Review Article

MicroRNA-126在动脉粥样硬化性心血管疾病中的作用

卷 30, 期 17, 2023

发表于: 13 October, 2022

页: [1902 - 1921] 页: 20

弟呕挨: 10.2174/0929867329666220830100530

价格: $65

Open Access Journals Promotions 2
摘要

动脉粥样硬化性心血管疾病仍然是世界范围内发病率和死亡率的主要原因,尽管对其进行了所有努力。除了针对其发展的传统风险因素外,科学兴趣已转向表观遗传调控,其中微RNA(miR)处于最前沿。特别是MiR-126,已经在心血管疾病的背景下进行了广泛的研究。这种miR的表达下调与高度流行的心血管危险因素如动脉高血压和糖尿病有关。同时,其对冠状动脉疾病的诊断和预后能力仍在研究中,最新数据表明稳定疾病状态下的表达失调和急性心肌梗死。此外,miR-126的较低表达可能表明疾病复杂性较高,以及未来发生重大不良心脑血管事件的风险增加。最终,miR-126的过度表达可能成为动脉粥样硬化性心血管疾病的新的治疗靶点,因为其在促进治疗性血管生成和抗炎作用方面的潜力。然而,在转化为临床实践之前,miR治疗中存在的挑战需要解决。

关键词: miR-126,动脉粥样硬化,冠状动脉疾病,生物标志物,血管生成,炎症

[1]
Sagris, M.; Antonopoulos, A.S.; Theofilis, P.; Oikonomou, E.; Siasos, G.; Tsalamandris, S.; Antoniades, C.; Brilakis, E.S.; Kaski, J.C.; Tousoulis, D. Risk factors profile of young and older patients with Myocardial Infarction. Cardiovasc. Res., 2021, 2021, cvab264.
[http://dx.doi.org/10.1093/cvr/cvab264] [PMID: 34358302]
[2]
Andrikopoulos, G.; Terentes-Printzios, D.; Tzeis, S.; Vlachopoulos, C.; Varounis, C.; Nikas, N.; Lekakis, J.; Stakos, D.; Lymperi, S.; Symeonidis, D.; Chrissos, D.; Kyrpizidis, C.; Alexopoulos, D.; Zombolos, S.; Foussas, S.; Κranidis, Α.; Oikonomou, Κ.; Vasilikos, V.; Andronikos, P.; Dermitzakis, Α.; Richter, D.; Fragakis, N.; Styliadis, I.; Mavridis, S.; Stefanadis, C.; Vardas, P. Epidemiological characteristics, management and early outcomes of acute coronary syndromes in Greece: The PHAETHON study. Hellenic J. Cardiol., 2016, 57(3), 157-166.
[http://dx.doi.org/10.1016/j.hjc.2016.06.003] [PMID: 27451914]
[3]
Visseren, F.L.J.; Mach, F.; Smulders, Y.M.; Carballo, D.; Koskinas, K.C.; Bäck, M.; Benetos, A.; Biffi, A.; Boavida, J.M.; Capodanno, D.; Cosyns, B.; Crawford, C.; Davos, C.H.; Desormais, I.; Di Angelantonio, E.; Franco, O.H.; Halvorsen, S.; Hobbs, F.D.R.; Hollander, M.; Jankowska, E.A.; Michal, M.; Sacco, S.; Sattar, N.; Tokgozoglu, L.; Tonstad, S.; Tsioufis, K.P.; van Dis, I.; van Gelder, I.C.; Wanner, C.; Williams, B.; Group, E.S.C.S.D.; Societies, E.S.C.N.C. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur. Heart J., 2021, 42(34), 3227-3337.
[http://dx.doi.org/10.1093/eurheartj/ehab484] [PMID: 34458905]
[4]
Siasos, G.; Tsigkou, V.; Kokkou, E.; Oikonomou, E.; Vavuranakis, M.; Vlachopoulos, C.; Verveniotis, A.; Limperi, M.; Genimata, V.; Papavassiliou, A.G.; Stefanadis, C.; Tousoulis, D. Smoking and atherosclerosis: Mechanisms of disease and new therapeutic approaches. Curr. Med. Chem., 2014, 21(34), 3936-3948.
[http://dx.doi.org/10.2174/092986732134141015161539] [PMID: 25174928]
[5]
Oikonomou, E.; Theofilis, P.; Vogiatzi, G.; Lazaros, G.; Tsalamandris, S.; Mystakidi, V.C.; Goliopoulou, A.; Anastasiou, M.; Fountoulakis, P.; Chasikidis, C.; Christoforatou, E.; Tousoulis, D. The impact of sleeping duration on atherosclerosis in the community: Insights from the Corinthia study. Sleep Breath., 2021, 25(4), 1813-1819.
[http://dx.doi.org/10.1007/s11325-020-02267-y] [PMID: 33411185]
[6]
Lazaros, G.; Oikonomou, E.; Vogiatzi, G.; Christoforatou, E.; Tsalamandris, S.; Goliopoulou, A.; Tousouli, M.; Mystakidou, V.; Chasikidis, C.; Tousoulis, D. The impact of sedentary behavior patterns on carotid atherosclerotic burden: Implications from the Corinthia epidemiological study. Atherosclerosis, 2019, 282, 154-161.
[http://dx.doi.org/10.1016/j.atherosclerosis.2019.01.026] [PMID: 30735857]
[7]
Oikonomou, E.; Lazaros, G.; Christoforatou, E.; Chasikidis, C.; Vavouranaki, G.; Vogiatzi, G.; Papamikroulis, G.A.; Tsalamandris, S.; Gergiopoulos, G.; Mazaris, S.; Theofilis, P.; Anastasiou, M.; Galiatsatos, N.; Tousoulis, D. Breakfast association with arterial stiffness and carotid atherosclerotic burden. Insights from the ‘Corinthia’ study. Nutr. Metab. Cardiovasc. Dis., 2019, 29(7), 744-750.
[http://dx.doi.org/10.1016/j.numecd.2019.04.008] [PMID: 31138498]
[8]
Vavouranaki, G.; Oikonomou, E.; Vavuranakis, M.A.; Vavuranakis, E.; Vogiatzi, G.; Lazaros, G.; Tsalamandris, S.; Galiatsatos, N.; Theofilis, P.; Santouri, M.; Tousoulis, D. Relationship between whole grain consumption and arterial stiffness. Results of the Corinthia cross-sectional study. Hellenic J. Cardiol., 2021, 62(3), 219-220.
[http://dx.doi.org/10.1016/j.hjc.2020.05.006] [PMID: 32534110]
[9]
Leong, D.P.; Smyth, A.; Teo, K.K.; McKee, M.; Rangarajan, S.; Pais, P.; Liu, L.; Anand, S.S.; Yusuf, S.; Investigators, I. Patterns of alcohol consumption and myocardial infarction risk: Observations from 52 countries in the INTERHEART case-control study. Circulation, 2014, 130(5), 390-398.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.007627] [PMID: 24928682]
[10]
Oikonomou, E.; Lazaros, G.; Tsalamandris, S.; Vogiatzi, G.; Christoforatou, E.; Papakonstantinou, M.; Goliopoulou, A.; Tousouli, M.; Chasikidis, C.; Tousoulis, D. Alcohol consumption and aortic root dilatation: insights from the corinthia study Angiology, 2019, 70(10), 969-977.
[http://dx.doi.org/10.1177/0003319719848172] [PMID: 31064194]
[11]
Oikonomou, E.; Lazaros, G.; Mystakidi, V.C.; Papaioannou, N.; Theofilis, P.; Vogiatzi, G.; Chasikidis, C.; Fountoulakis, P.; Papakostantinou, M.A.; Assimakopoulos, M.N.; Barmparesos, N.; Tasios, P.; Kaski, J.C.; Tousoulis, D. The association of air pollutants exposure with subclinical inflammation and carotid atherosclerosis. Int. J. Cardiol., 2021, 342, 108-114.
[http://dx.doi.org/10.1016/j.ijcard.2021.07.056] [PMID: 34339768]
[12]
Rajagopalan, S.; Al-Kindi, S.G.; Brook, R.D. Air pollution and cardiovascular disease: Jacc state-of-the-art review. J. Am. Coll. Cardiol., 2018, 72(17), 2054-2070.
[http://dx.doi.org/10.1016/j.jacc.2018.07.099] [PMID: 30336830]
[13]
Kouvari, M.; Panagiotakos, D.B.; Chrysohoou, C.; Notara, V.; Georgousopoulou, E.; Tousoulis, D.; Pitsavos, C. Sex-discrete role of depressive symptomatology on 10-year first and recurrent cardiovascular disease incidence: Results from ATTICA and GREECS prospective studies. Hellenic J. Cardiol., 2020, 61(5), 321-328.
[http://dx.doi.org/10.1016/j.hjc.2019.10.017] [PMID: 31740355]
[14]
Oikonomou, E.; Vogiatzi, G.; Lazaros, G.; Tsalamandris, S.; Goliopoulou, A.; Mystakidou, V.; Theofilis, P.; Christoforatou, E.; Chasikidis, C.; Tousoulis, D. Relationship of depressive symptoms with arterial stiffness and carotid atherosclerotic burden in the Corinthia study. QJM, 2020, 113(9), 633-642.
[http://dx.doi.org/10.1093/qjmed/hcaa079] [PMID: 32125429]
[15]
Sagris, M.; Theofilis, P.; Antonopoulos, A.S.; Tsioufis, C.; Oikonomou, E.; Antoniades, C.; Crea, F.; Kaski, J.C.; Tousoulis, D. Inflammatory mechanisms in COVID-19 and atherosclerosis: Current pharmaceutical perspectives. Int. J. Mol. Sci., 2021, 22(12), 6607.
[http://dx.doi.org/10.3390/ijms22126607] [PMID: 34205487]
[16]
Theofilis, P.; Sagris, M.; Antonopoulos, A.S.; Oikonomou, E.; Tsioufis, C.; Tousoulis, D. Inflammatory mediators of platelet activation: Focus on atherosclerosis and COVID-19. Int. J. Mol. Sci., 2021, 22(20), 11170.
[http://dx.doi.org/10.3390/ijms222011170] [PMID: 34681830]
[17]
Theofilis, P.; Sagris, M.; Oikonomou, E.; Antonopoulos, A.S.; Siasos, G.; Tsioufis, C.; Tousoulis, D. Inflammatory mechanisms contributing to endothelial dysfunction. Biomedicines, 2021, 9(7), 781.
[http://dx.doi.org/10.3390/biomedicines9070781] [PMID: 34356845]
[18]
Oikonomou, E.; Leopoulou, M.; Theofilis, P.; Antonopoulos, A.S.; Siasos, G.; Latsios, G.; Mystakidi, V.C.; Antoniades, C.; Tousoulis, D. A link between inflammation and thrombosis in atherosclerotic cardiovascular diseases: Clinical and therapeutic implications. Atherosclerosis, 2020, 309, 16-26.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.07.027] [PMID: 32858395]
[19]
Zhang, W.; Song, M.; Qu, J.; Liu, G-H. Epigenetic modifications in cardiovascular aging and diseases. Circ. Res., 2018, 123(7), 773-786.
[http://dx.doi.org/10.1161/CIRCRESAHA.118.312497] [PMID: 30355081]
[20]
Bartel, D.P. MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2), 281-297.
[http://dx.doi.org/10.1016/S0092-8674(04)00045-5] [PMID: 14744438]
[21]
Lee, R.C.; Feinbaum, R.L.; Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993, 75(5), 843-854.
[http://dx.doi.org/10.1016/0092-8674(93)90529-Y] [PMID: 8252621]
[22]
O’Brien, J.; Hayder, H.; Zayed, Y.; Peng, C. Overview of MicroRNA biogenesis, mechanisms of actions, and circulation. Front. Endocrinol. (Lausanne), 2018, 9(402), 402.
[http://dx.doi.org/10.3389/fendo.2018.00402] [PMID: 30123182]
[23]
Fernández-Hernando, C.; Suárez, Y. MicroRNAs in endothelial cell homeostasis and vascular disease. Curr. Opin. Hematol., 2018, 25(3), 227-236.
[http://dx.doi.org/10.1097/MOH.0000000000000424] [PMID: 29547400]
[24]
Martellucci, S.; Orefice, N.S.; Angelucci, A.; Luce, A.; Caraglia, M.; Zappavigna, S. Extracellular vesicles: New endogenous shuttles for miRNAs in cancer diagnosis and therapy? Int. J. Mol. Sci., 2020, 21(18), E6486.
[http://dx.doi.org/10.3390/ijms21186486] [PMID: 32899898]
[25]
Kim, S.; Kim, S.; Chang, H.R.; Kim, D.; Park, J.; Son, N.; Park, J.; Yoon, M.; Chae, G.; Kim, Y-K.; Kim, V.N.; Kim, Y.K.; Nam, J-W.; Shin, C.; Baek, D. The regulatory impact of RNA-binding proteins on microRNA targeting. Nat. Commun., 2021, 12(1), 5057.
[http://dx.doi.org/10.1038/s41467-021-25078-5] [PMID: 34417449]
[26]
Chakraborty, C.; Sharma, A.R.; Sharma, G.; Lee, S-S. Therapeutic advances of miRNAs: A preclinical and clinical update. J. Adv. Res., 2020, 28, 127-138.
[http://dx.doi.org/10.1016/j.jare.2020.08.012] [PMID: 33364050]
[27]
Calin, G.A.; Dumitru, C.D.; Shimizu, M.; Bichi, R.; Zupo, S.; Noch, E.; Aldler, H.; Rattan, S.; Keating, M.; Rai, K.; Rassenti, L.; Kipps, T.; Negrini, M.; Bullrich, F.; Croce, C.M. Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl. Acad. Sci. USA, 2002, 99(24), 15524-15529.
[http://dx.doi.org/10.1073/pnas.242606799] [PMID: 12434020]
[28]
Peng, Y.; Croce, C.M. The role of MicroRNAs in human cancer. Signal Transduct. Target. Ther., 2016, 1(1), 15004.
[http://dx.doi.org/10.1038/sigtrans.2015.4] [PMID: 29263891]
[29]
van Zandwijk, N.; Pavlakis, N.; Kao, S.C.; Linton, A.; Boyer, M.J.; Clarke, S.; Huynh, Y.; Chrzanowska, A.; Fulham, M.J.; Bailey, D.L.; Cooper, W.A.; Kritharides, L.; Ridley, L.; Pattison, S.T.; MacDiarmid, J.; Brahmbhatt, H.; Reid, G. Safety and activity of microRNA-loaded minicells in patients with recurrent malignant pleural mesothelioma: A first-in-man, phase 1, open-label, dose-escalation study. Lancet Oncol., 2017, 18(10), 1386-1396.
[http://dx.doi.org/10.1016/S1470-2045(17)30621-6] [PMID: 28870611]
[30]
Hong, D.S.; Kang, Y.K.; Borad, M.; Sachdev, J.; Ejadi, S.; Lim, H.Y.; Brenner, A.J.; Park, K.; Lee, J.L.; Kim, T.Y.; Shin, S.; Becerra, C.R.; Falchook, G.; Stoudemire, J.; Martin, D.; Kelnar, K.; Peltier, H.; Bonato, V.; Bader, A.G.; Smith, S.; Kim, S.; O’Neill, V.; Beg, M.S. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours. Br. J. Cancer, 2020, 122(11), 1630-1637.
[http://dx.doi.org/10.1038/s41416-020-0802-1] [PMID: 32238921]
[31]
Wang, X.; He, Y.; Mackowiak, B.; Gao, B. MicroRNAs as regulators, biomarkers and therapeutic targets in liver diseases. Gut, 2021, 70(4), 784-795.
[http://dx.doi.org/10.1136/gutjnl-2020-322526] [PMID: 33127832]
[32]
Trajkovski, M.; Hausser, J.; Soutschek, J.; Bhat, B.; Akin, A.; Zavolan, M.; Heim, M.H.; Stoffel, M. MicroRNAs 103 and 107 regulate insulin sensitivity. Nature, 2011, 474(7353), 649-653.
[http://dx.doi.org/10.1038/nature10112] [PMID: 21654750]
[33]
Tsukita, S.; Yamada, T.; Takahashi, K.; Munakata, Y.; Hosaka, S.; Takahashi, H.; Gao, J.; Shirai, Y.; Kodama, S.; Asai, Y.; Sugisawa, T.; Chiba, Y.; Kaneko, K.; Uno, K.; Sawada, S.; Imai, J.; Katagiri, H. MicroRNAs 106b and 222 improve hyperglycemia in a mouse model of insulin-deficient diabetes via pancreatic β-cell proliferation. EBioMed., 2017, 15, 163-172.
[http://dx.doi.org/10.1016/j.ebiom.2016.12.002] [PMID: 27974246]
[34]
Chau, B.N.; Xin, C.; Hartner, J.; Ren, S.; Castano, A.P.; Linn, G.; Li, J.; Tran, P.T.; Kaimal, V.; Huang, X.; Chang, A.N.; Li, S.; Kalra, A.; Grafals, M.; Portilla, D.; MacKenna, D.A.; Orkin, S.H.; Duffield, J.S. MicroRNA-21 promotes fibrosis of the kidney by silencing metabolic pathways. Sci. Transl. Med., 2012, 4(121), 121ra18.
[http://dx.doi.org/10.1126/scitranslmed.3003205] [PMID: 22344686]
[35]
Putta, S.; Lanting, L.; Sun, G.; Lawson, G.; Kato, M.; Natarajan, R. Inhibiting microRNA-192 ameliorates renal fibrosis in diabetic nephropathy. J. Am. Soc. Nephrol., 2012, 23(3), 458-469.
[http://dx.doi.org/10.1681/ASN.2011050485] [PMID: 22223877]
[36]
Yu, J.; Yu, C.; Feng, B.; Zhan, X.; Luo, N.; Yu, X.; Zhou, Q. Intrarenal microRNA signature related to the fibrosis process in chronic kidney disease: Identification and functional validation of key miRNAs. BMC Nephrol., 2019, 20(1), 336.
[http://dx.doi.org/10.1186/s12882-019-1512-x] [PMID: 31455266]
[37]
Marques, F.Z.; Campain, A.E.; Tomaszewski, M.; Zukowska-Szczechowska, E.; Yang, Y.H.; Charchar, F.J.; Morris, B.J. Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension, 2011, 58(6), 1093-1098.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.111.180729] [PMID: 22042811]
[38]
Boettger, T.; Beetz, N.; Kostin, S.; Schneider, J.; Krüger, M.; Hein, L.; Braun, T. Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J. Clin. Invest., 2009, 119(9), 2634-2647.
[http://dx.doi.org/10.1172/JCI38864] [PMID: 19690389]
[39]
Lynn, F.C.; Skewes-Cox, P.; Kosaka, Y.; McManus, M.T.; Harfe, B.D.; German, M.S. MicroRNA expression is required for pancreatic islet cell genesis in the mouse. Diabetes, 2007, 56(12), 2938-2945.
[http://dx.doi.org/10.2337/db07-0175] [PMID: 17804764]
[40]
El Ouaamari, A.; Baroukh, N.; Martens, G.A.; Lebrun, P.; Pipeleers, D.; van Obberghen, E. miR-375 targets 3′-phosphoinositide-dependent protein kinase-1 and regulates glucose-induced biological responses in pancreatic beta-cells. Diabetes, 2008, 57(10), 2708-2717.
[http://dx.doi.org/10.2337/db07-1614] [PMID: 18591395]
[41]
Zhu, H.; Shyh-Chang, N.; Segrè, A.V.; Shinoda, G.; Shah, S.P.; Einhorn, W.S.; Takeuchi, A.; Engreitz, J.M.; Hagan, J.P.; Kharas, M.G.; Urbach, A.; Thornton, J.E.; Triboulet, R.; Gregory, R.I.; Altshuler, D.; Daley, G.Q.; Altshuler, D.; Daley, G.Q. The Lin28/let-7 axis regulates glucose metabolism. Cell, 2011, 147(1), 81-94.
[http://dx.doi.org/10.1016/j.cell.2011.08.033] [PMID: 21962509]
[42]
Roy, S.; Khanna, S.; Hussain, S.R.; Biswas, S.; Azad, A.; Rink, C.; Gnyawali, S.; Shilo, S.; Nuovo, G.J.; Sen, C.K. MicroRNA expression in response to murine myocardial infarction: MiR-21 regulates fibroblast metalloprotease-2 via phosphatase and tensin homologue. Cardiovasc. Res., 2009, 82(1), 21-29.
[http://dx.doi.org/10.1093/cvr/cvp015] [PMID: 19147652]
[43]
Liu, X.; Xu, Y.; Deng, Y.; Li, H. MicroRNA-223 regulates cardiac fibrosis after myocardial infarction by targeting RASA1. Cell. Physiol. Biochem., 2018, 46(4), 1439-1454.
[http://dx.doi.org/10.1159/000489185] [PMID: 29689569]
[44]
Yuan, J.; Liu, H.; Gao, W.; Zhang, L.; Ye, Y.; Yuan, L.; Ding, Z.; Wu, J.; Kang, L.; Zhang, X.; Wang, X.; Zhang, G.; Gong, H.; Sun, A.; Yang, X.; Chen, R.; Cui, Z.; Ge, J.; Zou, Y. MicroRNA-378 suppresses myocardial fibrosis through a paracrine mechanism at the early stage of cardiac hypertrophy following mechanical stress. Theranostics, 2018, 8(9), 2565-2582.
[http://dx.doi.org/10.7150/thno.22878] [PMID: 29721099]
[45]
Peters, L.J.F.; Biessen, E.A.L.; Hohl, M.; Weber, C.; van der Vorst, E.P.C.; Santovito, D. Small things matter: Relevance of MicroRNAs in cardiovascular disease. Front. Physiol., 2020, 11, 793.
[http://dx.doi.org/10.3389/fphys.2020.00793] [PMID: 32733281]
[46]
Fu, X.M.; Zhou, Y.Z.; Cheng, Z.; Liao, X.B.; Zhou, X.M. MicroRNAs: Novel players in aortic aneurysm. BioMed Res. Int., 2015, 2015, 831641.
[http://dx.doi.org/10.1155/2015/831641] [PMID: 26221607]
[47]
Siasos, G.; Bletsa, E.; Stampouloglou, P.K.; Oikonomou, E.; Tsigkou, V.; Paschou, S.A.; Vlasis, K.; Marinos, G.; Vavuranakis, M.; Stefanadis, C.; Tousoulis, D. MicroRNAs in cardiovascular disease. Hellenic J. Cardiol., 2020, 61(3), 165-173.
[http://dx.doi.org/10.1016/j.hjc.2020.03.003] [PMID: 32305497]
[48]
Collaboration, N.C.D.R.F. Worldwide trends in hypertension prevalence and progress in treatment and control from 1990 to 2019: A pooled analysis of 1201 population-representative studies with 104 million participants. Lancet, 2021, 398(10304), 957-980.
[http://dx.doi.org/10.1016/S0140-6736(21)01330-1] [PMID: 34450083]
[49]
Kontaraki, J.E.; Marketou, M.E.; Zacharis, E.A.; Parthenakis, F.I.; Vardas, P.E. MicroRNA-9 and microRNA-126 expression levels in patients with essential hypertension: Potential markers of target-organ damage. J. Am. Soc. Hypertens., 2014, 8(6), 368-375.
[http://dx.doi.org/10.1016/j.jash.2014.03.324] [PMID: 24794206]
[50]
Klimczak-Tomaniak, D.; Pilecki, T.; Żochowska, D.; Sieńko, D.; Janiszewski, M.; Kuch, M.; Pączek, L. Plasma microRNA-126-3p and neutrophil-to-lymphocyte ratio in patients with chronic kidney disease: Relationships to ambulatory 24-h blood pressure. J. Hum. Hypertens., 2020, 34(3), 248-257.
[http://dx.doi.org/10.1038/s41371-019-0293-9] [PMID: 31853096]
[51]
Marketou, M.; Kontaraki, J.; Papadakis, J.; Kochiadakis, G.; Vrentzos, G.; Maragkoudakis, S.; Fragkiadakis, K.; Katsouli, E.; Plataki, M.; Patrianakos, A.; Chlouverakis, G.; Papanikolaou, K.; Vardas, P.; Parthenakis, F. Platelet microRNAs in hypertensive patients with and without cardiovascular disease. J. Hum. Hypertens., 2019, 33(2), 149-156.
[http://dx.doi.org/10.1038/s41371-018-0123-5] [PMID: 30375479]
[52]
Hijmans, J.G.; Diehl, K.J.; Bammert, T.D.; Kavlich, P.J.; Lincenberg, G.M.; Greiner, J.J.; Stauffer, B.L.; DeSouza, C.A. Association between hypertension and circulating vascular-related microRNAs. J. Hum. Hypertens., 2018, 32(6), 440-447.
[http://dx.doi.org/10.1038/s41371-018-0061-2] [PMID: 29615793]
[53]
Jin, Y.; Jia, T.; Wu, X.; Wang, Y.; Sun, W.; Chen, Y.; Wu, G. The predictive value of microRNA in early hypertensive disorder complicating pregnancy (HDCP). Am. J. Transl. Res., 2021, 13(6), 7288-7293.
[PMID: 34306495]
[54]
Dayan, N.; Schlosser, K.; Stewart, D.J.; Delles, C.; Kaur, A.; Pilote, L. Circulating MicroRNAs implicate multiple atherogenic abnormalities in the long-term cardiovascular sequelae of preeclampsia. Am. J. Hypertens., 2018, 31(10), 1093-1097.
[http://dx.doi.org/10.1093/ajh/hpy069] [PMID: 29800045]
[55]
Hong, F.; Li, Y.; Xu, Y. Decreased placental miR-126 expression and vascular endothelial growth factor levels in patients with pre-eclampsia. J. Int. Med. Res., 2014, 42(6), 1243-1251.
[http://dx.doi.org/10.1177/0300060514540627] [PMID: 25341970]
[56]
Liu, B.; Liu, L.; Cui, S.; Qi, Y.; Wang, T. Expression and significance of microRNA-126 and VCAM-1 in placental tissues of women with early-onset preeclampsia. J. Obstet. Gynaecol. Res., 2021, 47(6), 2042-2050.
[http://dx.doi.org/10.1111/jog.14732] [PMID: 33694224]
[57]
Yang, X.; Niu, X.; Xiao, Y.; Lin, K.; Chen, X. MiRNA expression profiles in healthy OSAHS and OSAHS with arterial hypertension: Potential diagnostic and early warning markers. Respir. Res., 2018, 19(1), 194.
[http://dx.doi.org/10.1186/s12931-018-0894-9] [PMID: 30285853]
[58]
Suzuki, K.; Yamada, H.; Fujii, R.; Munetsuna, E.; Ando, Y.; Ohashi, K.; Ishikawa, H.; Yamazaki, M.; Maeda, K.; Hashimoto, S.; Hamajima, N. Association between circulating vascular-related microRNAs and an increase in blood pressure: A 5-year longitudinal population-based study. J. Hypertens., 2021, 39(1), 84-89.
[http://dx.doi.org/10.1097/HJH.0000000000002606] [PMID: 32740403]
[59]
Matshazi, D.M.; Weale, C.J.; Erasmus, R.T.; Kengne, A.P.; Davids, S.F.G.; Raghubeer, S.; Davison, G.M.; Matsha, T.E. Circulating levels of MicroRNAs associated with hypertension: A cross-sectional study in male and female south african participants. Front. Genet., 2021, 12, 710438.
[http://dx.doi.org/10.3389/fgene.2021.710438] [PMID: 34594360]
[60]
Chen, S.; Chen, R.; Zhang, T.; Lin, S.; Chen, Z.; Zhao, B.; Li, H.; Wu, S. Relationship of cardiovascular disease risk factors and noncoding RNAs with hypertension: A case-control study. BMC Cardiovasc. Disord., 2018, 18(1), 58.
[http://dx.doi.org/10.1186/s12872-018-0795-3] [PMID: 29609545]
[61]
Alexandru, N.; Constantin, A.; Nemecz, M.; Comariţa, I.K.; Vîlcu, A.; Procopciuc, A.; Tanko, G.; Georgescu, A. Hypertension associated with hyperlipidemia induced different microrna expression profiles in plasma, platelets, and platelet-derived microvesicles; effects of endothelial progenitor cell therapy. Front. Med. (Lausanne), 2019, 6, 280.
[http://dx.doi.org/10.3389/fmed.2019.00280] [PMID: 31850358]
[62]
Liu, J.; Liu, J.; Shi, L.; Zhang, F.; Yu, L.; Yang, X.; Cai, J. Preliminary study of microRNA-126 as a novel therapeutic target for primary hypertension. Int. J. Mol. Med., 2018, 41(4), 1835-1844.
[http://dx.doi.org/10.3892/ijmm.2018.3420] [PMID: 29393351]
[63]
Rawal, S.; Munasinghe, P.E.; Shindikar, A.; Paulin, J.; Cameron, V.; Manning, P.; Williams, M.J.; Jones, G.T.; Bunton, R.; Galvin, I.; Katare, R. Down-regulation of proangiogenic microRNA-126 and microRNA-132 are early modulators of diabetic cardiac microangiopathy. Cardiovasc. Res., 2017, 113(1), 90-101.
[http://dx.doi.org/10.1093/cvr/cvw235] [PMID: 28065883]
[64]
Magliano, D.J.; Chen, L.; Islam, R.M.; Carstensen, B.; Gregg, E.W.; Pavkov, M.E.; Andes, L.J.; Balicer, R.; Baviera, M.; Boersma-van Dam, E.; Booth, G.L.; Chan, J.C.N.; Chua, Y.X.; Fosse-Edorh, S.; Fuentes, S.; Gulseth, H.L.; Gurevicius, R.; Ha, K.H.; Hird, T.R.; Jermendy, G.; Khalangot, M.D.; Kim, D.J.; Kiss, Z.; Kravchenko, V.I.; Leventer-Roberts, M.; Lin, C.Y.; Luk, A.O.Y.; Mata-Cases, M.; Mauricio, D.; Nichols, G.A.; Nielen, M.M.; Pang, D.; Paul, S.K.; Pelletier, C.; Pildava, S.; Porath, A.; Read, S.H.; Roncaglioni, M.C.; Lopez-Doriga Ruiz, P.; Shestakova, M.; Vikulova, O.; Wang, K.L.; Wild, S.H.; Yekutiel, N.; Shaw, J.E. Trends in the incidence of diagnosed diabetes: A multicountry analysis of aggregate data from 22 million diagnoses in high-income and middle-income settings. Lancet Diabetes Endocrinol., 2021, 9(4), 203-211.
[http://dx.doi.org/10.1016/S2213-8587(20)30402-2] [PMID: 33636102]
[65]
Xin, Y.; Zhang, H.; Jia, Z.; Ding, X.; Sun, Y.; Wang, Q.; Xu, T. Resveratrol improves uric acid-induced pancreatic β-cells injury and dysfunction through regulation of miR-126. Biomed. Pharmacother., 2018, 102, 1120-1126.
[http://dx.doi.org/10.1016/j.biopha.2018.03.172] [PMID: 29710530]
[66]
Tang, S.T.; Wang, F.; Shao, M.; Wang, Y.; Zhu, H.Q. MicroRNA-126 suppresses inflammation in endothelial cells under hyperglycemic condition by targeting HMGB1. Vascul. Pharmacol., 2017, 88, 48-55.
[http://dx.doi.org/10.1016/j.vph.2016.12.002] [PMID: 27993686]
[67]
Wang, Y.; Zhong, J.; Zhang, X.; Liu, Z.; Yang, Y.; Gong, Q.; Ren, B. The role of HMGB1 in the pathogenesis of Type 2 Diabetes. J. Diabetes Res., 2016, 2016, 2543268.
[http://dx.doi.org/10.1155/2016/2543268] [PMID: 28101517]
[68]
Meng, S.; Cao, J.T.; Zhang, B.; Zhou, Q.; Shen, C.X.; Wang, C.Q. Downregulation of microRNA-126 in endothelial progenitor cells from diabetes patients, impairs their functional properties, via target gene Spred-1. J. Mol. Cell. Cardiol., 2012, 53(1), 64-72.
[http://dx.doi.org/10.1016/j.yjmcc.2012.04.003] [PMID: 22525256]
[69]
Li, Y.; Zhou, Q.; Pei, C.; Liu, B.; Li, M.; Fang, L.; Sun, Y.; Li, Y.; Meng, S. Hyperglycemia and advanced glycation end products regulate mir-126 expression in endothelial progenitor cells. J. Vasc. Res., 2016, 53(1-2), 94-104.
[http://dx.doi.org/10.1159/000448713] [PMID: 27673690]
[70]
Wu, Y.; Song, L.T.; Li, J.S.; Zhu, D.W.; Jiang, S.Y.; Deng, J.Y. MicroRNA-126 regulates inflammatory cytokine secretion in human gingival fibroblasts under high glucose via targeting tumor necrosis factor receptor associated factor 6. J. Periodontol., 2017, 88(11), e179-e187.
[http://dx.doi.org/10.1902/jop.2017.170091] [PMID: 28598282]
[71]
Jansen, F.; Yang, X.; Hoelscher, M.; Cattelan, A.; Schmitz, T.; Proebsting, S.; Wenzel, D.; Vosen, S.; Franklin, B.S.; Fleischmann, B.K.; Nickenig, G.; Werner, N. Endothelial microparticle-mediated transfer of MicroRNA-126 promotes vascular endothelial cell repair via SPRED1 and is abrogated in glucose-damaged endothelial microparticles. Circulation, 2013, 128(18), 2026-2038.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.001720] [PMID: 24014835]
[72]
Amr, K.S.; Abdelmawgoud, H.; Ali, Z.Y.; Shehata, S.; Raslan, H.M. Potential value of circulating microRNA-126 and microRNA-210 as biomarkers for type 2 diabetes with coronary artery disease. Br. J. Biomed. Sci., 2018, 75(2), 82-87.
[http://dx.doi.org/10.1080/09674845.2017.1402404] [PMID: 29452547]
[73]
Rezk, N.A.; Sabbah, N.A.; Saad, M.S. Role of MicroRNA 126 in screening, diagnosis, and prognosis of diabetic patients in Egypt. IUBMB Life, 2016, 68(6), 452-458.
[http://dx.doi.org/10.1002/iub.1502] [PMID: 27118517]
[74]
Zeinali, F.; Aghaei Zarch, S.M.; Jahan-Mihan, A.; Kalantar, S.M.; Vahidi Mehrjardi, M.Y.; Fallahzadeh, H.; Hosseinzadeh, M.; Rahmanian, M.; Mozaffari-Khosravi, H. Circulating microRNA-122, microRNA-126-3p and microRNA-146a are associated with inflammation in patients with pre-diabetes and type 2 diabetes mellitus: A case control study. PLoS One, 2021, 16(6), e0251697-e0251697.
[http://dx.doi.org/10.1371/journal.pone.0251697] [PMID: 34077450]
[75]
Liu, Y.; Gao, G.; Yang, C.; Zhou, K.; Shen, B.; Liang, H.; Jiang, X. The role of circulating microRNA-126 (miR-126): A novel biomarker for screening prediabetes and newly diagnosed type 2 diabetes mellitus. Int. J. Mol. Sci., 2014, 15(6), 10567-10577.
[http://dx.doi.org/10.3390/ijms150610567] [PMID: 24927146]
[76]
Barutta, F.; Bruno, G.; Matullo, G.; Chaturvedi, N.; Grimaldi, S.; Schalkwijk, C.; Stehouwer, C.D.; Fuller, J.H.; Gruden, G. MicroRNA-126 and micro-/macrovascular complications of type 1 diabetes in the EURODIAB Prospective Complications Study. Acta Diabetol., 2017, 54(2), 133-139.
[http://dx.doi.org/10.1007/s00592-016-0915-4] [PMID: 27696070]
[77]
Al-Kafaji, G.; Al-Mahroos, G.; Al-Muhtaresh, H.A.; Skrypnyk, C.; Sabry, M.A.; Ramadan, A.R. Decreased expression of circulating microRNA-126 in patients with type 2 diabetic nephropathy: A potential blood-based biomarker. Exp. Ther. Med., 2016, 12(2), 815-822.
[http://dx.doi.org/10.3892/etm.2016.3395] [PMID: 27446281]
[78]
Al-Kafaji, G.; Al-Mahroos, G.; Abdulla Al-Muhtaresh, H.; Sabry, M.A.; Abdul Razzak, R.; Salem, A.H. Circulating endothelium-enriched microRNA-126 as a potential biomarker for coronary artery disease in type 2 diabetes mellitus patients. Biomarkers, 2017, 22(3-4), 268-278.
[http://dx.doi.org/10.1080/1354750X.2016.1204004] [PMID: 27321479]
[79]
Park, S.; Moon, S.; Lee, K.; Park, I.B.; Lee, D.H.; Nam, S. Urinary and blood MicroRNA-126 and -770 are potential noninvasive biomarker candidates for diabetic nephropathy: A meta-analysis. Cell. Physiol. Biochem., 2018, 46(4), 1331-1340.
[http://dx.doi.org/10.1159/000489148] [PMID: 29689545]
[80]
Welten, S.M.; Goossens, E.A.; Quax, P.H.; Nossent, A.Y. The multifactorial nature of microRNAs in vascular remodelling. Cardiovasc. Res., 2016, 110(1), 6-22.
[http://dx.doi.org/10.1093/cvr/cvw039] [PMID: 26912672]
[81]
Fichtlscherer, S.; De Rosa, S.; Fox, H.; Schwietz, T.; Fischer, A.; Liebetrau, C.; Weber, M.; Hamm, C.W.; Röxe, T.; Müller-Ardogan, M.; Bonauer, A.; Zeiher, A.M.; Dimmeler, S. Circulating microRNAs in patients with coronary artery disease. Circ. Res., 2010, 107(5), 677-684.
[http://dx.doi.org/10.1161/CIRCRESAHA.109.215566] [PMID: 20595655]
[82]
Sun, X.; Zhang, M.; Sanagawa, A.; Mori, C.; Ito, S.; Iwaki, S.; Satoh, H.; Fujii, S. Circulating microRNA-126 in patients with coronary artery disease: Correlation with LDL cholesterol. Thromb. J., 2012, 10(1), 16.
[http://dx.doi.org/10.1186/1477-9560-10-16] [PMID: 22925274]
[83]
Sanlialp, M.; Dodurga, Y.; Uludag, B.; Alihanoglu, Y.I.; Enli, Y.; Secme, M.; Bostanci, H.E.; Cetin Sanlialp, S.; Tok, O.O.; Kaftan, A.; Kilic, I.D. Peripheral blood mononuclear cell microRNAs in coronary artery disease. J. Cell. Biochem., 2020, 121(4), 3005-3009.
[http://dx.doi.org/10.1002/jcb.29557] [PMID: 31788836]
[84]
Ren, J.; Zhang, J.; Xu, N.; Han, G.; Geng, Q.; Song, J.; Li, S.; Zhao, J.; Chen, H. Signature of circulating microRNAs as potential biomarkers in vulnerable coronary artery disease. PLoS One, 2013, 8(12), e80738.
[http://dx.doi.org/10.1371/journal.pone.0080738] [PMID: 24339880]
[85]
D’Alessandra, Y.; Carena, M.C.; Spazzafumo, L.; Martinelli, F.; Bassetti, B.; Devanna, P.; Rubino, M.; Marenzi, G.; Colombo, G.I.; Achilli, F.; Maggiolini, S.; Capogrossi, M.C.; Pompilio, G. Diagnostic potential of plasmatic MicroRNA signatures in stable and unstable angina. PLoS One, 2013, 8(11), e80345.
[http://dx.doi.org/10.1371/journal.pone.0080345] [PMID: 24260372]
[86]
Ali, W.; Mishra, S.; Rizvi, A.; Pradhan, A.; Perrone, M.A. Circulating microRNA-126 as an independent risk predictor of coronary artery disease: A case-control study. EJIFCC, 2021, 32(3), 347-362.
[PMID: 34819824]
[87]
Wang, X.; Lian, Y.; Wen, X.; Guo, J.; Wang, Z.; Jiang, S.; Hu, Y. Expression of miR-126 and its potential function in coronary artery disease. Afr. Health Sci., 2017, 17(2), 474-480.
[http://dx.doi.org/10.4314/ahs.v17i2.22] [PMID: 29062343]
[88]
Zhang, Q.; Kandic, I.; Kutryk, M.J. Dysregulation of angiogenesis-related microRNAs in endothelial progenitor cells from patients with coronary artery disease. Biochem. Biophys. Res. Commun., 2011, 405(1), 42-46.
[http://dx.doi.org/10.1016/j.bbrc.2010.12.119] [PMID: 21195052]
[89]
Long, G.; Wang, F.; Duan, Q.; Chen, F.; Yang, S.; Gong, W.; Wang, Y.; Chen, C.; Wang, D.W. Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int. J. Biol. Sci., 2012, 8(6), 811-818.
[http://dx.doi.org/10.7150/ijbs.4439] [PMID: 22719221]
[90]
Ling, H.; Guo, Z.; Shi, Y.; Zhang, L.; Song, C. Serum exosomal MicroRNA-21, MicroRNA-126, and PTEN are novel biomarkers for diagnosis of acute coronary syndrome. Front. Physiol., 2020, 11, 654.
[http://dx.doi.org/10.3389/fphys.2020.00654] [PMID: 32595526]
[91]
Lakhani, H.V.; Khanal, T.; Gabi, A.; Yousef, G.; Alam, M.B.; Sharma, D.; Aljoudi, H.; Puri, N.; Thompson, E.; Shapiro, J.I.; Sodhi, K. Developing a panel of biomarkers and miRNA in patients with myocardial infarction for early intervention strategies of heart failure in West Virginian population. PLoS One, 2018, 13(10), e0205329-e0205329.
[http://dx.doi.org/10.1371/journal.pone.0205329] [PMID: 30356307]
[92]
Hu, H.; Yuan, H.; Li, C.; Yu, H.; Chen, Y. Association of gene polymorphisms in the human MicroRNA-126 gene with plasma-circulating MicroRNA-126 levels and acute myocardial infarction. Genet. Test. Mol. Biomarkers, 2019, 23(7), 460-467.
[http://dx.doi.org/10.1089/gtmb.2018.0282] [PMID: 31184921]
[93]
Ormseth, M.J.; Solus, J.F.; Sheng, Q.; Chen, S.C.; Ye, F.; Wu, Q.; Oeser, A.M.; Allen, R.; Raggi, P.; Vickers, K.C.; Stein, C.M. Plasma miRNAs improve the prediction of coronary atherosclerosis in patients with rheumatoid arthritis. Clin. Rheumatol., 2021, 40(6), 2211-2219.
[http://dx.doi.org/10.1007/s10067-020-05573-8] [PMID: 33389220]
[94]
Trusinskis, K.; Lapsovs, M.; Paeglite, S.; Knoka, E.; Caunite, L.; Mazule, M.; Briede, I.; Jegere, S.; Kumsars, I.; Narbute, I.; Konrade, I.; Erglis, A.; Lejnieks, A. Plasma circulating microRNAs in patients with stable coronary artery disease - Impact of different cardiovascular risk profiles and glomerular filtration rates. J. Clin. Transl. Res., 2021, 7(2), 270-276.
[PMID: 34104831]
[95]
Shen, J.; Chang, C.; Ma, J.; Feng, Q. Potential of circulating proangiogenic micrornas for predicting major adverse cardiac and cerebrovascular events in unprotected left main coronary artery disease patients who underwent coronary artery bypass grafting. Cardiology, 2021, 146(3), 400-408.
[http://dx.doi.org/10.1159/000509275] [PMID: 33730720]
[96]
Yu, X.Y.; Chen, J.Y.; Zheng, Z.W.; Wu, H.; Li, L.W.; Zhang, Z.W.; Chen, Z.H.; Lin, Q.X.; Han, Y.L.; Zhong, S.L. Plasma miR-126 as a potential marker predicting major adverse cardiac events in dual antiplatelet-treated patients after percutaneous coronary intervention. EuroIntervention, 2013, 9(5), 546-554.
[http://dx.doi.org/10.4244/EIJV9I5A90] [PMID: 24058072]
[97]
Jansen, F.; Yang, X.; Proebsting, S.; Hoelscher, M.; Przybilla, D.; Baumann, K.; Schmitz, T.; Dolf, A.; Endl, E.; Franklin, B.S.; Sinning, J.M.; Vasa-Nicotera, M.; Nickenig, G.; Werner, N. MicroRNA expression in circulating microvesicles predicts cardiovascular events in patients with coronary artery disease. J. Am. Heart Assoc., 2014, 3(6), e001249.
[http://dx.doi.org/10.1161/JAHA.114.001249] [PMID: 25349183]
[98]
Dai, R.; Liu, Y.; Zhou, Y.; Xiong, X.; Zhou, W.; Li, W.; Zhou, W.; Chen, M. Potential of circulating pro-angiogenic microRNA expressions as biomarkers for rapid angiographic stenotic progression and restenosis risks in coronary artery disease patients underwent percutaneous coronary intervention. J. Clin. Lab. Anal., 2020, 34(1), e23013.
[http://dx.doi.org/10.1002/jcla.23013] [PMID: 31495986]
[99]
Heggermont, W.A.; Delrue, L.; Dierickx, K.; Dierckx, R.; Verstreken, S.; Goethals, M.; Bartunek, J.; Vanderheyden, M. Low MicroRNA-126 levels in right ventricular endomyocardial biopsies coincide with cardiac allograft vasculopathy in heart transplant patients. Transplant. Direct, 2020, 6(5), e549.
[http://dx.doi.org/10.1097/TXD.0000000000000995] [PMID: 32548243]
[100]
Singh, N.; Heggermont, W.; Fieuws, S.; Vanhaecke, J.; Van Cleemput, J.; De Geest, B. Endothelium-enriched microRNAs as diagnostic biomarkers for cardiac allograft vasculopathy. J. Heart Lung Transplant., 2015, 34(11), 1376-1384.
[http://dx.doi.org/10.1016/j.healun.2015.06.008] [PMID: 26198441]
[101]
Qin, X.; Chang, F.; Wang, Z.; Jiang, W. Correlation of circulating pro-angiogenic miRNAs with cardiotoxicity induced by epirubicin/cyclophosphamide followed by docetaxel in patients with breast cancer. Cancer Biomark., 2018, 23(4), 473-484.
[http://dx.doi.org/10.3233/CBM-181301] [PMID: 30452398]
[102]
Li, H.Y.; Zhao, X.; Liu, Y.Z.; Meng, Z.; Wang, D.; Yang, F.; Shi, Q.W. Plasma MicroRNA-126-5p is associated with the complexity and severity of coronary artery disease in patients with stable angina pectoris. Cell. Physiol. Biochem., 2016, 39(3), 837-846.
[http://dx.doi.org/10.1159/000447794] [PMID: 27497911]
[103]
Wu, H.; Zhang, J. miR-126 in peripheral blood mononuclear cells negatively correlates with risk and severity and is associated with inflammatory cytokines as well as intercellular adhesion molecule-1 in patients with coronary artery disease. Cardiology, 2018, 139(2), 110-118.
[http://dx.doi.org/10.1159/000484236] [PMID: 29316562]
[104]
Wang, J.N.; Yan, Y.Y.; Guo, Z.Y.; Jiang, Y.J.; Liu, L.L.; Liu, B. Negative association of circulating MicroRNA-126 with high-sensitive c-reactive protein and vascular cell adhesion molecule-1 in patients with coronary artery disease following percutaneous coronary intervention. Chin. Med. J. (Engl.), 2016, 129(23), 2786-2791.
[http://dx.doi.org/10.4103/0366-6999.194645] [PMID: 27900989]
[105]
Mukaihara, K.; Yamakuchi, M.; Kanda, H.; Shigehisa, Y.; Arata, K.; Matsumoto, K.; Takenouchi, K.; Oyama, Y.; Koriyama, T.; Hashiguchi, T.; Imoto, Y. Evaluation of VEGF-A in platelet and microRNA-126 in serum after coronary artery bypass grafting. Heart Vessels, 2021, 36(11), 1635-1645.
[http://dx.doi.org/10.1007/s00380-021-01855-6] [PMID: 33880613]
[106]
Mayer, O., Jr; Seidlerová, J.; Černá, V.; Kučerová, A.; Vaněk, J.; Karnosová, P.; Bruthans, J.; Wohlfahrt, P.; Cífková, R.; Pešta, M.; Filipovský, J. The low expression of circulating microRNA-19a represents an additional mortality risk in stable patients with vascular disease. Int. J. Cardiol., 2019, 289, 101-106.
[http://dx.doi.org/10.1016/j.ijcard.2019.05.008] [PMID: 31085080]
[107]
Zampetaki, A.; Willeit, P.; Tilling, L.; Drozdov, I.; Prokopi, M.; Renard, J.M.; Mayr, A.; Weger, S.; Schett, G.; Shah, A.; Boulanger, C.M.; Willeit, J.; Chowienczyk, P.J.; Kiechl, S.; Mayr, M. Prospective study on circulating MicroRNAs and risk of myocardial infarction. J. Am. Coll. Cardiol., 2012, 60(4), 290-299.
[http://dx.doi.org/10.1016/j.jacc.2012.03.056] [PMID: 22813605]
[108]
Long, G.; Wang, F.; Li, H.; Yin, Z.; Sandip, C.; Lou, Y.; Wang, Y.; Chen, C.; Wang, D.W. Circulating miR-30a, miR-126 and let-7b as biomarker for ischemic stroke in humans. BMC Neurol., 2013, 13(1), 178.
[http://dx.doi.org/10.1186/1471-2377-13-178] [PMID: 24237608]
[109]
Kim, J.M.; Jung, K.H.; Chu, K.; Lee, S.T.; Ban, J.; Moon, J.; Kim, M.; Lee, S.K.; Roh, J.K. Atherosclerosis-related circulating micrornas as a predictor of stroke recurrence. Transl. Stroke Res., 2015, 6(3), 191-197.
[http://dx.doi.org/10.1007/s12975-015-0390-1] [PMID: 25697638]
[110]
Jin, F.; Xing, J. Circulating pro-angiogenic and anti-angiogenic microRNA expressions in patients with acute ischemic stroke and their association with disease severity. Neurol. Sci., 2017, 38(11), 2015-2023.
[http://dx.doi.org/10.1007/s10072-017-3071-x] [PMID: 28875333]
[111]
Jin, F.; Xing, J. Circulating miR-126 and miR-130a levels correlate with lower disease risk, disease severity, and reduced inflammatory cytokine levels in acute ischemic stroke patients. Neurol. Sci., 2018, 39(10), 1757-1765.
[http://dx.doi.org/10.1007/s10072-018-3499-7] [PMID: 30030634]
[112]
Xiang, Y.; Guo, J.; Peng, Y.F.; Tan, T.; Huang, H.T.; Luo, H.C.; Wei, Y.S. Association of miR-21, miR-126 and miR-605 gene polymorphisms with ischemic stroke risk. Oncotarget, 2017, 8(56), 95755-95763.
[http://dx.doi.org/10.18632/oncotarget.21316] [PMID: 29221163]
[113]
Liu, X.; Wang, Q.; Zhu, R. Influence of miRNA gene polymorphism on recurrence and age at onset of ischemic stroke in a Chinese han population. Neurotox. Res., 2020, 37(4), 781-787.
[http://dx.doi.org/10.1007/s12640-019-00125-8] [PMID: 31811586]
[114]
Qi, R.; Liu, H.; Liu, C.; Xu, Y.; Liu, C. Expression and short-term prognostic value of miR-126 and miR-182 in patients with acute stroke. Exp. Ther. Med., 2020, 19(1), 527-534.
[PMID: 31897098]
[115]
Gao, J.; Yang, S.; Wang, K.; Zhong, Q.; Ma, A.; Pan, X. Plasma miR-126 and miR-143 as potential novel biomarkers for cerebral atherosclerosis. J. Stroke Cerebrovasc. Dis., 2019, 28(1), 38-43.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2018.09.008] [PMID: 30309729]
[116]
Shen, G.; Sun, Q.; Yao, Y.; Li, S.; Liu, G.; Yuan, C.; Li, H.; Xu, Y.; Wang, H. Role of ADAM9 and miR-126 in the development of abdominal aortic aneurysm. Atherosclerosis, 2020, 297, 47-54.
[http://dx.doi.org/10.1016/j.atherosclerosis.2020.01.014] [PMID: 32078829]
[117]
Liu, M.; Li, L.; Zhu, J.; He, C.; Xu, Q.; Sun, A.; Kong, W.; Li, W.; Zhang, X. Rapamycin attenuates a murine model of thoracic aortic aneurysm by downregulating the miR-126-3p mediated activation of MAPK/ERK signalling pathway. Biochem. Biophys. Res. Commun., 2019, 512(3), 498-504.
[http://dx.doi.org/10.1016/j.bbrc.2019.03.083] [PMID: 30904162]
[118]
Huang, C.; Fang, X.; Xie, X.; Liu, Y.; Xu, D.; Meng, X.; Long, J. Effect of miR-126 on the proliferation and migration of vascular smooth muscle cells in aortic aneurysm mice under pi3k/akt/mtor signaling pathway. Mol. Biotechnol., 2021, 63(7), 631-637.
[http://dx.doi.org/10.1007/s12033-021-00327-6] [PMID: 33970415]
[119]
Kin, K.; Miyagawa, S.; Fukushima, S.; Shirakawa, Y.; Torikai, K.; Shimamura, K.; Daimon, T.; Kawahara, Y.; Kuratani, T.; Sawa, Y. Tissue- and plasma-specific MicroRNA signatures for atherosclerotic abdominal aortic aneurysm. J. Am. Heart Assoc., 2012, 1(5), e000745.
[http://dx.doi.org/10.1161/JAHA.112.000745] [PMID: 23316282]
[120]
Licholai, S.; Blaż, M.; Kapelak, B.; Sanak, M. Unbiased profile of microRNA expression in ascending aortic aneurysm tissue appoints molecular pathways contributing to the pathology. Ann. Thorac. Surg., 2016, 102(4), 1245-1252.
[http://dx.doi.org/10.1016/j.athoracsur.2016.03.061] [PMID: 27234576]
[121]
Venkatesh, P.; Phillippi, J.; Chukkapalli, S.; Rivera-Kweh, M.; Velsko, I.; Gleason, T.; VanRyzin, P.; Aalaei-Andabili, S.H.; Ghanta, R.K.; Beaver, T.; Chan, E.K.L.; Kesavalu, L. Aneurysm-Specific miR-221 and miR-146a participates in human thoracic and abdominal aortic aneurysms. Int. J. Mol. Sci., 2017, 18(4), E875.
[http://dx.doi.org/10.3390/ijms18040875] [PMID: 28425970]
[122]
Gallo, A.; Agnese, V.; Coronnello, C.; Raffa, G.M.; Bellavia, D.; Conaldi, P.G.; Pilato, M.; Pasta, S. On the prospect of serum exosomal miRNA profiling and protein biomarkers for the diagnosis of ascending aortic dilatation in patients with bicuspid and tricuspid aortic valve. Int. J. Cardiol., 2018, 273, 230-236.
[http://dx.doi.org/10.1016/j.ijcard.2018.10.005] [PMID: 30297190]
[123]
Ramezani Ali Akbari, F.; Badavi, M.; Dianat, M.; Mard, S.A.; Ahangarpour, A. Gallic acid improves oxidative stress and inflammation through regulating micrornas expressions in the blood of diabetic rats. Acta Endocrinol. (Bucur.), 2019, 15(2), 187-194.
[http://dx.doi.org/10.4183/aeb.2019.187] [PMID: 31508175]
[124]
Yuan, X.; Chen, J.; Dai, M. Paeonol promotes microRNA-126 expression to inhibit monocyte adhesion to ox-LDL-injured vascular endothelial cells and block the activation of the PI3K/Akt/NF-κB pathway. Int. J. Mol. Med., 2016, 38(6), 1871-1878.
[http://dx.doi.org/10.3892/ijmm.2016.2778] [PMID: 27748840]
[125]
Sui, X.Q.; Xu, Z.M.; Xie, M.B.; Pei, D.A. Resveratrol inhibits hydrogen peroxide-induced apoptosis in endothelial cells via the activation of PI3K/Akt by miR-126. J. Atheroscler. Thromb., 2014, 21(2), 108-118.
[http://dx.doi.org/10.5551/jat.19257] [PMID: 24107596]
[126]
Xu, Q.; Luan, T.; Fu, S.; Yang, J.; Jiang, C.; Xia, F. Effects of pitavastatin on the expression of VCAM-1 and its target gene miR-126 in cultured human umbilical vein endothelial cells. Cardiovasc. Ther., 2014, 32(5), 193-197.
[http://dx.doi.org/10.1111/1755-5922.12081] [PMID: 24870014]
[127]
Pan, X.; Hou, R.; Ma, A.; Wang, T.; Wu, M.; Zhu, X.; Yang, S.; Xiao, X. Atorvastatin upregulates the expression of miR-126 in apolipoprotein E-knockout mice with carotid atherosclerotic plaque. Cell. Mol. Neurobiol., 2017, 37(1), 29-36.
[http://dx.doi.org/10.1007/s10571-016-0331-x] [PMID: 26886754]
[128]
Rupaimoole, R.; Slack, F.J. MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat. Rev. Drug Discov., 2017, 16(3), 203-222.
[http://dx.doi.org/10.1038/nrd.2016.246] [PMID: 28209991]
[129]
Gerhardt, H. VEGF and endothelial guidance in angiogenic sprouting. Organogenesis, 2008, 4(4), 241-246.
[http://dx.doi.org/10.4161/org.4.4.7414] [PMID: 19337404]
[130]
Theofilis, P.; Oikonomou, E.; Vogiatzi, G.; Antonopoulos, A.S.; Siasos, G.; Iliopoulos, D.C.; Perrea, D.; Tsioufis, C.; Tousoulis, D. The impact of proangiogenic microRNA modulation on blood flow recovery following hind limb ischemia. A systematic review and meta-analysis of animal studies. Vascul. Pharmacol., 2021, 141, 106906.
[http://dx.doi.org/10.1016/j.vph.2021.106906] [PMID: 34509635]
[131]
Fish, J.E.; Santoro, M.M.; Morton, S.U.; Yu, S.; Yeh, R.F.; Wythe, J.D.; Ivey, K.N.; Bruneau, B.G.; Stainier, D.Y.; Srivastava, D. miR-126 regulates angiogenic signaling and vascular integrity. Dev. Cell, 2008, 15(2), 272-284.
[http://dx.doi.org/10.1016/j.devcel.2008.07.008] [PMID: 18694566]
[132]
Ueki, K.; Fruman, D.A.; Yballe, C.M.; Fasshauer, M.; Klein, J.; Asano, T.; Cantley, L.C.; Kahn, C.R. Positive and negative roles of p85 alpha and p85 beta regulatory subunits of phosphoinositide 3-kinase in insulin signaling. J. Biol. Chem., 2003, 278(48), 48453-48466.
[http://dx.doi.org/10.1074/jbc.M305602200] [PMID: 14504291]
[133]
Taniguchi, K.; Kohno, R.; Ayada, T.; Kato, R.; Ichiyama, K.; Morisada, T.; Oike, Y.; Yonemitsu, Y.; Maehara, Y.; Yoshimura, A. Spreds are essential for embryonic lymphangiogenesis by regulating vascular endothelial growth factor receptor 3 signaling. Mol. Cell. Biol., 2007, 27(12), 4541-4550.
[http://dx.doi.org/10.1128/MCB.01600-06] [PMID: 17438136]
[134]
van Solingen, C.; Seghers, L.; Bijkerk, R.; Duijs, J.M.; Roeten, M.K.; van Oeveren-Rietdijk, A.M.; Baelde, H.J.; Monge, M.; Vos, J.B.; de Boer, H.C.; Quax, P.H.; Rabelink, T.J.; van Zonneveld, A.J. Antagomir-mediated silencing of endothelial cell specific microRNA-126 impairs ischemia-induced angiogenesis. J. Cell. Mol. Med., 2009, 13(8A), 1577-1585.
[http://dx.doi.org/10.1111/j.1582-4934.2008.00613.x] [PMID: 19120690]
[135]
Cao, W.J.; Rosenblat, J.D.; Roth, N.C.; Kuliszewski, M.A.; Matkar, P.N.; Rudenko, D.; Liao, C.; Lee, P.J.; Leong-Poi, H. Therapeutic angiogenesis by ultrasound-mediated MicroRNA-126-3p delivery. Arterioscler. Thromb. Vasc. Biol., 2015, 35(11), 2401-2411.
[http://dx.doi.org/10.1161/ATVBAHA.115.306506] [PMID: 26381870]
[136]
Gao, S.; Gao, H.; Dai, L.; Han, Y.; Lei, Z.; Wang, X.; Chang, H.; Liu, S.; Wang, Z.; Tong, H.; Wu, H. miR-126 regulates angiogenesis in myocardial ischemia by targeting HIF-1α. Exp. Cell Res., 2021, 409(2), 112925.
[http://dx.doi.org/10.1016/j.yexcr.2021.112925] [PMID: 34785240]
[137]
Tsumaru, S.; Masumoto, H.; Minakata, K.; Izuhara, M.; Yamazaki, K.; Ikeda, T.; Ono, K.; Sakata, R.; Minatoya, K. Therapeutic angiogenesis by local sustained release of microRNA-126 using poly lactic-co-glycolic acid nanoparticles in murine hindlimb ischemia. J. Vasc. Surg., 2018, 68(4), 1209-1215.
[http://dx.doi.org/10.1016/j.jvs.2017.08.097] [PMID: 29242072]
[138]
Theofilis, P.; Vogiatzi, G.; Oikonomou, E.; Gazouli, M.; Siasos, G.; Katifelis, H.; Perrea, D.; Vavuranakis, M.; Iliopoulos, D.C.; Tsioufis, C.; Tousoulis, D. The effect of MicroRNA-126 mimic administration on vascular perfusion recovery in an animal model of hind limb ischemia. Front. Mol. Biosci., 2021, 8, 724465.
[http://dx.doi.org/10.3389/fmolb.2021.724465] [PMID: 34513927]
[139]
Wang, J.; Chen, S.; Zhang, W.; Chen, Y.; Bihl, J.C. Exosomes from miRNA-126-modified endothelial progenitor cells alleviate brain injury and promote functional recovery after stroke. CNS Neurosci. Ther., 2020, 26(12), 1255-1265.
[http://dx.doi.org/10.1111/cns.13455] [PMID: 33009888]
[140]
Zhang, L.; Ouyang, P.; He, G.; Wang, X.; Song, D.; Yang, Y.; He, X. Exosomes from microRNA-126 overexpressing mesenchymal stem cells promote angiogenesis by targeting the PIK3R2-mediated PI3K/Akt signalling pathway. J. Cell. Mol. Med., 2021, 25(4), 2148-2162.
[http://dx.doi.org/10.1111/jcmm.16192] [PMID: 33350092]
[141]
Pan, Q.; Zheng, J.; Du, D.; Liao, X.; Ma, C.; Yang, Y.; Chen, Y.; Zhong, W.; Ma, X. MicroRNA-126 priming enhances functions of endothelial progenitor cells under physiological and hypoxic conditions and their therapeutic efficacy in cerebral ischemic damage. Stem Cells Int., 2018, 2018, 2912347.
[http://dx.doi.org/10.1155/2018/2912347] [PMID: 29760722]
[142]
Qu, M.; Pan, J.; Wang, L.; Zhou, P.; Song, Y.; Wang, S.; Jiang, L.; Geng, J.; Zhang, Z.; Wang, Y.; Tang, Y.; Yang, G.Y. MicroRNA-126 regulates angiogenesis and neurogenesis in a mouse model of focal cerebral ischemia. Mol. Ther. Nucleic Acids, 2019, 16, 15-25.
[http://dx.doi.org/10.1016/j.omtn.2019.02.002] [PMID: 30825669]
[143]
Chen, C.; Ling, C.; Gong, J.; Li, C.; Zhang, L.; Gao, S.; Li, Z.; Huang, T.; Wang, H.; Guo, Y. Increasing the expression of microRNA-126-5p in the temporal muscle can promote angiogenesis in the chronically ischemic brains of rats subjected to two-vessel occlusion plus encephalo-myo-synangiosis. Aging (Albany NY), 2020, 12(13), 13234-13254.
[http://dx.doi.org/10.18632/aging.103431] [PMID: 32644942]
[144]
Zou, Z.; Chai, M.; Guo, F.; Fu, X.; Lan, Y.; Cao, S.; Liu, J.; Tian, L.; An, G. MicroRNA-126 engineered muscle-derived stem cells attenuates cavernosa injury-induced erectile dysfunction in rats. Aging (Albany NY), 2021, 13(10), 14399-14415.
[http://dx.doi.org/10.18632/aging.203057] [PMID: 34031263]
[145]
Gomes, J.L.; Fernandes, T.; Soci, U.P.; Silveira, A.C.; Barretti, D.L.; Negrão, C.E.; Oliveira, E.M. Obesity downregulates microrna-126 inducing capillary rarefaction in skeletal muscle: Effects of aerobic exercise training. Oxid. Med. Cell. Longev., 2017, 2017, 2415246.
[http://dx.doi.org/10.1155/2017/2415246] [PMID: 28367267]
[146]
Sabzevari Rad, R.; Shirvani, H.; Mahmoodzadeh Hosseini, H.; Shamsoddini, A.; Samadi, M. Micro RNA-126 promoting angiogenesis in diabetic heart by VEGF/Spred-1/Raf-1 pathway: Effects of high-intensity interval training. J. Diabetes Metab. Disord., 2020, 19(2), 1089-1096.
[http://dx.doi.org/10.1007/s40200-020-00610-4] [PMID: 33520826]
[147]
Lew, J.K.; Pearson, J.T.; Saw, E.; Tsuchimochi, H.; Wei, M.; Ghosh, N.; Du, C.K.; Zhan, D.Y.; Jin, M.; Umetani, K.; Shirai, M.; Katare, R.; Schwenke, D.O. Exercise regulates MicroRNAs to preserve coronary and cardiac function in the diabetic heart. Circ. Res., 2020, 127(11), 1384-1400.
[http://dx.doi.org/10.1161/CIRCRESAHA.120.317604] [PMID: 32907486]
[148]
Song, W.; Liang, Q.; Cai, M.; Tian, Z. HIF-1α-induced up-regulation of microRNA-126 contributes to the effectiveness of exercise training on myocardial angiogenesis in myocardial infarction rats. J. Cell. Mol. Med., 2020, 24(22), 12970-12979.
[http://dx.doi.org/10.1111/jcmm.15892] [PMID: 32939968]
[149]
Schmitz, B.; Schelleckes, K.; Nedele, J.; Thorwesten, L.; Klose, A.; Lenders, M.; Krüger, M.; Brand, E.; Brand, S.M. Dose-Response of High-Intensity Training (HIT) on atheroprotective miRNA-126 levels. Front. Physiol., 2017, 8, 349.
[http://dx.doi.org/10.3389/fphys.2017.00349] [PMID: 28611681]
[150]
Zou, Q.; Yang, M.; Yu, M.; Liu, C. Influences of regulation of miR-126 on inflammation,Th17/Treg subpopulation differentiation, and lymphocyte apoptosis through caspase signaling pathway in sepsis. Inflammation, 2020, 43(6), 2287-2300.
[http://dx.doi.org/10.1007/s10753-020-01298-7] [PMID: 32748275]
[151]
Zou, Q.; Yang, M.; Yu, M.; Liu, C. Association between miR-126, miR-21, inflammatory factors and T lymphocyte apoptosis in septic rats. Mol. Clin. Oncol., 2021, 15(4), 206.
[http://dx.doi.org/10.3892/mco.2021.2368] [PMID: 34462662]
[152]
Nong, A.; Li, Q.; Huang, Z.; Xu, Y.; He, K.; Jia, Y.; Cen, Z.; Liao, L.; Huang, Y. MicroRNA miR-126 attenuates brain injury in septic rats via NF-κB signaling pathway. Bioengineered, 2021, 12(1), 2639-2648.
[http://dx.doi.org/10.1080/21655979.2021.1937905] [PMID: 34115555]
[153]
Wang, H.F.; Wang, Y.Q.; Dou, L.; Gao, H.M.; Wang, B.; Luo, N.; Li, Y. Influences of up-regulation of miR-126 on septic inflammation and prognosis through AKT/Rac1 signaling pathway. Eur. Rev. Med. Pharmacol. Sci., 2019, 23(5), 2132-2138.
[PMID: 30915758]
[154]
Zhang, X.; Wang, X.; Fan, M.; Tu, F.; Yang, K.; Ha, T.; Liu, L.; Kalbfleisch, J.; Williams, D.; Li, C. Endothelial HSPA12B exerts protection against sepsis-induced severe cardiomyopathy via suppression of adhesion molecule expression by miR-126. Front. Immunol., 2020, 11, 566.
[http://dx.doi.org/10.3389/fimmu.2020.00566] [PMID: 32411123]
[155]
Elfiky, A.M.; Ahmed Mahmoud, A.; Zeidan, H.M.; Mostafa Soliman, M. Association between circulating microRNA-126 expression level and tumour necrosis factor alpha in healthy smokers. Biomarkers, 2019, 24(5), 469-477.
[http://dx.doi.org/10.1080/1354750X.2019.1610497] [PMID: 31018714]
[156]
Hijmans, J.G.; Diehl, K.J.; Bammert, T.D.; Kavlich, P.J.; Lincenberg, G.M.; Greiner, J.J.; Stauffer, B.L.; DeSouza, C.A. Influence of overweight and obesity on circulating inflammation-related microRNA. MicroRNA, 2018, 7(2), 148-154.
[http://dx.doi.org/10.2174/2211536607666180402120806] [PMID: 29607782]
[157]
Harris, T.A.; Yamakuchi, M.; Ferlito, M.; Mendell, J.T.; Lowenstein, C.J. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc. Natl. Acad. Sci. USA, 2008, 105(5), 1516-1521.
[http://dx.doi.org/10.1073/pnas.0707493105] [PMID: 18227515]
[158]
Ohta, M.; Kihara, T.; Toriuchi, K.; Aoki, H.; Iwaki, S.; Kakita, H.; Yamada, Y.; Aoyama, M. IL-6 promotes cell adhesion in human endothelial cells via microRNA-126-3p suppression. Exp. Cell Res., 2020, 393(2), 112094.
[http://dx.doi.org/10.1016/j.yexcr.2020.112094] [PMID: 32439495]
[159]
Lou, Z.; Li, Q.; Wang, C.; Li, Y. The effects of microRNA-126 reduced inflammation and apoptosis of diabetic nephropathy through PI3K/AKT signalling pathway by VEGF. Arch. Physiol. Biochem., 2020, 2020, 1767146.
[http://dx.doi.org/10.1080/13813455.2020.1767146] [PMID: 32449863]
[160]
Witkowski, M.; Weithauser, A.; Tabaraie, T.; Steffens, D.; Kränkel, N.; Witkowski, M.; Stratmann, B.; Tschoepe, D.; Landmesser, U.; Rauch-Kroehnert, U. Micro-RNA-126 reduces the blood thrombogenicity in diabetes mellitus via targeting of tissue factor. Arterioscler. Thromb. Vasc. Biol., 2016, 36(6), 1263-1271.
[http://dx.doi.org/10.1161/ATVBAHA.115.306094] [PMID: 27127202]
[161]
Hao, X.Z.; Fan, H.M. Identification of miRNAs as atherosclerosis biomarkers and functional role of miR-126 in atherosclerosis progression through MAPK signalling pathway. Eur. Rev. Med. Pharmacol. Sci., 2017, 21(11), 2725-2733.
[PMID: 28678312]
[162]
Fan, J.L.; Zhang, L.; Bo, X.H. MiR-126 on mice with coronary artery disease by targeting S1PR2. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(2), 893-904.
[PMID: 32016996]
[163]
Sanchez, T. Sphingosine-1-Phosphate signaling in endothelial disorders. Curr. Atheroscler. Rep., 2016, 18(6), 31.
[http://dx.doi.org/10.1007/s11883-016-0586-1] [PMID: 27115142]
[164]
Li, H.; Liu, Q.; Wang, N.; Xu, Y.; Kang, L.; Ren, Y.; Zhu, G. Transplantation of endothelial progenitor cells overexpressing MIR-126-3p improves heart function in ischemic cardiomyopathy. Circ. J., 2018, 82(9), 2332-2341.
[http://dx.doi.org/10.1253/circj.CJ-17-1251] [PMID: 29998929]
[165]
Luo, Q.; Guo, D.; Liu, G.; Chen, G.; Hang, M.; Jin, M. Exosomes from MiR-126-Overexpressing Adscs are therapeutic in relieving acute myocardial ischaemic injury. Cell. Physiol. Biochem., 2017, 44(6), 2105-2116.
[http://dx.doi.org/10.1159/000485949] [PMID: 29241208]
[166]
Pan, J.; Qu, M.; Li, Y.; Wang, L.; Zhang, L.; Wang, Y.; Tang, Y.; Tian, H.L.; Zhang, Z.; Yang, G.Y. MicroRNA-126-3p/-5p overexpression attenuates blood-brain barrier disruption in a mouse model of middle cerebral artery occlusion. Stroke, 2020, 51(2), 619-627.
[http://dx.doi.org/10.1161/STROKEAHA.119.027531] [PMID: 31822249]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy