Generic placeholder image

Infectious Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5265
ISSN (Online): 2212-3989

Research Article

Human ACE-2, MCP1 and micro-RNA 146 as Novel Markers for COVID- 19 Affection and Severity

Author(s): Amal Ahmed Mohamed, Sherief Abd-Elsalam*, Ahmed Abdelghani, Mohamed Badr Hassan, Doaa Ghaith, Omnia Ezzat, Dalia Ali El-damasy, Norhan Nagdi Madbouli, Mohmoud Hamada, Mohamed Abdel Khalik Elkady, AL-Shaimaa M. AL-Tabbakh, Kareman Ahmed Ebrahim Eshra and Nivin Baiomy

Volume 23, Issue 1, 2023

Published on: 23 September, 2022

Article ID: e290822208187 Pages: 10

DOI: 10.2174/1871526522666220829153042

Price: $65

Open Access Journals Promotions 2
Abstract

Background & Aims: Coronavirus disease - 2019 (COVID-19) is a major pandemic that causes high morbidity and mortality rates. Aim of this study: to detect the relations between many risk factors, ACE-2, MCP-1, Micro RNA 146 gene expression, and COVID-19 infection and disease severity.

Methods: This study was carried out on 165 cases of COVID-19 and 138 controls. ACE2 and MCP1 levels were measured in COVID-19 cases and control by ELISA and micro-RNA-146 expression by PCR.

Results: We found an increased blood level of ACE2 and MCP1 in COVID- 19 patients than in healthy persons and a significant down-regulation of micro-RNA 146 gene expression in cases than in controls. There was a significant correlation between increased blood level of ACE2, regulation of micro-RNA 146 gene expression and severity of lung affection, a significant correlation was found between increased blood level of MCP1 and thrombosis in COVID-19 patients. Neurological complications were significantly correlated with more viral load, more ACE2 blood level, and down regulation of micro RNA146 expression.

Conclusion: High viral load, increased blood level of ACE2, and down-regulation of micro-RNA 146 expression are associated with more severe lung injury and the presence of neurologic complications like convulsions and coma in COVID-19 Egyptian patients.

Keywords: COVID-19, viruses, thrombosis, ACE2, MCP1, micro RNA 146.

[1]
Mohamed AA, Mohamed N, Abd-Elsalam S, et al. COVID-19 in pediatrics: A diagnostic challenge. Curr Pediatr Rev 2021; 17(3): 225-8.
[http://dx.doi.org/10.2174/1573396317666210329153515] [PMID: 33781192]
[2]
Mohamed AA, Mohamed N, Mohamoud S, et al. SARS-CoV-2: The path of prevention and control. Infect Disord Drug Targets 2021; 21(3): 358-62.
[http://dx.doi.org/10.2174/1871526520666200520112848] [PMID: 32433010]
[3]
Rodriguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, et al. Clinical, laboratory and imaging features of COVID-19: A systematic review and meta-analysis. Travel Med Infect Dis 2020; 34: 101623.
[http://dx.doi.org/10.1016/j.tmaid.2020.101623] [PMID: 32179124]
[4]
Rodriguez-Morales AJ, Bonilla-Aldana DK, Balbin-Ramon GJ, et al. History is repeating itself: Probable zoonotic spillover as the cause of the 2019 novel Coronavirus epidemic. Infez Med 2020; 28(1): 3-5.
[PMID: 32009128]
[5]
Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: A descriptive study. Lancet 2020; 395(10223): 507-13.
[http://dx.doi.org/10.1016/S0140-6736(20)30211-7] [PMID: 32007143]
[6]
Yin Y, Wunderink RG. MERS, SARS and other coronaviruses as causes of pneumonia. Respirology 2018; 23(2): 130-7.
[http://dx.doi.org/10.1111/resp.13196] [PMID: 29052924]
[7]
Lechien JR, Chiesa-Estomba CM, Place S, et al. Clinical and epidemiological characteristics of 1420 European patients with mild-to-moderate coronavirus disease 2019. J Intern Med 2020; 288(3): 335-44.
[http://dx.doi.org/10.1111/joim.13089] [PMID: 32352202]
[8]
Chen T, Wu D, Chen H, et al. Clinical characteristics of 113 deceased patients with coronavirus disease 2019: Retrospective study. BMJ 2020; 368: m1091.
[http://dx.doi.org/10.1136/bmj.m1091] [PMID: 32217556]
[9]
Donoghue M, Hsieh F, Baronas E, et al. A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1-9. Circ Res 2000; 87(5): E1-9.
[http://dx.doi.org/10.1161/01.RES.87.5.e1] [PMID: 10969042]
[10]
Patel S, Rauf A, Khan H, Abu-Izneid T. Renin-Angiotensin-Aldosterone System (RAAS): The ubiquitous system for homeostasis and pathologies. Biomed Pharmacother 2017; 94: 317-25.
[http://dx.doi.org/10.1016/j.biopha.2017.07.091] [PMID: 28772209]
[11]
Zhou P, Yang XL, Wang XG, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 2020; 579(7798): 270-3.
[http://dx.doi.org/10.1038/s41586-020-2012-7] [PMID: 32015507]
[12]
Wrapp D, Wang N, Corbett KS, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020; 367(6483): 1260-3.
[http://dx.doi.org/10.1126/science.abb2507] [PMID: 32075877]
[13]
Kuba K, Imai Y, Ohto-Nakanishi T, Penninger JM. Trilogy of ACE2: A peptidase in the renin-angiotensin system, a SARS receptor, and a partner for amino acid transporters. Pharmacol Ther 2010; 128(1): 119-28.
[http://dx.doi.org/10.1016/j.pharmthera.2010.06.003] [PMID: 20599443]
[14]
Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G, van Goor H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol 2004; 203(2): 631-7.
[http://dx.doi.org/10.1002/path.1570] [PMID: 15141377]
[15]
Kong SL, Chui P, Lim B, Salto-Tellez M. Elucidating the molecular physiopathology of acute respiratory distress syndrome in severe acute respiratory syndrome patients. Virus Res 2009; 145(2): 260-9.
[http://dx.doi.org/10.1016/j.virusres.2009.07.014] [PMID: 19635508]
[16]
Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte Chemoattractant Protein-1 (MCP-1): An overview. J Interferon Cytokine Res 2009; 29(6): 313-26.
[http://dx.doi.org/10.1089/jir.2008.0027] [PMID: 19441883]
[17]
Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 2020; 395(10223): 497-506.
[http://dx.doi.org/10.1016/S0140-6736(20)30183-5] [PMID: 31986264]
[18]
Lin L, Lu L, Cao W, Li T. Hypothesis for potential pathogenesis of SARS-CoV-2 infection-a review of immune changes in patients with viral pneumonia. Emerg Microbes Infect 2020; 9(1): 727-32.
[http://dx.doi.org/10.1080/22221751.2020.1746199] [PMID: 32196410]
[19]
Xiong Y, Liu Y, Cao L, et al. Transcriptomic characteristics of bronchoalveolar lavage fluid and peripheral blood mononuclear cells in COVID-19 patients. Emerg Microbes Infect 2020; 9(1): 761-70.
[http://dx.doi.org/10.1080/22221751.2020.1747363] [PMID: 32228226]
[20]
Chu H, Chan JF, Wang Y, et al. Comparative replication and immune activation profiles of SARS-CoV-2 and SARS-CoV in human lungs: An ex vivo study with implications for the pathogenesis of COVID-19. Clin Infect Dis 2020; 71(6): 1400-9.
[http://dx.doi.org/10.1093/cid/ciaa410] [PMID: 32270184]
[21]
Bartel DP. Metazoan microRNAs. Cell 2018; 173(1): 20-51.
[http://dx.doi.org/10.1016/j.cell.2018.03.006]
[22]
Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A, Enright AJ. miRBase: MicroRNA sequences, targets and gene nomenclature. Nucleic Acids Res 2006; 34(Database issue): D140-4.
[23]
Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 2009; 19(1): 92-105.
[http://dx.doi.org/10.1101/gr.082701.108]
[24]
Lai FW, Stephenson KB, Mahony J, Lichty BD. Human coronavirus OC43 nucleocapsid protein binds microRNA 9 and potentiates NF-kappaB activation. J Virol 2014; 88(1): 54-65.
[25]
Ma Y, Wang C, Xue M, et al. The coronavirus transmissible gastroenteritis virus evades the type I interferon response through IRE1alpha-mediated manipulation of the microRNA miR-30a-5p/SOCS1/3 axis. J Virol 2018; 92(22): e00728-18.
[26]
Tribolet L, Kerr E, Cowled C, et al. MicroRNA biomarkers for infectious diseases: From basic research to biosensing. Front Microbiol 2020; 11: 1197.
[27]
Ambyah PA, Sepramaniam S, Mohamed Ali J, et al. MicroRNAs in circulation are altered in response to influenza A virus infection in humans. PLoS One 2013; 8(10): e76811.
[28]
Peng X, Gralinski L, Ferris MT, et al. Integrative deep sequencing of the mouse lung transcriptome reveals differential expression of diverse classes of small RNAs in response to respiratory virus infection. MBio 2011; 2(6): e00198-11.
[29]
Holman N, Knighton P, Kar P, et al. Risk factors for COVID-19-related mortality in people with type 1 and type 2 diabetes in England: A population-based cohort study. Lancet Diabetes Endocrinol 2020; 8(10): 823-33.
[http://dx.doi.org/10.1016/S2213-8587(20)30271-0] [PMID: 32798471]
[30]
Querol-Ribelles JM, Tenias JM, Grau E, et al. Plasma d-dimer levels correlate with outcomes in patients with community-acquired pneumonia. Chest 2004; 126(4): 1087-92.
[http://dx.doi.org/10.1378/chest.126.4.1087] [PMID: 15486368]
[31]
Li W, Moore MJ, Vasilieva N, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature 2003; 426(6965): 450-4.
[http://dx.doi.org/10.1038/nature02145] [PMID: 14647384]
[32]
Papageorghiou AT, Deruelle P, Gunier RB, et al. Preeclampsia and COVID-19: Results from the INTERCOVID prospective longitudinal study. Am J Obstet Gynecol 2021; 225(3): 289.e1-289.e17.
[http://dx.doi.org/10.1016/j.ajog.2021.05.014] [PMID: 34187688]
[33]
El-Raey F, Alboraie M, Youssef N, et al. Predictors for severity of SARS-CoV-2 infection among healthcare workers. J Multidiscip Healthc 2021; 14: 2973-81.
[http://dx.doi.org/10.2147/JMDH.S335226] [PMID: 34729011]
[34]
Wang D, Hu B, Hu C, et al. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan. China JAMA 2020; 323(11): 1061-9.
[http://dx.doi.org/10.1001/jama.2020.1585]
[35]
Yang X, Yu Y, Xu J, et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study. Lancet Respir Med 2020; 8(5): 475-81.
[http://dx.doi.org/10.1016/S2213-2600(20)30079-5] [PMID: 32105632]
[36]
Marshall RP, Gohlke P, Chambers RC, et al. Angiotensin II and the fibroproliferative response to acute lung injury. Am J Physiol Lung Cell Mol Physiol 2004; 286(1): L156-64.
[http://dx.doi.org/10.1152/ajplung.00313.2002] [PMID: 12754187]
[37]
Tan WSD, Liao W, Zhou S, Mei D, Wong WF. Targeting the renin-angiotensin system as novel therapeutic strategy for pulmonary diseases. Curr Opin Pharmacol 2018; 40: 9-17.
[http://dx.doi.org/10.1016/j.coph.2017.12.002] [PMID: 29288933]
[38]
Tang N, Li D, Wang X, Sun Z. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost 2020; 18(4): 844-7.
[http://dx.doi.org/10.1111/jth.14768] [PMID: 32073213]
[39]
Curtale G, Rubino M, Locati M. MicroRNAs as molecular switches in macrophage activation. Front Immunol 2019; 10: 799.
[http://dx.doi.org/10.3389/fimmu.2019.00799] [PMID: 31057539]
[40]
Santos RAS, Sampaio WO, Alzamora AC, et al. The ACE2/angiotensin-(1-7)/MAS axis of the renin-angiotensin system: Focus on angiotensin-(1-7). Physiol Rev 2018; 98(1): 505-53.
[http://dx.doi.org/10.1152/physrev.00023.2016] [PMID: 29351514]
[41]
Netland J, Meyerholz DK, Moore S, Cassell M, Perlman S. Severe acute respiratory syndrome coronavirus infection causes neuronal death in the absence of encephalitis in mice transgenic for human ACE2. J Virol 2008; 82(15): 7264-75.
[http://dx.doi.org/10.1128/JVI.00737-08] [PMID: 18495771]
[42]
Gu J, Korteweg C. Pathology and pathogenesis of severe acute respiratory syndrome. Am J Pathol 2007; 170(4): 1136-47.
[http://dx.doi.org/10.2353/ajpath.2007.061088] [PMID: 17392154]
[43]
Mao L, Jin H, Wang M, et al. Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China. JAMA Neurol 2020; 77(6): 683-90.
[http://dx.doi.org/10.1001/jamaneurol.2020.1127] [PMID: 32275288]
[44]
Abd-Elsalam S, Salama M, Soliman S, et al. Remdesivir efficacy in COVID-19 treatment: A randomized controlled trial. Am J Trop Med Hyg 2021; 106(3): 886-90.
[http://dx.doi.org/10.4269/ajtmh.21-0606] [PMID: 34649223]
[45]
El-Bendary M, Abd-Elsalam S, Elbaz T, et al. Efficacy of combined sofosbuvir and Daclatasvir in the treatment of COVID-19 patients with pneumonia: A multicenter Egyptian study. Expert Rev Anti Infect Ther 2021; 1-5.
[http://dx.doi.org/10.1080/14787210.2021.1950532] [PMID: 34225541]
[46]
Abd-Elsalam S, Noor RA, Badawi R, et al. Clinical study evaluating the efficacy of ivermectin in COVID-19 treatment: A randomized controlled study. J Med Virol 2021; 93(10): 5833-8.
[http://dx.doi.org/10.1002/jmv.27122] [PMID: 34076901]
[47]
Abd-Elsalam S, Soliman S, Esmail ES, et al. Do zinc supplements enhance the clinical efficacy of hydroxychloroquine?: A randomized, multicenter trial. Biol Trace Elem Res 2021; 199(10): 3642-6.
[http://dx.doi.org/10.1007/s12011-020-02512-1] [PMID: 33247380]
[48]
Malkova A, Kudlay D, Kudryavtsev I, Starshinova A, Yablonskiy P, Shoenfeld Y. Immunogenetic predictors of severe COVID-19. Vaccines (Basel) 2021; 9(3): 211.
[http://dx.doi.org/10.3390/vaccines9030211] [PMID: 33802310]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy