerosis, vanillic acid, inflammation, oxidative stress.

[1]
Lawler, P.R.; Bhatt, D.L.; Godoy, L.C.; Lüscher, T.F.; Bonow, R.O.; Verma, S.; Ridker, P.M. Targeting cardiovascular inflammation: Next steps in clinical translation. Eur. Heart J., 2021, 42(1), 113-131.
[PMID: 32176778]
[2]
Charlton, A.; Garzarella, J.; Jandeleit-Dahm, K.A.M.; Jha, J.C. Oxidative stress and inflammation in renal and cardiovascular complications of diabetes. Biology (Basel), 2020, 10(1), 18.
[http://dx.doi.org/10.3390/biology10010018] [PMID: 33396868]
[3]
Shen-Orr, S.S.; Furman, D.; Kidd, B.A.; Hadad, F.; Lovelace, P. Huang, Y-W Defective signaling in the JAK-STAT pathway tracks with chronic inflammation and cardiovascular risk in aging humans. Cell Syst., 2016, 3(4), 374-384.
[http://dx.doi.org/10.1016/j.cels.2016.09.009]
[4]
Zhou, W.; Chen, C.; Chen, Z.; Liu, L.; Jiang, J.; Wu, Z. NLRP3: A novel mediator in cardiovascular disease. J. Immunol. Res., 2018, 2018, 5702103.
[http://dx.doi.org/10.1155/2018/5702103]
[5]
Sanches-Silva, A.; Testai, L.; Nabavi, S.F.; Battino, M.; Pandima Devi, K.; Tejada, S.; Sureda, A.; Xu, S.; Yousefi, B.; Majidinia, M.; Russo, G.L.; Efferth, T.; Nabavi, S.M.; Farzaei, M.H. Therapeutic potential of polyphenols in cardiovascular diseases: Regulation of mTOR signaling pathway. Pharmacol. Res., 2020, 152, 104626.
[http://dx.doi.org/10.1016/j.phrs.2019.104626] [PMID: 31904507]
[6]
Han, L.; Shen, W-J.; Bittner, S.; Kraemer, F.B.; Azhar, S. PPARs: Regulators of metabolism and as therapeutic targets in cardiovascular disease. Part II: PPAR-β/δ and PPAR-γ. Future Cardiol., 2017, 13(3), 279-296.
[http://dx.doi.org/10.2217/fca-2017-0019] [PMID: 28581362]
[7]
Wehbe, Z.; Hammoud, S.; Soudani, N.; Zaraket, H.; El-Yazbi, A.; Eid, A.H. Molecular insights into SARS COV-2 interaction with cardiovascular disease: Role of RAAS and MAPK signaling. Front. Pharmacol., 2020, 11, 836.
[http://dx.doi.org/10.3389/fphar.2020.00836] [PMID: 32581799]
[8]
Zhou, Y.; Little, P.J.; Downey, L.; Afroz, R.; Wu, Y.; Ta, H.T.; Xu, S.; Kamato, D. The role of toll-like receptors in atherothrombotic cardiovascular disease. ACS Pharmacol. Transl. Sci., 2020, 3(3), 457-471.
[http://dx.doi.org/10.1021/acsptsci.9b00100] [PMID: 32566912]
[9]
Pop, R.M.; Popolo, A.; Trifa, A.P.; Stanciu, L.A. Phytochemicals in cardiovascular and respiratory diseases: Evidence in oxidative stress and inflammation. Oxid. Med. Cell. Longev., 2018, 2018, 1603872.
[http://dx.doi.org/10.1155/2018/1603872] [PMID: 30159110]
[10]
Sosnowska, B.; Penson, P.; Banach, M. The role of nutraceuticals in the prevention of cardiovascular disease. Cardiovasc. Diagn. Ther., 2017, 7(Suppl. 1), S21-S31.
[http://dx.doi.org/10.21037/cdt.2017.03.20] [PMID: 28529919]
[11]
Asgary, S.; Kelishadi, R.; Rafieian-Kopaei, M.; Najafi, S.; Najafi, M.; Sahebkar, A. Investigation of the lipid-modifying and antiinflammatory effects of Cornus mas L. supplementation on dyslipidemic children and adolescents. Pediatr. Cardiol., 2013, 34(7), 1729-1735.
[http://dx.doi.org/10.1007/s00246-013-0693-5] [PMID: 23625305]
[12]
Bagherniya, M.; Nobili, V.; Blesso, C.N.; Sahebkar, A. Medicinal plants and bioactive natural compounds in the treatment of non-alcoholic fatty liver disease: A clinical review. Pharmacol. Res., 2018, 130, 213-240.
[http://dx.doi.org/10.1016/j.phrs.2017.12.020] [PMID: 29287685]
[13]
Cicero, A.F.G.; Colletti, A.; Bajraktari, G.; Descamps, O.; Djuric, D.M.; Ezhov, M.; Fras, Z.; Katsiki, N.; Langlois, M.; Latkovskis, G.; Panagiotakos, D.B.; Paragh, G.; Mikhailidis, D.P.; Mitchenko, O.; Paulweber, B.; Pella, D.; Pitsavos, C.; Reiner, Ž.; Ray, K.K.; Rizzo, M.; Sahebkar, A.; Serban, M.C.; Sperling, L.S.; Toth, P.P.; Vinereanu, D.; Vrablík, M.; Wong, N.D.; Banach, M. Lipid-lowering nutraceuticals in clinical practice: Position paper from an International Lipid Expert Panel. Nutr. Rev., 2017, 75(9), 731-767.
[http://dx.doi.org/10.1093/nutrit/nux047] [PMID: 28938795]
[14]
Johnston, T.P.; Korolenko, T.A.; Pirro, M.; Sahebkar, A. Preventing cardiovascular heart disease: Promising nutraceutical and non-nutraceutical treatments for cholesterol management. Pharmacol. Res., 2017, 120, 219-225.
[http://dx.doi.org/10.1016/j.phrs.2017.04.008] [PMID: 28408313]
[15]
Momtazi, A.A.; Banach, M.; Pirro, M.; Katsiki, N.; Sahebkar, A. Regulation of PCSK9 by nutraceuticals. Pharmacol. Res., 2017, 120, 157-169.
[http://dx.doi.org/10.1016/j.phrs.2017.03.023] [PMID: 28363723]
[16]
Pirro, M.; Mannarino, M.R.; Bianconi, V.; Simental-Mendía, L.E.; Bagaglia, F.; Mannarino, E.; Sahebkar, A. The effects of a nutraceutical combination on plasma lipids and glucose: A systematic review and meta-analysis of randomized controlled trials. Pharmacol. Res., 2016, 110, 76-88.
[http://dx.doi.org/10.1016/j.phrs.2016.04.021] [PMID: 27157250]
[17]
Alidadi, M.; Jamialahmadi, T.; Cicero, A.F.G.; Bianconi, V.; Pirro, M.; Banach, M.; Sahebkar, A. The potential role of plant-derived natural products in improving arterial stiffness: A review of dietary intervention studies. Trends Food Sci. Technol., 2020, 99, 426-440.
[http://dx.doi.org/10.1016/j.tifs.2020.03.026]
[18]
Enayati, A.; Banach, M.; Jamialahmadi, T.; Sahebkar, A. Protective role of nutraceuticals against myocarditis. Biomed. Pharmacother., 2022, 146, 112242.
[19]
Hosseini, A.; Penson, P.E.; Cicero, A.F.G.; Golledge, J.; Al-Rasadi, K.; Jamialahmadi, T.; Sahebkar, A. Potential benefits of phytochemicals for abdominal aortic aneurysm. Curr. Med. Chem., 2021, 28(41), 8595-8607.
[http://dx.doi.org/10.2174/0929867328666210614113116] [PMID: 34126879]
[20]
Soltani, S.; Boozari, M.; Cicero, A.F.G.; Jamialahmadi, T.; Sahebkar, A. Effects of phytochemicals on macrophage cholesterol efflux capacity: Impact on atherosclerosis. Phytother. Res., 2021, 35(6), 2854-2878.
[http://dx.doi.org/10.1002/ptr.6991] [PMID: 33464676]
[21]
Kannankeril, P.; Roden, D.M.; Darbar, D. Drug-induced long QT syndrome. Pharmacol. Rev., 2010, 62(4), 760-781.
[http://dx.doi.org/10.1124/pr.110.003723] [PMID: 21079043]
[22]
Khalid, M.; Khattak, F.; Ramu, V. Cardiovascular side effects of tyrosine kinase inhibitor ibrutinib (imbruvica) and interaction with direct oral anticoagulant. Am. J. Ther., 2018, 25(6), e768-e769.
[http://dx.doi.org/10.1097/MJT.0000000000000775] [PMID: 29916856]
[23]
Sholter, D.E.; Armstrong, P.W. Adverse effects of corticosteroids on the cardiovascular system. Can. J. Cardiol., 2000, 16(4), 505-511.
[PMID: 10787466]
[24]
Acharya, K.R.; Sturrock, E.D.; Riordan, J.F.; Ehlers, M.R. Ace revisited: A new target for structure-based drug design. Nat. Rev. Drug Discov., 2003, 2(11), 891-902.
[http://dx.doi.org/10.1038/nrd1227] [PMID: 14668810]
[25]
Sica, D.A.; Carter, B.; Cushman, W.; Hamm, L. Thiazide and loop diuretics. J. Clin. Hypertens. (Greenwich), 2011, 13(9), 639-643.
[http://dx.doi.org/10.1111/j.1751-7176.2011.00512.x] [PMID: 21896142]
[26]
Gáspár, R.; Hajagos-Tóth, J. Calcium channel blockers as tocolytics: Principles of their actions, adverse effects and therapeutic combinations. Pharmaceuticals (Basel), 2013, 6(6), 689-699.
[http://dx.doi.org/10.3390/ph6060689] [PMID: 24276256]
[27]
Adegbola, P.; Aderibigbe, I.; Hammed, W.; Omotayo, T. Antioxidant and anti-inflammatory medicinal plants have potential role in the treatment of cardiovascular disease: A review. Am. J. Cardiovasc. Dis., 2017, 7(2), 19-32.
[PMID: 28533927]
[28]
Shayganni, E.; Bahmani, M.; Asgary, S.; Rafieian-Kopaei, M. Inflammaging and cardiovascular disease: Management by medicinal plants. Phytomedicine, 2016, 23(11), 1119-1126.
[http://dx.doi.org/10.1016/j.phymed.2015.11.004] [PMID: 26776956]
[29]
Anlu, W.; Dongcheng, C.; He, Z.; Qiuyi, L.; Yan, Z.; Yu, Q.; Hao, X.; Keji, C. Using herbal medicine to target the “microbiota-metabolism-immunity” axis as possible therapy for cardiovascular disease. Pharmacol. Res., 2019, 142, 205-222.
[http://dx.doi.org/10.1016/j.phrs.2019.02.018] [PMID: 30794922]
[30]
Wang, X.; Xu, X.; Tao, W.; Li, Y.; Wang, Y.; Yang, L. A systems biology approach to uncovering pharmacological synergy in herbal medicines with applications to cardiovascular disease. Evid.-. Based Complement. Altern. Med., 2012, 2012, 519031.
[http://dx.doi.org/10.1155/2012/519031]
[31]
Nani, A.; Murtaza, B.; Sayed Khan, A.; Khan, N.A.; Hichami, A. Antioxidant and anti-inflammatory potential of polyphenols contained in mediterranean diet in obesity: Molecular mechanisms. Molecules, 2021, 26(4), 985.
[http://dx.doi.org/10.3390/molecules26040985] [PMID: 33673390]
[32]
Mechchate, H.; Es-Safi, I.; Amaghnouje, A.; Boukhira, S.; Alotaibi, A. A.; Al-Zharani, M.; A Nasr, F.; M Noman, O.; Conte, R.; Amal, E.H.E.Y.; Bekkari, H.; Bousta, D. Antioxidant, anti-inflammatory and antidiabetic proprieties of LC-MS/MS identified polyphenols from coriander seeds. Molecules, 2021, 26(2), 487.
[http://dx.doi.org/10.3390/molecules26020487] [PMID: 33477662]
[33]
Bezerra-Filho, C.S.M.; Barboza, J.N.; Souza, M.T.S.; Sabry, P.; Ismail, N.S.M.; de Sousa, D.P. Therapeutic potential of vanillin and its main metabolites to regulate the inflammatory response and oxidative stress. Mini Rev. Med. Chem., 2019, 19(20), 1681-1693.
[http://dx.doi.org/10.2174/1389557519666190312164355] [PMID: 30864521]
[34]
Ingole, A.; Kadam, M.P.; Dalu, A.P.; Kute, S.M.; Mange, P.R.; Theng, V.D.; Lahane, O.R.; Nikas, A.P.; Kawal, Y.V.; Nagrik, S.U.; Patil, P.A. A review of the pharmacological characteristics of vanillic acid. J. Drug Deliv. Ther., 2021, 11(2-S), 200-204.
[http://dx.doi.org/10.22270/jddt.v11i2-S.4823]
[35]
Calixto-Campos, C.; Carvalho, T.T.; Hohmann, M.S.; Pinho-Ribeiro, F.A.; Fattori, V.; Manchope, M.F.; Zarpelon, A.C.; Baracat, M.M.; Georgetti, S.R.; Casagrande, R.; Verri, W.A. Jr. Vanillic acid inhibits inflammatory pain by inhibiting neutrophil recruitment, oxidative stress, cytokine production, and NFκB activation in mice. J. Nat. Prod., 2015, 78(8), 1799-1808.
[http://dx.doi.org/10.1021/acs.jnatprod.5b00246] [PMID: 26192250]
[36]
Gitzinger, M.; Kemmer, C.; Fluri, D.A.; Daoud El-Baba, M.; Weber, W.; Fussenegger, M. The food additive vanillic acid controls transgene expression in mammalian cells and mice. Nucleic Acids Res., 2012, 40(5), e37.
[http://dx.doi.org/10.1093/nar/gkr1251]
[37]
Muzaffer, U.; Paul, V.I.; Rajendra Prasad, N. Molecular docking of selected phytoconstituents with signaling molecules of Ultraviolet-B induced oxidative damage. In Silico Pharmacol., 2017, 5(1), 17.
[http://dx.doi.org/10.1007/s40203-017-0035-z] [PMID: 29308353]
[38]
Singh, S.; Ali, R.; Miyan, J.; Singh, V.; Meena, S.; Hasanain, M.; Bhadauria, S.; Datta, D.; Sarkar, J.; Haq, W. Facile synthesis of rapamycin-peptide conjugates as mTOR and Akt inhibitors. Org. Biomol. Chem., 2021, 19(19), 4352-4358.
[http://dx.doi.org/10.1039/D1OB00132A] [PMID: 33908567]
[39]
Takeuchi, K.; Tanaka, A.; Kato, S.; Aihara, E.; Amagase, K. Effect of (S)-4-(1-(5-chloro-2-(4-fluorophenyoxy)benzamido)ethyl) benzoic acid (CJ-42794), a selective antagonist of prostaglandin E receptor subtype 4, on ulcerogenic and healing responses in rat gastrointestinal mucosa. J. Pharmacol. Exp. Ther., 2007, 322(3), 903-912.
[http://dx.doi.org/10.1124/jpet.107.122978] [PMID: 17578900]
[40]
Yang, T.; Zhang, L.; Shang, Y.; Zhu, Z.; Jin, S.; Guo, Z.; Wang, X. Concurrent suppression of Aβ aggregation and NLRP3 inflammasome activation for treating Alzheimer’s disease. Chem. Sci. (Camb.), 2022, 13(10), 2971-2980.
[http://dx.doi.org/10.1039/D1SC06071F] [PMID: 35382471]
[41]
Pu, J.; Chen, D.; Tian, G.; He, J.; Zheng, P.; Mao, X. Protective effects of benzoic acid, Bacillus coagulans, and oregano oil on intestinal injury caused by enterotoxigenic Escherichia coli in weaned piglets. BioMed Res. Int., 2018, 2018, 1829632.
[42]
Xu, B.; Xu, X.; Zhang, C.; Zhang, Y.; Wu, G.; Yan, M.; Jia, M.; Xie, T.; Jia, X.; Wang, P.; Lei, H. Synthesis and protective effect of new ligustrazine-vanillic acid derivatives against CoCl2-induced neurotoxicity in differentiated PC12 cells. Chem. Cent. J., 2017, 11(1), 20.
[http://dx.doi.org/10.1186/s13065-017-0250-z] [PMID: 28293281]
[43]
Morales, J.C.; Lucas, R. Structure–activity relationship of phenolic antioxidants and olive components. In: Olives and Olive Oil in Health and Disease Prevention; Elsevier, 2010; pp. 905-914.
[http://dx.doi.org/10.1016/B978-0-12-374420-3.00097-8]
[44]
Chu, M.; Zhou, M.; Jiang, C.; Chen, X.; Guo, L.; Zhang, M.; Chu, Z.; Wang, Y. Staphylococcus aureus phenol-soluble modulins α1–α3 act as novel toll-like receptor (TLR) 4 antagonists to inhibit HMGB1/TLR4/NF-κB signaling pathway. Front. Immunol., 2018, 9, 862.
[http://dx.doi.org/10.3389/fimmu.2018.00862] [PMID: 29922279]
[45]
Zhu, F.; Jiang, D.; Zhang, M.; Zhao, B. 2,4-Dihydroxy-3′-methoxy-4′-ethoxychalcone suppresses cell proliferation and induces apoptosis of multiple myeloma via the PI3K/akt/mTOR signaling pathway. Pharm. Biol., 2019, 57(1), 641-648.
[http://dx.doi.org/10.1080/13880209.2019.1662814] [PMID: 31564190]
[46]
Guo, C.; Fulp, J.W.; Jiang, Y.; Li, X.; Chojnacki, J.E.; Wu, J.; Wang, X.Y.; Zhang, S. Development and characterization of a hydroxyl-sulfonamide analogue, 5-chloro-N-[2-(4-hydroxysulfamoyl-phenyl)-ethyl]-2-methoxy-benzamide, as a novel NLRP3 inflammasome inhibitor for potential treatment of multiple sclerosis. ACS Chem. Neurosci., 2017, 8(10), 2194-2201.
[http://dx.doi.org/10.1021/acschemneuro.7b00124] [PMID: 28653829]
[47]
Yrbas, M.L.; Morucci, F.; Alonso, R.; Gorzalczany, S. Pharmacological mechanism underlying the antinociceptive activity of vanillic acid. Pharmacol. Biochem. Behav., 2015, 132, 88-95.
[http://dx.doi.org/10.1016/j.pbb.2015.02.016] [PMID: 25712175]
[48]
Luo, N.; Li, Z.; Qian, D.; Qian, Y.; Guo, J.; Duan, J.A.; Zhu, M. Simultaneous determination of bioactive components of Radix Angelicae Sinensis-Radix Paeoniae Alba herb couple in rat plasma and tissues by UPLC-MS/MS and its application to pharmacokinetics and tissue distribution. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2014, 963, 29-39.
[http://dx.doi.org/10.1016/j.jchromb.2014.05.036] [PMID: 24927419]
[49]
Lu, Q.; Li, X.; Liu, J.; Sun, X.; Rousselle, T.; Ren, D.; Tong, N.; Li, J. AMPK is associated with the beneficial effects of antidiabetic agents on cardiovascular diseases. Biosci. Rep., 2019, 39(2), BSR20181995.
[http://dx.doi.org/10.1042/BSR20181995] [PMID: 30710062]
[50]
Nellaiappan, K.; Yerra, V.G. Kumar, A Role of AMPK in diabetic cardiovascular complications: An overview. Cardiovasc. Haematol. Disord.-. Drug Targets, 2019, 19(1), 5-13.
[http://dx.doi.org/10.2174/1871529X18666180508104929]
[51]
Cui, J.; Zhang, F.; Wang, Y.; Liu, J.; Ming, X.; Hou, J.; Lv, B.; Fang, S.; Yu, B. Macrophage migration inhibitory factor promotes cardiac stem cell proliferation and endothelial differentiation through the activation of the PI3K/Akt/mTOR and AMPK pathways. Int. J. Mol. Med., 2016, 37(5), 1299-1309.
[http://dx.doi.org/10.3892/ijmm.2016.2542] [PMID: 27035848]
[52]
Schultze, S.M.; Hemmings, B.A.; Niessen, M.; Tschopp, O. PI3K/AKT, MAPK and AMPK signalling: Protein kinases in glucose homeostasis. Expert Rev. Mol. Med., 2012, 14, e1.
[http://dx.doi.org/10.1017/S1462399411002109] [PMID: 22233681]
[53]
Sun, P.; Zhou, K.; Wang, S.; Li, P.; Chen, S.; Lin, G.; Zhao, Y.; Wang, T. Involvement of MAPK/NF-κB signaling in the activation of the cholinergic anti-inflammatory pathway in experimental colitis by chronic vagus nerve stimulation. PLoS One, 2013, 8(8), e69424.
[http://dx.doi.org/10.1371/journal.pone.0069424] [PMID: 23936328]
[54]
Coskun, M.; Olsen, J.; Seidelin, J.B.; Nielsen, O.H. MAP kinases in inflammatory bowel disease. Clin. Chim. Acta, 2011, 412(7-8), 513-520.
[http://dx.doi.org/10.1016/j.cca.2010.12.020] [PMID: 21185271]
[55]
Vaez, H.; Najafi, M.; Rameshrad, M.; Toutounchi, N.S.; Garjani, M.; Barar, J.; Garjani, A. AMPK activation by metformin inhibits local innate immune responses in the isolated rat heart by suppression of TLR 4-related pathway. Int. Immunopharmacol., 2016, 40, 501-507.
[http://dx.doi.org/10.1016/j.intimp.2016.10.002] [PMID: 27756052]
[56]
Soraya, H.; Farajnia, S.; Khani, S.; Rameshrad, M.; Khorrami, A.; Banani, A.; Maleki-Dizaji, N.; Garjani, A. Short-term treatment with metformin suppresses toll like receptors (TLRs) activity in isoproterenol-induced myocardial infarction in rat: Are AMPK and TLRs connected? Int. Immunopharmacol., 2012, 14(4), 785-791.
[http://dx.doi.org/10.1016/j.intimp.2012.10.014] [PMID: 23122726]
[57]
Cario, E. Toll-like receptors in inflammatory bowel diseases: A decade later. Inflamm. Bowel Dis., 2010, 16(9), 1583-1597.
[http://dx.doi.org/10.1002/ibd.21282] [PMID: 20803699]
[58]
Xu, L.; Wang, S.; Li, B.; Sun, A.; Zou, Y.; Ge, J. A protective role of ciglitazone in ox-LDL-induced rat microvascular endothelial cells via modulating PPARγ-dependent AMPK/eNOS pathway. J. Cell. Mol. Med., 2015, 19(1), 92-102.
[http://dx.doi.org/10.1111/jcmm.12463] [PMID: 25388834]
[59]
Maccallini, C.; Mollica, A.; Amoroso, R. The positive regulation of eNOS signaling by PPAR agonists in cardiovascular diseases. Am. J. Cardiovasc. Drugs, 2017, 17(4), 273-281.
[http://dx.doi.org/10.1007/s40256-017-0220-9] [PMID: 28315197]
[60]
Roudsari, N.M.; Lashgari, N-A.; Zandi, N.; Pazoki, B.; Momtaz, S.; Sahebkar, A.; Abdolghaffari, A.H. PPARγ A turning point for irritable bowel syndrome treatment. Life Sci., 2020, 257, 118103.
[http://dx.doi.org/10.1016/j.lfs.2020.118103] [PMID: 32681913]
[61]
Vetuschi, A.; Pompili, S.; Gaudio, E.; Latella, G.; Sferra, R. PPAR-γ with its anti-inflammatory and anti-fibrotic action could be an effective therapeutic target in IBD. Eur. Rev. Med. Pharmacol. Sci., 2018, 22(24), 8839-8848.
[PMID: 30575926]
[62]
Wang, Q.; Zou, M-H. Measurement of reactive oxygen species (ROS) and mitochondrial ROS in AMPK knockout mice blood vessels. In: AMPK; Springer, 2018; pp. 507-517.
[http://dx.doi.org/10.1007/978-1-4939-7598-3_32]
[63]
Steinberg, G.R.; Schertzer, J.D. AMPK promotes macrophage fatty acid oxidative metabolism to mitigate inflammation: Implications for diabetes and cardiovascular disease. Immunol. Cell Biol., 2014, 92(4), 340-345.
[http://dx.doi.org/10.1038/icb.2014.11] [PMID: 24638063]
[64]
Jiang, Y-J.; Sun, S-J.; Cao, W-X.; Lan, X-T.; Ni, M.; Fu, H.; Li, D.J.; Wang, P.; Shen, F.M. Excessive ROS production and enhanced autophagy contribute to myocardial injury induced by branched-chain amino acids: Roles for the AMPK-ULK1 signaling pathway and α7nAChR. Biochim. Biophys. Acta Mol. Basis Dis., 2021, 1867(1), 165980.
[http://dx.doi.org/10.1016/j.bbadis.2020.165980] [PMID: 32980459]
[65]
Dobutović B; Smiljanić K; Soskić S; Dungen, H-D; Isenović E. Nitric oxide and its role in cardiovascular diseases. Open Nitric Oxide J., 2011, 3(1), 65-71.
[http://dx.doi.org/10.2174/1875042701103010065]
[66]
Krzywonos-Zawadzka, A.; Franczak, A.; Sawicki, G.; Bil-Lula, I. Mixture of MMP-2, MLC, and NOS inhibitors affects NO metabolism and protects heart from cardiac I/R injury. Cardiol. Res. Pract., 2020, 2020, 1561478.
[67]
Atreya, I.; Atreya, R.; Neurath, M.F. NF-kappaB in inflammatory bowel disease. J. Intern. Med., 2008, 263(6), 591-596.
[http://dx.doi.org/10.1111/j.1365-2796.2008.01953.x] [PMID: 18479258]
[68]
Jobin, C.; Sartor, R.B. NF-kappaB signaling proteins as therapeutic targets for inflammatory bowel diseases. Inflamm. Bowel Dis., 2000, 6(3), 206-213.
[http://dx.doi.org/10.1097/00054725-200008000-00007] [PMID: 10961593]
[69]
Andersen, V.; Christensen, J.; Ernst, A.; Jacobsen, B.A.; Tjønneland, A.; Krarup, H.B.; Vogel, U. Polymorphisms in NF-κB, PXR, LXR, PPARγ and risk of inflammatory bowel disease. World J. Gastroenterol., 2011, 17(2), 197-206.
[http://dx.doi.org/10.3748/wjg.v17.i2.197] [PMID: 21245992]
[70]
Papoutsopoulou, S.; Burkitt, M.D.; Bergey, F.; England, H.; Hough, R.; Schmidt, L.; Spiller, D.G.; White, M.H.R.; Paszek, P.; Jackson, D.A.; Martins Dos Santos, V.A.P.; Sellge, G.; Pritchard, D.M.; Campbell, B.J.; Müller, W.; Probert, C.S. Macrophage-specific NF-κB activation dynamics can segregate inflammatory bowel disease patients. Front. Immunol., 2019, 10, 2168.
[http://dx.doi.org/10.3389/fimmu.2019.02168] [PMID: 31572379]
[71]
Salas, A.; Hernandez-Rocha, C.; Duijvestein, M.; Faubion, W.; McGovern, D.; Vermeire, S.; Vetrano, S.; Vande Casteele, N. JAK-STAT pathway targeting for the treatment of inflammatory bowel disease. Nat. Rev. Gastroenterol. Hepatol., 2020, 17(6), 323-337.
[http://dx.doi.org/10.1038/s41575-020-0273-0] [PMID: 32203403]
[72]
Soendergaard, C.; Bergenheim, F.H.; Bjerrum, J.T.; Nielsen, O.H. Targeting JAK-STAT signal transduction in IBD. Pharmacol. Ther., 2018, 192, 100-111.
[http://dx.doi.org/10.1016/j.pharmthera.2018.07.003] [PMID: 30048708]
[73]
Fu, X.; Sun, F.; Wang, F.; Zhang, J.; Zheng, B.; Zhong, J. Aloperine protects mice against DSS-induced colitis by PP2A-mediated PI3K/Akt/mTOR signaling suppression. Mediators Inflamm., 2017, 2017, 5706152.
[74]
Lashgari, N.A.; Roudsari, N.M.; Momtaz, S.; Ghanaatian, N.; Kohansal, P.; Farzaei, M.H. Targeting mammalian target of rapamycin: Prospects for the treatment of inflammatory bowel diseases. Curr. Med. Chem., 2021, 28(8), 1605-1624.
[PMID: 32364064]
[75]
Bhonde, M.R.; Gupte, R.D.; Dadarkar, S.D.; Jadhav, M.G.; Tannu, A.A.; Bhatt, P.; Bhatia, D.R.; Desai, N.K.; Deore, V.; Yewalkar, N.; Vishwakarma, R.A.; Sharma, S.; Kumar, S.; Dagia, N.M. A novel mTOR inhibitor is efficacious in a murine model of colitis. Am. J. Physiol. Gastrointest. Liver Physiol., 2008, 295(6), G1237-G1245.
[http://dx.doi.org/10.1152/ajpgi.90537.2008] [PMID: 18927209]
[76]
Anderson, J.L.; Morrow, D.A. Acute myocardial infarction. N. Engl. J. Med., 2017, 376(21), 2053-2064.
[http://dx.doi.org/10.1056/NEJMra1606915] [PMID: 28538121]
[77]
Reed, G.W.; Rossi, J.E.; Cannon, C.P. Acute myocardial infarction. Lancet, 2017, 389(10065), 197-210.
[http://dx.doi.org/10.1016/S0140-6736(16)30677-8] [PMID: 27502078]
[78]
Christia, P.; Frangogiannis, N.G. Targeting inflammatory pathways in myocardial infarction. Eur. J. Clin. Invest., 2013, 43(9), 986-995.
[http://dx.doi.org/10.1111/eci.12118] [PMID: 23772948]
[79]
Hantson, P. Mechanisms of toxic cardiomyopathy. Clin. Toxicol. (Phila.), 2019, 57(1), 1-9.
[http://dx.doi.org/10.1080/15563650.2018.1497172] [PMID: 30260248]
[80]
Chatterjee, K.; Zhang, J.; Honbo, N.; Karliner, J.S. Doxorubicin cardiomyopathy. Cardiology, 2010, 115(2), 155-162.
[http://dx.doi.org/10.1159/000265166] [PMID: 20016174]
[81]
Renu, K.; Abilash, V. PB, T.P.; Arunachalam, S. Molecular mechanism of doxorubicin-induced cardiomyopathy–An update. Eur. J. Pharmacol., 2018, 818, 241-253.
[http://dx.doi.org/10.1016/j.ejphar.2017.10.043] [PMID: 29074412]
[82]
Cachofeiro, V.; Miana, M.; Martín-Fernandez, B.; Ballesteros, S.; Balfagon, G.; Lahera, V. Inflammation: A link between hypertension and atherosclerosis. Curr. Hypertens. Rev., 2009, 5(1), 40-48.
[http://dx.doi.org/10.2174/157340209787314333]
[83]
Hollander, W. Role of hypertension in atherosclerosis and cardiovascular disease. Am. J. Cardiol., 1976, 38(6), 786-800.
[http://dx.doi.org/10.1016/0002-9149(76)90357-X] [PMID: 136891]
[84]
Pauletto, P.; Rattazzi, M. Inflammation and hypertension: The search for a link. Nephrol. Dial. Transplant., 2006, 21(4), 850-853.
[http://dx.doi.org/10.1093/ndt/gfl019] [PMID: 16464884]
[85]
Duan, S.Z.; Usher, M.G.; Mortensen, R.M. PPARs: The vasculature, inflammation and hypertension. Curr. Opin. Nephrol. Hypertens., 2009, 18(2), 128-133.
[http://dx.doi.org/10.1097/MNH.0b013e328325803b] [PMID: 19434050]
[86]
Libby, P.; Ridker, P.M.; Maseri, A. Inflammation and atherosclerosis. Circulation, 2002, 105(9), 1135-1143.
[http://dx.doi.org/10.1161/hc0902.104353] [PMID: 11877368]
[87]
Gwon, W-G.; Joung, E-J.; Kwon, M-S.; Lim, S-J.; Utsuki, T.; Kim, H-R. Sargachromenol protects against vascular inflammation by preventing TNF-α-induced monocyte adhesion to primary endothelial cells via inhibition of NF-κB activation. Int. Immunopharmacol., 2017, 42, 81-89.
[http://dx.doi.org/10.1016/j.intimp.2016.11.014] [PMID: 27902962]
[88]
Zhu, Y.; Xian, X.; Wang, Z.; Bi, Y.; Chen, Q.; Han, X.; Tang, D.; Chen, R. Research progress on the relationship between atherosclerosis and inflammation. Biomolecules, 2018, 8(3), 80.
[http://dx.doi.org/10.3390/biom8030080] [PMID: 30142970]
[89]
Biros, E.; Reznik, J.E.; Moran, C.S. Role of inflammatory cytokines in genesis and treatment of atherosclerosis. Trends Cardiovasc. Med., 2022, 32(3), 138-142.
[PMID: 33571665]
[90]
Bianconi, V.; Sahebkar, A.; Atkin, S.L.; Pirro, M. The regulation and importance of monocyte chemoattractant protein-1. Curr. Opin. Hematol., 2018, 25(1), 44-51.
[http://dx.doi.org/10.1097/MOH.0000000000000389] [PMID: 28914666]
[91]
Saibabu, V.; Fatima, Z.; Khan, L.A.; Hameed, S. Therapeutic potential of dietary phenolic acids. Adv. Pharmacol. Sci., 2015, 2015, 823539.
[http://dx.doi.org/10.1155/2015/823539]
[92]
Sripanidkulchai, B.; Junlatat, J. Bioactivities of alcohol based extracts of Phyllanthus emblica branches: Antioxidation, antimelanogenesis and anti-inflammation. J. Nat. Med., 2014, 68(3), 615-622.
[http://dx.doi.org/10.1007/s11418-014-0824-1] [PMID: 24557876]
[93]
Bai, N.; He, K.; Roller, M.; Lai, C-S.; Bai, L.; Pan, M-H. Flavonolignans and other constituents from Lepidium meyenii with activities in anti-inflammation and human cancer cell lines. J. Agric. Food Chem., 2015, 63(9), 2458-2463.
[http://dx.doi.org/10.1021/acs.jafc.5b00219] [PMID: 25667964]
[94]
Sharma, N.; Tiwari, N.; Vyas, M.; Khurana, N.; Muthuraman, A.; Utreja, P. An overview of therapeutic effects of vanillic acid. Plant Arch., 2020, 20(2), 3053-3059.
[95]
Itoh, A.; Isoda, K.; Kondoh, M.; Kawase, M.; Watari, A.; Kobayashi, M.; Tamesada, M.; Yagi, K. Hepatoprotective effect of syringic acid and vanillic acid on CCl4-induced liver injury. Biol. Pharm. Bull., 2010, 33(6), 983-987.
[http://dx.doi.org/10.1248/bpb.33.983] [PMID: 20522963]
[96]
Yao, X.; Jiao, S.; Qin, M.; Hu, W.; Yi, B.; Liu, D. Vanillic acid alleviates acute myocardial hypoxia/reoxygenation injury by inhibiting oxidative stress. Oxid. Med. Cell. Longev., 2020, 2020, 8348035.
[97]
Jung, Y.; Park, J.; Kim, H.L.; Sim, J.E.; Youn, D.H.; Kang, J.; Lim, S.; Jeong, M.Y.; Yang, W.M.; Lee, S.G.; Ahn, K.S.; Um, J.Y. Vanillic acid attenuates obesity via activation of the AMPK pathway and thermogenic factors in vivo and in vitro. FASEB J., 2018, 32(3), 1388-1402.
[http://dx.doi.org/10.1096/fj.201700231RR] [PMID: 29141998]
[98]
Dianat, M.; Hamzavi, G.R.; Badavi, M.; Samarbafzadeh, A. Effects of losartan and vanillic Acid co-administration on ischemia-reperfusion-induced oxidative stress in isolated rat heart. Iran. Red Crescent Med. J., 2014, 16(7), e16664.
[http://dx.doi.org/10.5812/ircmj.16664] [PMID: 25237570]
[99]
Baniahmad, B.; Safaeian, L.; Vaseghi, G.; Rabbani, M.; Mohammadi, B. Cardioprotective effect of vanillic acid against doxorubicin-induced cardiotoxicity in rat. Res. Pharm. Sci., 2020, 15(1), 87-96.
[http://dx.doi.org/10.4103/1735-5362.278718] [PMID: 32180820]
[100]
Kim, M-C.; Kim, S-J.; Kim, D-S.; Jeon, Y-D.; Park, S.J.; Lee, H.S.; Um, J.Y.; Hong, S.H. Vanillic acid inhibits inflammatory mediators by suppressing NF-κB in lipopolysaccharide-stimulated mouse peritoneal macrophages. Immunopharmacol. Immunotoxicol., 2011, 33(3), 525-532.
[http://dx.doi.org/10.3109/08923973.2010.547500] [PMID: 21250779]
[101]
Khoshnam, S.E.; Sarkaki, A.; Rashno, M.; Farbood, Y. Memory deficits and hippocampal inflammation in cerebral hypoperfusion and reperfusion in male rats: Neuroprotective role of vanillic acid. Life Sci., 2018, 211, 126-132.
[http://dx.doi.org/10.1016/j.lfs.2018.08.065] [PMID: 30195619]
[102]
Sahu, R.; Dua, T.K.; Das, S.; De Feo, V.; Dewanjee, S. Wheat phenolics suppress doxorubicin-induced cardiotoxicity via inhibition of oxidative stress, MAP kinase activation, NF-κB pathway, PI3K/Akt/mTOR impairment, and cardiac apoptosis. Food Chem. Toxicol., 2019, 125, 503-519.
[http://dx.doi.org/10.1016/j.fct.2019.01.034] [PMID: 30735749]
[103]
Jesus, I.C.G.; Scalzo, S.; Alves, F.; Marques, K.; Rocha-Resende, C.; Bader, M.; Santos, R.A.S.; Guatimosim, S. Alamandine acts via MrgD to induce AMPK/NO activation against ANG II hypertrophy in cardiomyocytes. Am. J. Physiol. Cell Physiol., 2018, 314(6), C702-C711.
[http://dx.doi.org/10.1152/ajpcell.00153.2017] [PMID: 29443552]
[104]
Kar, R.; Kellogg, D.L., III; Roman, L.J. Oxidative stress induces phosphorylation of neuronal NOS in cardiomyocytes through AMP-activated protein kinase (AMPK). Biochem. Biophys. Res. Commun., 2015, 459(3), 393-397.
[http://dx.doi.org/10.1016/j.bbrc.2015.02.113] [PMID: 25732085]
[105]
Li, J.; Hu, X.; Selvakumar, P.; Russell, R.R., III; Cushman, S.W.; Holman, G.D.; Young, L.H. Role of the nitric oxide pathway in AMPK-mediated glucose uptake and GLUT4 translocation in heart muscle. Am. J. Physiol. Endocrinol. Metab., 2004, 287(5), E834-E841.
[http://dx.doi.org/10.1152/ajpendo.00234.2004] [PMID: 15265762]
[106]
Alim, Z. Kilinç, N.; Şengül, B.; Beydemir, Ş. Inhibition behaviours of some phenolic acids on rat kidney aldose reductase enzyme: An in vitro study. J. Enzyme Inhib. Med. Chem., 2017, 32(1), 277-284.
[http://dx.doi.org/10.1080/14756366.2016.1250752] [PMID: 28111996]
[107]
Kumar, S.; Prahalathan, P.; Raja, B. Antihypertensive and antioxidant potential of vanillic acid, a phenolic compound in L-NAME-induced hypertensive rats: A dose-dependence study. Redox Rep., 2011, 16(5), 208-215.
[http://dx.doi.org/10.1179/1351000211Y.0000000009] [PMID: 22005341]
[108]
Stanely Mainzen Prince, P.; Rajakumar, S.; Dhanasekar, K. Protective effects of vanillic acid on electrocardiogram, lipid peroxidation, antioxidants, proinflammatory markers and histopathology in isoproterenol induced cardiotoxic rats. Eur. J. Pharmacol., 2011, 668(1-2), 233-240.
[http://dx.doi.org/10.1016/j.ejphar.2011.06.053] [PMID: 21763302]
[109]
Prince, P.S.; Dhanasekar, K.; Rajakumar, S. Preventive effects of vanillic acid on lipids, bax, bcl-2 and myocardial infarct size on isoproterenol-induced myocardial infarcted rats: A biochemical and in vitro study. Cardiovasc. Toxicol., 2011, 11(1), 58-66.
[http://dx.doi.org/10.1007/s12012-010-9098-3] [PMID: 21161433]
[110]
Stanely Mainzen Prince, P.; Dhanasekar, K.; Rajakumar, S. Vanillic acid prevents altered ion pumps, ions, inhibits Fas-receptor and caspase mediated apoptosis-signaling pathway and cardiomyocyte death in myocardial infarcted rats. Chem. Biol. Interact., 2015, 232, 68-76.
[http://dx.doi.org/10.1016/j.cbi.2015.03.009] [PMID: 25794854]
[111]
Lobo Filho, H.G.; Ferreira, N.L.; Sousa, R.B.; Carvalho, E.R.; Lobo, P.L.; Lobo Filho, J.G. Experimental model of myocardial infarction induced by isoproterenol in rats. Rev. Bras. Cir. Cardiovasc., 2011, 26(3), 469-476.
[http://dx.doi.org/10.5935/1678-9741.20110024] [PMID: 22086586]
[112]
Radmanesh, E.; Dianat, M.; Badavi, M.; Goudarzi, G.; Mard, S.A. The cardioprotective effect of vanillic acid on hemodynamic parameters, malondialdehyde, and infarct size in ischemia-reperfusion isolated rat heart exposed to PM10. Iran. J. Basic Med. Sci., 2017, 20(7), 760-768.
[PMID: 28852440]
[113]
Siddiqui, S.; Kamal, A.; Khan, F.; Jamali, K.S.; Saify, Z.S. Gallic and vanillic acid suppress inflammation and promote myelination in an in vitro mouse model of neurodegeneration. Mol. Biol. Rep., 2019, 46(1), 997-1011.
[http://dx.doi.org/10.1007/s11033-018-4557-1] [PMID: 30569390]
[114]
Yoo, S-R.; Jeong, S-J.; Lee, N-R.; Shin, H-K.; Seo, C-S. Simultaneous determination and anti-inflammatory effects of four phenolic compounds in Dendrobii herba. Nat. Prod. Res., 2017, 31(24), 2923-2926.
[http://dx.doi.org/10.1080/14786419.2017.1300798] [PMID: 28281361]
[115]
Park, J.B. Identification and quantification of a major anti-oxidant and anti-inflammatory phenolic compound found in basil, lemon thyme, mint, oregano, rosemary, sage, and thyme. Int. J. Food Sci. Nutr., 2011, 62(6), 577-584.
[http://dx.doi.org/10.3109/09637486.2011.562882] [PMID: 21506887]
[116]
Kumar, S.; Prahalathan, P.; Saravanakumar, M.; Raja, B. Vanillic acid prevents the deregulation of lipid metabolism, endothelin 1 and up regulation of endothelial nitric oxide synthase in nitric oxide deficient hypertensive rats. Eur. J. Pharmacol., 2014, 743, 117-125.
[http://dx.doi.org/10.1016/j.ejphar.2014.09.010] [PMID: 25239071]
[117]
Khoshnam, S.E.; Farbood, Y.; Fathi Moghaddam, H.; Sarkaki, A.; Badavi, M.; Khorsandi, L. Vanillic acid attenuates cerebral hyperemia, blood-brain barrier disruption and anxiety-like behaviors in rats following transient bilateral common carotid occlusion and reperfusion. Metab. Brain Dis., 2018, 33(3), 785-793.
[http://dx.doi.org/10.1007/s11011-018-0187-5] [PMID: 29356980]
[118]
Khoshnam, S.E.; Sarkaki, A.; Khorsandi, L.; Winlow, W.; Badavi, M.; Moghaddam, H.F.; Farbood, Y. Vanillic acid attenuates effects of transient bilateral common carotid occlusion and reperfusion in rats. Biomed. Pharmacother., 2017, 96, 667-674.
[http://dx.doi.org/10.1016/j.biopha.2017.10.052] [PMID: 29035833]
[119]
Vinothiya, K.; Ashokkumar, N. Modulatory effect of vanillic acid on antioxidant status in high fat diet-induced changes in diabetic hypertensive rats. Biomed. Pharmacother., 2017, 87, 640-652.
[http://dx.doi.org/10.1016/j.biopha.2016.12.134] [PMID: 28088113]
[120]
Dianat, M.; Radmanesh, E.; Badavi, M.; Mard, S.A.; Goudarzi, G. Disturbance effects of PM₁₀ on iNOS and eNOS mRNA expression levels and antioxidant activity induced by ischemia-reperfusion injury in isolated rat heart: Protective role of vanillic acid. Environ. Sci. Pollut. Res. Int., 2016, 23(6), 5154-5165.
[http://dx.doi.org/10.1007/s11356-015-5759-x] [PMID: 26552794]
[121]
Kumar, S.; Prahalathan, P.; Raja, B. Vanillic acid: A potential inhibitor of cardiac and aortic wall remodeling in l-NAME induced hypertension through upregulation of endothelial nitric oxide synthase. Environ. Toxicol. Pharmacol., 2014, 38(2), 643-652.
[http://dx.doi.org/10.1016/j.etap.2014.07.011] [PMID: 25218092]
[122]
Marino, M.; Del Bo’, C.; Tucci, M.; Klimis-Zacas, D.; Riso, P.; Porrini, M. Modulation of adhesion process, E-selectin and VEGF production by anthocyanins and their metabolites in an in vitro model of atherosclerosis. Nutrients, 2020, 12(3), E655.
[http://dx.doi.org/10.3390/nu12030655] [PMID: 32121223]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy