Review Article

基于适配体的生物传感器:生物体液糖尿病诊断的有前途的传感技术

卷 30, 期 30, 2023

发表于: 23 November, 2022

页: [3441 - 3471] 页: 31

弟呕挨: 10.2174/0929867329666220829150118

价格: $65

conference banner
摘要

糖尿病是一种慢性疾病状态,其中胰腺不能分泌足够的胰岛素,导致血糖水平升高。作为全球最普遍的疾病之一,糖尿病被认为是一个全球性的健康问题,如果未得到诊断或治疗,可能会导致严重且危及生命的并发症,例如肾衰竭、心血管疾病和糖尿病性视网膜病变。尽管糖尿病的诊断取得了进展,但当前的分析技术仍然存在局限性,因此,需要开发用于现场、实时检测糖尿病的精确传感设备。由于生物传感器具有成本效益、便携性、易用性和快速检测时间,因此对糖尿病医疗保健领域做出了重大贡献。最近,在设计生物传感器时,人们更倾向于使用适配体而不是抗体。 Aptasensors 是一种由适体制成的生物传感器,具有诊断糖尿病的潜力。适配体由于具有较低的分子量、低廉的价格、在较宽的温度和 pH 范围内的稳定性、其体外合成以及与抗体相比在脱离变性条件后能够重新折叠,因此具有一些独特的特性以及多种类型,例如基于光学 FNA 的生物传感器、比色生物传感器、荧光生物传感器和基于电化学 FNA 的生物传感器。考虑到这一点,我们强调了适体传感器设计领域的最新发展和新观点,以定量监测糖尿病生物标志物。最后,强调了一些结果,为未来用于糖尿病诊断的适体传感器套件的设计提供了基础。

关键词: 适配体,糖尿病,生物传感器,生物标志物,纳米颗粒,适体传感器。

[1]
Liu, Z.; Kariya, M.J.; Chute, C.D.; Pribadi, A.K.; Leinwand, S.G.; Tong, A.; Curran, K.P.; Bose, N.; Schroeder, F.C.; Srinivasan, J.; Chalasani, S.H. Predator-secreted sulfolipids induce defensive responses in C. elegans. Nat. Commun., 2018, 9(1), 1128.
[http://dx.doi.org/10.1038/s41467-018-03333-6] [PMID: 29555902]
[2]
Muhammad, S.; Xu, G.; Wei, F.; Cen, Y.; Younis, M.R.; Xu, X.; Shi, M.; Cheng, X.; Chai, Y.; Hu, Q. Simultaneous determination of insulin and glucose in human serum based on dual emissive fluorescent nano-aptasensor of carbon dots and CdTe/CdS/ZnS quantum dots. Sens. Actuators B Chem., 2019, 292, 321-330.
[http://dx.doi.org/10.1016/j.snb.2019.04.119]
[3]
Vaishya, S.; Sarwade, R.D.; Seshadri, V.; Micro, R.N.A. proteins, and metabolites as novel biomarkers for prediabetes, diabetes, and related complications. Front. Endocrinol. (Lausanne), 2018, 9, 180.
[http://dx.doi.org/10.3389/fendo.2018.00180] [PMID: 29740397]
[4]
Lupsa, B.C.; Inzucchi, S.E. Diabetes medications and cardiovascular disease. Curr. Opin. Endocrinol. Diabetes Obes., 2018, 25(2), 87-93.
[http://dx.doi.org/10.1097/MED.0000000000000400] [PMID: 29369916]
[5]
Asad, A.; Hameed, M.A.; Khan, U.A.; Butt, M.U.; Ahmed, N.; Nadeem, A. Comparison of nerve conduction studies with diabetic neuropathy symptom score and diabetic neuropathy examination score in type-2 diabetics for detection of sensorimotor polyneuropathy. J. Pak. Med. Assoc., 2009, 59(9), 594-598.
[PMID: 19750851]
[6]
Saltiel, A.R. Insulin signaling in health and disease. J. Clin. Invest., 2021, 131(1), e142241.
[http://dx.doi.org/10.1172/JCI142241] [PMID: 33393497]
[7]
Heyduk, E.; Moxley, M.M.; Salvatori, A.; Corbett, J.A.; Heyduk, T. Homogeneous insulin and C-Peptide sensors for rapid assessment of insulin and C-peptide secretion by the islets. Diabetes, 2010, 59(10), 2360-2365.
[http://dx.doi.org/10.2337/db10-0088] [PMID: 20622164]
[8]
Assmann, T.S.; Recamonde-Mendoza, M.; De Souza, B.M.; Crispim, D. MicroRNA expression profiles and type 1 diabetes mellitus: Systematic review and bioinformatic analysis. Endocr. Connect., 2017, 6(8), 773-790.
[http://dx.doi.org/10.1530/EC-17-0248] [PMID: 28986402]
[9]
Taiema, D.A.; Saleh, R.G.; Deraz, E.M. Effect of ozone on submandibular salivary gland of alloxan-induced diabetic rats: Histological and ultrastructural study. Life Sci. J., 2019, 16(10)
[10]
Li, J.; Chang, K.W.; Wang, C.H.; Yang, C.H.; Shiesh, S.C.; Lee, G.B. On-chip, aptamer-based sandwich assay for detection of glycated hemoglobins via magnetic beads. Biosens. Bioelectron., 2016, 79, 887-893.
[http://dx.doi.org/10.1016/j.bios.2016.01.029] [PMID: 26797251]
[11]
Ogurtsova, K.; Guariguata, L.; Barengo, N.C.; Ruiz, P.L.D.; Sacre, J.W.; Karuranga, S.; Sun, H.; Boyko, E.J.; Magliano, D.J. IDF diabetes Atlas: Global estimates of undiagnosed diabetes in adults for 2021. Diabetes Res. Clin. Pract., 2022, 183, 109118.
[http://dx.doi.org/10.1016/j.diabres.2021.109118] [PMID: 34883189]
[12]
Pinchevsky, Y.; Butkow, N.; Raal, F.J.; Chirwa, T.; Rothberg, A. Demographic and clinical factors associated with development of type 2 diabetes: A review of the literature. Int. J. Gen. Med., 2020, 13, 121-129.
[http://dx.doi.org/10.2147/IJGM.S226010] [PMID: 32280262]
[13]
Fei, A.; Liu, Q.; Huan, J.; Qian, J.; Dong, X.; Qiu, B.; Mao, H.; Wang, K. Label-free impedimetric aptasensor for detection of femtomole level acetamiprid using gold nanoparticles decorated multiwalled carbon nanotube-reduced graphene oxide nanoribbon composites. Biosens. Bioelectron., 2015, 70, 122-129.
[http://dx.doi.org/10.1016/j.bios.2015.03.028] [PMID: 25797851]
[14]
Shrivastava, A.; Gupta, V. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronic. Young Sci., 2011, 2(1), 21.
[15]
Najjar, A.; Alawi, M.; AbuHeshmeh, N.; Sallam, A. A rapid, isocratic HPLC method for determination of insulin and its degradation product. Adv. Pharmaceut., 2014, 2014, 749823.
[http://dx.doi.org/10.1155/2014/749823]
[16]
Kaur, A.; Verma, N. Electrochemical biosensor for monitoring insulin in normal individuals and diabetic mellitus patients. Eur. J. Exp. Biol., 2012, 2(2), 389-395.
[17]
Taghdisi, S.M.; Danesh, N.M.; Ramezani, M.; Alibolandi, M.; Nameghi, M.A.; Gerayelou, G.; Abnous, K. A novel electrochemical aptasensor for ochratoxin a sensing in spiked food using strand-displacement polymerase reaction. Talanta, 2021, 223(Pt 1), 121705.
[http://dx.doi.org/10.1016/j.talanta.2020.121705] [PMID: 33303155]
[18]
Taghdisi, S.M.; Danesh, N.M.; Nameghi, M.A.; Ramezani, M.; Alibolandi, M.; Abnous, K. A DNA triangular prism-based fluorescent aptasensor for ultrasensitive detection of prostate-specific antigen. Anal. Chim. Acta, 2020, 1120, 36-42.
[http://dx.doi.org/10.1016/j.aca.2020.04.071] [PMID: 32475389]
[19]
Abnous, K.; Danesh, N.M.; Nameghi, M.A.; Ramezani, M.; Alibolandi, M.; Lavaee, P.; Taghdisi, S.M. An ultrasensitive electrochemical sensing method for detection of microcystin-LR based on infinity-shaped DNA structure using double aptamer and terminal deoxynucleotidyl transferase. Biosens. Bioelectron., 2019, 144, 111674.
[http://dx.doi.org/10.1016/j.bios.2019.111674] [PMID: 31518788]
[20]
Khoshbin, Z.; Verdian, A.; Housaindokht, M.R.; Izadyar, M.; Rouhbakhsh, Z. Aptasensors as the future of antibiotics test kits-a case study of the aptamer application in the chloramphenicol detection. Biosens. Bioelectron., 2018, 122, 263-283.
[http://dx.doi.org/10.1016/j.bios.2018.09.060] [PMID: 30268964]
[21]
Khoshbin, Z.; Housaindokht, M.R.; Verdian, A.; Bozorgmehr, M.R. Simultaneous detection and determination of mercury (II) and lead (II) ions through the achievement of novel functional nucleic acid-based biosensors. Biosens. Bioelectron., 2018, 116, 130-147.
[http://dx.doi.org/10.1016/j.bios.2018.05.051] [PMID: 29879539]
[22]
Sullivan, L.A.; Brekken, R.A. The VEGF family in cancer and antibody-based strategies for their inhibition, MAbs; Taylor Francis, 2010, pp. 165-175.
[23]
Zhao, W.W.; Xu, J.J.; Chen, H.Y. Photoelectrochemical bioanalysis: The state of the art. Chem. Soc. Rev., 2015, 44(3), 729-741.
[http://dx.doi.org/10.1039/C4CS00228H] [PMID: 25223761]
[24]
Neufeld, G.; Cohen, T.; Gengrinovitch, S.; Poltorak, Z. Vascular endothelial growth factor (VEGF) and its receptors. FASEB J., 1999, 13(1), 9-22.
[http://dx.doi.org/10.1096/fasebj.13.1.9] [PMID: 9872925]
[25]
Yang, Z.P.; Ci, L.; Bur, J.A.; Lin, S.Y.; Ajayan, P.M. Experimental observation of an extremely dark material made by a low-density nanotube array. Nano Lett., 2008, 8(2), 446-451.
[http://dx.doi.org/10.1021/nl072369t] [PMID: 18181658]
[26]
Salven, P.; Orpana, A.; Joensuu, H. Leukocytes and platelets of patients with cancer contain high levels of vascular endothelial growth factor. Clin. Cancer Res., 1999, 5(3), 487-491.
[PMID: 10100697]
[27]
Xu, H.; Kou, F.; Ye, H.; Wang, Z.; Huang, S.; Liu, X.; Zhu, X.; Lin, Z.; Chen, G. Highly sensitive antibody-aptamer sensor for vascular endothelial growth factor based on hybridization chain reaction and pH meter/indicator. Talanta, 2017, 175, 177-182.
[http://dx.doi.org/10.1016/j.talanta.2017.04.073] [PMID: 28841975]
[28]
Yang, H.W.; Ju, S.P.; Cheng, C.H.; Chen, Y.T.; Lin, Y.S.; Pang, S.T. Aptasensor designed via the stochastic tunneling-basin hopping method for biosensing of vascular endothelial growth factor. Biosens. Bioelectron., 2018, 119, 25-33.
[http://dx.doi.org/10.1016/j.bios.2018.07.073] [PMID: 30098463]
[29]
Dong, J.; He, L.; Wang, Y.; Yu, F.; Yu, S.; Liu, L.; Wang, J.; Tian, Y.; Qu, L.; Han, R.; Wang, Z.; Wu, Y. A highly sensitive colorimetric aptasensor for the detection of the vascular endothelial growth factor in human serum. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 226, 117622.
[http://dx.doi.org/10.1016/j.saa.2019.117622] [PMID: 31606672]
[30]
Li, X.; Ding, X.; Fan, J. Nicking endonuclease-assisted signal amplification of a split molecular aptamer beacon for biomolecule detection using graphene oxide as a sensing platform. Analyst (Lond.), 2015, 140(23), 7918-7925.
[http://dx.doi.org/10.1039/C5AN01759A] [PMID: 26502364]
[31]
Li, J.; Sun, K.; Chen, Z.; Shi, J.; Zhou, D.; Xie, G. A fluorescence biosensor for VEGF detection based on DNA assembly structure switching and isothermal amplification. Biosens. Bioelectron., 2017, 89(Pt 2), 964-969.
[http://dx.doi.org/10.1016/j.bios.2016.09.078] [PMID: 27816590]
[32]
Lan, J.; Li, L.; Liu, Y.; Yan, L.; Li, C.; Chen, J.; Chen, X. Upconversion luminescence assay for the detection of the vascular endothelial growth factor, a biomarker for breast cancer. Mikrochim. Acta, 2016, 183(12), 3201-3208.
[http://dx.doi.org/10.1007/s00604-016-1965-6]
[33]
Wang, H.; Ma, Y.; Guo, C.; Yang, Y.; Peng, Z.; Liu, Z.; Zhang, Z. Templated seed-mediated derived Au nanoarchitectures embedded with nanochitosan: Sensitive electrochemical aptasensor for vascular endothelial growth factor and living MCF-7 cell detection. Appl. Surf. Sci., 2019, 481, 505-514.
[http://dx.doi.org/10.1016/j.apsusc.2019.03.148]
[34]
Cheng, J-l.; Liu, X-P.; Chen, J-S.; Mao, C-j.; Jin, B-K. Highly sensitive electrochemiluminescence biosensor for VEGF 165 detection based on a gC 3 N 4/PDDA/CdSe nanocomposite. Anal. Bioanal. Chem., 2020, 412(13), 3073-3081.
[35]
Wang, J.Y.; Xiao, L.; Wang, J.Y. Posttranscriptional regulation of intestinal epithelial integrity by noncoding RNAs. Wiley Interdiscip. Rev. RNA, 2017, 8(2), e1399.
[http://dx.doi.org/10.1002/wrna.1399] [PMID: 27704722]
[36]
Guay, C.; Roggli, E.; Nesca, V.; Jacovetti, C.; Regazzi, R. Diabetes mellitus, a microRNA-related disease? Transl. Res., 2011, 157(4), 253-264.
[http://dx.doi.org/10.1016/j.trsl.2011.01.009] [PMID: 21420036]
[37]
Wang, J.; Chen, J.; Sen, S. MicroRNA as biomarkers and diagnostics. J. Cell. Physiol., 2016, 231(1), 25-30.
[http://dx.doi.org/10.1002/jcp.25056] [PMID: 26031493]
[38]
Treiber, T.; Treiber, N.; Meister, G. Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nat. Rev. Mol. Cell Biol., 2019, 20(1), 5-20.
[http://dx.doi.org/10.1038/s41580-018-0059-1] [PMID: 30228348]
[39]
Zheng, Y.; Wang, Z.; Tu, Y.; Shen, H.; Dai, Z.; Lin, J.; Zhou, Z. miR-101a and miR-30b contribute to inflammatory cytokine-mediated β-cell dysfunction. Lab. Invest., 2015, 95(12), 1387-1397.
[http://dx.doi.org/10.1038/labinvest.2015.112] [PMID: 26367486]
[40]
Sebastiani, G.; Grieco, F.A.; Spagnuolo, I.; Galleri, L.; Cataldo, D.; Dotta, F. Increased expression of microRNA miR-326 in type 1 diabetic patients with ongoing islet autoimmunity. Diabetes Metab. Res. Rev., 2011, 27(8), 862-866.
[http://dx.doi.org/10.1002/dmrr.1262] [PMID: 22069274]
[41]
Nielsen, L.B.; Wang, C.; Sørensen, K.; Bang-Berthelsen, C.H.; Hansen, L.; Andersen, M.L.M.; Hougaard, P.; Juul, A.; Zhang, C.Y.; Pociot, F.; Mortensen, H.B. Circulating levels of microRNA from children with newly diagnosed type 1 diabetes and healthy controls: Evidence that miR-25 associates to residual beta-cell function and glycaemic control during disease progression. Exp. Diabetes Res., 2012, 2012, 896362.
[http://dx.doi.org/10.1155/2012/896362] [PMID: 22829805]
[42]
Takahashi, P.; Xavier, D.J.; Evangelista, A.F.; Manoel-Caetano, F.S.; Macedo, C.; Collares, C.V.A.; Foss-Freitas, M.C.; Foss, M.C.; Rassi, D.M.; Donadi, E.A.; Passos, G.A.; Sakamoto-Hojo, E.T. MicroRNA expression profiling and functional annotation analysis of their targets in patients with type 1 diabetes mellitus. Gene, 2014, 539(2), 213-223.
[http://dx.doi.org/10.1016/j.gene.2014.01.075] [PMID: 24530307]
[43]
Cai, S.; Ye, J.; AL-maskri, A.A.A.; Sun, L.; Zeng, S. A conformational switch-based aptasensor for the chemiluminescence detection of microRNA. Luminescence, 2019, 34(8), 823-829.
[http://dx.doi.org/10.1002/bio.3677] [PMID: 31290225]
[44]
Liu, C.; Zhao, L.; Liang, D.; Zhang, X.; Song, W. An CuInS2 photocathode for the sensitive photoelectrochemical determination of microRNA-21 based on DNA–protein interaction and exonuclease III assisted target recycling amplification. Mikrochim. Acta, 2019, 186(11), 692.
[http://dx.doi.org/10.1007/s00604-019-3804-z] [PMID: 31605242]
[45]
Ferrannini, E.; Mari, A. Beta cell function and its relation to insulin action in humans: A critical appraisal. Diabetologia, 2004, 47(5), 943-956.
[http://dx.doi.org/10.1007/s00125-004-1381-z] [PMID: 15105990]
[46]
Pagliuca, F.W.; Millman, J.R.; Gürtler, M.; Segel, M.; Van Dervort, A.; Ryu, J.H.; Peterson, Q.P.; Greiner, D.; Melton, D.A. Generation of functional human pancreatic β cells in vitro. Cell, 2014, 159(2), 428-439.
[http://dx.doi.org/10.1016/j.cell.2014.09.040] [PMID: 25303535]
[47]
Iwase, H.; Kobayashi, M.; Nakajima, M.; Takatori, T. The ratio of insulin to C-peptide can be used to make a forensic diagnosis of exogenous insulin overdosage. Forensic Sci. Int., 2001, 115(1-2), 123-127.
[http://dx.doi.org/10.1016/S0379-0738(00)00298-X] [PMID: 11056282]
[48]
Verdian-Doghaei, A.; Housaindokht, M.R. Spectroscopic study of the interaction of insulin and its aptamer – sensitive optical detection of insulin. J. Lumin., 2015, 159, 1-8.
[http://dx.doi.org/10.1016/j.jlumin.2014.10.025]
[49]
Liu, C.; Han, J.; Zhang, J.; Du, J. Novel detection platform for insulin based on dual-cycle signal amplification by Exonuclease III. Talanta, 2019, 199, 596-602.
[http://dx.doi.org/10.1016/j.talanta.2019.03.013] [PMID: 30952303]
[50]
Li, T.; Liu, Z.; Wang, L.; Guo, Y. Gold nanoparticles/Orange II functionalized graphene nanohybrid based electrochemical aptasensor for label-free determination of insulin. RSC Advances, 2016, 6(36), 30732-30738.
[http://dx.doi.org/10.1039/C6RA00329J]
[51]
Abazar, F.; Noorbakhsh, A.; Chemical, A.B. Chitosan-carbon quantum dots as a new platform for highly sensitive insulin impedimetric aptasensor. Sens. Actuators B Chem., 2020, 304, 127281.
[http://dx.doi.org/10.1016/j.snb.2019.127281]
[52]
Amouzadeh Tabrizi, M.; Shamsipur, M.; Saber, R.; Sarkar, S.; Besharati, M. An electrochemical aptamer-based assay for femtomolar determination of insulin using a screen printed electrode modified with mesoporous carbon and 1,3,6,8-pyrenetetrasulfonate. Mikrochim. Acta, 2018, 185(1), 59.
[http://dx.doi.org/10.1007/s00604-017-2570-z] [PMID: 29594593]
[53]
Wang, Y.; Sha, H.; Ke, H.; Xiong, X.; Jia, N. A sandwich-type electrochemiluminescence aptasensor for insulin detection based on the nano-C60/BSA@luminol nanocomposite and ferrocene derivative. Electrochim. Acta, 2018, 290, 90-97.
[http://dx.doi.org/10.1016/j.electacta.2018.08.080]
[54]
Zhao, Y.; Xu, Y.; Zhang, M.; Xiang, J.; Deng, C.; Wu, H. An electrochemical dual-signaling aptasensor for the ultrasensitive detection of insulin. Anal. Biochem., 2019, 573, 30-36.
[http://dx.doi.org/10.1016/j.ab.2019.02.032] [PMID: 30862445]
[55]
Gu, C.; Liu, Y.; Hu, B.; Liu, Y.; Zhou, N.; Xia, L.; Zhang, Z. Multicomponent nanohybrids of nickel/ferric oxides and nickel cobaltate spinel derived from the MOF-on-MOF nanostructure as efficient scaffolds for sensitively determining insulin. Anal. Chim. Acta, 2020, 1110, 44-55.
[http://dx.doi.org/10.1016/j.aca.2020.03.019] [PMID: 32278399]
[56]
Taghdisi, S.M.; Danesh, N.M.; Lavaee, P.; Sarreshtehdar Emrani, A.; Ramezani, M.; Abnous, K. Aptamer biosensor for selective and rapid determination of insulin. Anal. Lett., 2015, 48(4), 672-681.
[http://dx.doi.org/10.1080/00032719.2014.956216]
[57]
Tillett, W.S.; Francis, T., Jr. Serological reactions in pneumonia with a non-protein somatic fraction of pneumococcus. J. Exp. Med., 1930, 52(4), 561-571.
[http://dx.doi.org/10.1084/jem.52.4.561] [PMID: 19869788]
[58]
Pepys, M.B.; Hirschfield, G.M. C-reactive protein: A critical update. J. Clin. Invest., 2003, 111(12), 1805-1812.
[http://dx.doi.org/10.1172/JCI200318921] [PMID: 12813013]
[59]
Du Clos, T.W.; Mold, C. C-reactive protein: An activator of innate immunity and a modulator of adaptive immunity. Immunol. Res., 2004, 30(3), 261-278.
[http://dx.doi.org/10.1385/IR:30:3:261] [PMID: 15531769]
[60]
António, M.; Ferreira, R.; Vitorino, R.; Daniel-da-Silva, A.L. A simple aptamer-based colorimetric assay for rapid detection of C-reactive protein using gold nanoparticles. Talanta, 2020, 214, 120868.
[http://dx.doi.org/10.1016/j.talanta.2020.120868] [PMID: 32278414]
[61]
Bernard, E.D.; Nguyen, K.C.; DeRosa, M.C.; Tayabali, A.F.; Aranda-Rodriguez, R. Development of a bead-based aptamer/antibody detection system for C-reactive protein. Anal. Biochem., 2015, 472, 67-74.
[http://dx.doi.org/10.1016/j.ab.2014.11.017] [PMID: 25481739]
[62]
Wang, J.; Guo, J.; Zhang, J.; Zhang, W.; Zhang, Y. RNA aptamer-based electrochemical aptasensor for C-reactive protein detection using functionalized silica microspheres as immunoprobes. Biosens. Bioelectron., 2017, 95, 100-105.
[http://dx.doi.org/10.1016/j.bios.2017.04.014] [PMID: 28431362]
[63]
Zhang, J.; Zhang, W.; Guo, J.; Wang, J.; Zhang, Y. Electrochemical detection of C-reactive protein using Copper nanoparticles and hybridization chain reaction amplifying signal. Anal. Biochem., 2017, 539, 1-7.
[http://dx.doi.org/10.1016/j.ab.2017.09.017] [PMID: 28965840]
[64]
Jarczewska, M.; Rębiś, J.; Górski, Ł.; Malinowska, E. Development of DNA aptamer-based sensor for electrochemical detection of C-reactive protein. Talanta, 2018, 189, 45-54.
[http://dx.doi.org/10.1016/j.talanta.2018.06.035] [PMID: 30086945]
[65]
Martins, G.V.; Tavares, A.P.M.; Fortunato, E.; Sales, M.G.F. Paper-based sensing device for electrochemical detection of oxidative stress biomarker 8-hydroxy-2′-deoxyguanosine (8-OHdG) in point-of-care. Sci. Rep., 2017, 7(1), 14558.
[http://dx.doi.org/10.1038/s41598-017-14878-9] [PMID: 29109407]
[66]
Fan, R.; Wang, D.; Mao, C.; Ou, S.; Lian, Z.; Huang, S.; Lin, Q.; Ding, R.; She, J. Preliminary study of children’s exposure to PAHs and its association with 8-hydroxy-2′-deoxyguanosine in Guangzhou, China. Environ. Int., 2012, 42, 53-58.
[http://dx.doi.org/10.1016/j.envint.2011.03.021] [PMID: 21511339]
[67]
Wang, Y.; Ye, S.; Hu, Y.; Zhao, L.; Zheng, M. The effect of hydrochloride pioglitazone on urinary 8-hydroxy -deoxyguanosine excretion in type 2 diabetics. J. Diabetes Complicat., 2013, 27(1), 75-77.
[http://dx.doi.org/10.1016/j.jdiacomp.2012.08.004] [PMID: 23021797]
[68]
Ma, H.; Zheng, L.; Li, Y.; Pan, S.; Hu, J.; Yu, Z.; Zhang, G.; Sheng, G.; Fu, J.J.C. Triclosan reduces the levels of global DNA methylation in HepG2 cells. Chemosphere, 2013, 90(3), 1023-1029.
[69]
Hinokio, Y.; Suzuki, S.; Hirai, M.; Suzuki, C.; Suzuki, M.; Toyota, T. Urinary excretion of 8-oxo-7, 8-dihydro-2′-deoxyguanosine as a predictor of the development of diabetic nephropathy. Diabetologia, 2002, 45(6), 877-882.
[http://dx.doi.org/10.1007/s00125-002-0831-8] [PMID: 12107732]
[70]
Poulsen, H.E.; Nadal, L.L.; Broedbaek, K.; Nielsen, P.E.; Weimann, A. Detection and interpretation of 8-oxodG and 8-oxoGua in urine, plasma and cerebrospinal fluid. Biochim. Biophys. Acta, 2014, 1840(2), 801-808.
[71]
Ahn, M.; Aoki, S.; Bhang, H.; Boyd, S.; Casper, D.; Choi, J.; Fukuda, S.; Fukuda, Y.; Gajewski, W.; Hara, T.J.P.R.L. Indications of neutrino oscillation in a 250 km long-baseline experiment. Phys. Rev. Lett., 2003, 90(4), 041801.
[72]
Wu, L.L.; Chiou, C.C.; Chang, P.Y.; Wu, J.T. Urinary 8-OHdG: A marker of oxidative stress to DNA and a risk factor for cancer, atherosclerosis and diabetics. Clin. Chim. Acta, 2004, 339(1-2), 1-9.
[http://dx.doi.org/10.1016/j.cccn.2003.09.010] [PMID: 14687888]
[73]
Broedbaek, K.; Weimann, A.; Stovgaard, E.S.; Poulsen, H.E. Urinary 8-oxo-7,8-dihydro-2′-deoxyguanosine as a biomarker in type 2 diabetes. Free Radic. Biol. Med., 2011, 51(8), 1473-1479.
[http://dx.doi.org/10.1016/j.freeradbiomed.2011.07.007] [PMID: 21820047]
[74]
Thanan, R.; Oikawa, S.; Hiraku, Y.; Ohnishi, S.; Ma, N.; Pinlaor, S.; Yongvanit, P.; Kawanishi, S.; Murata, M. Oxidative stress and its significant roles in neurodegenerative diseases and cancer. Int. J. Mol. Sci., 2014, 16(1), 193-217.
[http://dx.doi.org/10.3390/ijms16010193] [PMID: 25547488]
[75]
Zhang, P.; Chen, J.H.; Dong, X.; Tang, M.T.; Gao, L.Y.; Zhao, G.S.; Yu, L.G.; Guo, X.L. 6r, a novel oxadiazole analogue of ethacrynic acid, exhibits antitumor activity both in vitro and in vivo by induction of cell apoptosis and S-phase arrest. Biomed. Pharmacother., 2013, 67(1), 58-65.
[http://dx.doi.org/10.1016/j.biopha.2012.10.011] [PMID: 23201007]
[76]
Yang, J.K.; Lin, S.S.; Ji, X.J.; Guo, L.M. Binding of SARS coronavirus to its receptor damages islets and causes acute diabetes. Acta Diabetol., 2010, 47(3), 193-199.
[http://dx.doi.org/10.1007/s00592-009-0109-4] [PMID: 19333547]
[77]
Kuo, H.W.; Chou, S.Y.; Hu, T.W.; Wu, F.Y.; Chen, D.J. Urinary 8-hydroxy-2′-deoxyguanosine (8-OHdG) and genetic polymorphisms in breast cancer patients. Mutat. Res. Genet. Toxicol. Environ. Mutagen., 2007, 631(1), 62-68.
[http://dx.doi.org/10.1016/j.mrgentox.2007.04.009] [PMID: 17512776]
[78]
Li, J.; O, W.; Li, W.; Jiang, Z.G.; Ghanbari, H. Oxidative stress and neurodegenerative disorders. Int. J. Mol. Sci., 2013, 14(12), 24438-24475.
[http://dx.doi.org/10.3390/ijms141224438] [PMID: 24351827]
[79]
Chen, C.M.; Liu, J.L.; Wu, Y.R.; Chen, Y.C.; Cheng, H.S.; Cheng, M.L.; Chiu, D.T. Increased oxidative damage in peripheral blood correlates with severity of Parkinson’s disease. Neurobiol. Dis., 2009, 33(3), 429-435.
[http://dx.doi.org/10.1016/j.nbd.2008.11.011] [PMID: 19110057]
[80]
Shimoda, R.; Nagashima, M.; Sakamoto, M.; Yamaguchi, N.; Hirohashi, S.; Yokota, J.; Kasai, H. Increased formation of oxidative DNA damage, 8-hydroxydeoxyguanosine, in human livers with chronic hepatitis. Cancer Res., 1994, 54(12), 3171-3172.
[PMID: 8205535]
[81]
Pinlaor, S.; Ma, N.; Hiraku, Y.; Yongvanit, P.; Semba, R.; Oikawa, S.; Murata, M.; Sripa, B.; Sithithaworn, P.; Kawanishi, S. Repeated infection with Opisthorchis viverrini induces accumulation of 8-nitroguanine and 8-oxo-7,8-dihydro-2′-deoxyguanine in the bile duct of hamsters via inducible nitric oxide synthase. Carcinogenesis, 2004, 25(8), 1535-1542.
[http://dx.doi.org/10.1093/carcin/bgh157] [PMID: 15059927]
[82]
Saichua, P.; Yakovleva, A.; Kamamia, C.; Jariwala, A.R.; Sithithaworn, J.; Sripa, B.; Brindley, P.J.; Laha, T.; Mairiang, E.; Pairojkul, C.; Khuntikeo, N.; Mulvenna, J.; Sithithaworn, P.; Bethony, J.M. Levels of 8-OxodG predict hepatobiliary pathology in Opisthorchis viverrini endemic settings in Thailand. PLoS Negl. Trop. Dis., 2015, 9(7), e0003949.
[http://dx.doi.org/10.1371/journal.pntd.0003949] [PMID: 26230769]
[83]
Bialkowski, K.; Kowara, R.; Windorbska, W.; Olinski, R. 8-Oxo-2′-deoxyguanosine level in lymphocytes DNA of cancer patients undergoing radiotherapy. Cancer Lett., 1996, 99(1), 93-97.
[http://dx.doi.org/10.1016/0304-3835(95)04042-0] [PMID: 8564935]
[84]
Joergensen, A.; Broedbaek, K.; Weimann, A.; Semba, R.D.; Ferrucci, L.; Joergensen, M.B.; Poulsen, H.E. Association between urinary excretion of cortisol and markers of oxidatively damaged DNA and RNA in humans. PLoS One, 2011, 6(6), e20795.
[http://dx.doi.org/10.1371/journal.pone.0020795] [PMID: 21687734]
[85]
Liu, H.; Wang, Y.S.; Wang, J.C.; Xue, J.H.; Zhou, B.; Zhao, H.; Liu, S.D.; Tang, X.; Chen, S.H.; Li, M.H.; Cao, J.X. A colorimetric aptasensor for the highly sensitive detection of 8-hydroxy-2′-deoxyguanosine based on G-quadruplex–hemin DNAzyme. Anal. Biochem., 2014, 458, 4-10.
[http://dx.doi.org/10.1016/j.ab.2014.04.031] [PMID: 24811738]
[86]
Liu, H.; Wang, Y.S.; Tang, X.; Yang, H.X.; Chen, S.H.; Zhao, H.; Liu, S.D.; Zhu, Y.F.; Wang, X.F.; Huang, Y.Q. A novel fluorescence aptasensor for 8-hydroxy-2′-deoxyguanosine based on the conformational switching of K + -stabilized G-quadruplex. J. Pharm. Biomed. Anal., 2016, 118, 177-182.
[http://dx.doi.org/10.1016/j.jpba.2015.10.035] [PMID: 26551536]
[87]
Fan, J.; Liu, Y.; Xu, E.; Zhang, Y.; Wei, W.; Yin, L.; Pu, Y.; Liu, S. A label-free ultrasensitive assay of 8-hydroxy-2′-deoxyguanosine in human serum and urine samples via polyaniline deposition and tetrahedral DNA nanostructure. Anal. Chim. Acta, 2016, 946, 48-55.
[http://dx.doi.org/10.1016/j.aca.2016.10.022] [PMID: 27823668]
[88]
Tao, L.; Yue, Q.; Hou, Y.; Wang, Y.; Chen, C.; Li, C.Z. Resonance light scattering aptasensor for urinary 8-hydroxy-2′-deoxyguanosine based on magnetic nanoparticles: A preliminary study of oxidative stress association with air pollution. Mikrochim. Acta, 2018, 185(9), 419.
[http://dx.doi.org/10.1007/s00604-018-2937-9] [PMID: 30121832]
[89]
Jabbari, S.; Hedayati, M.; Yaghmaei, P.; Parivar, K. Medullary thyroid carcinoma - circulating status of vaspin and retinol binding protein-4 in Iranian patients. Asian Pac. J. Cancer Prev., 2015, 16(15), 6507-6512.
[http://dx.doi.org/10.7314/APJCP.2015.16.15.6507] [PMID: 26434866]
[90]
Chang, H.M.; Park, H.S.; Park, C.Y.; Song, Y.S.; Jang, Y.J. Association between serum vaspin concentrations and visceral adipose tissue in Korean subjects. Metabolism, 2010, 59(9), 1276-1281.
[http://dx.doi.org/10.1016/j.metabol.2009.11.021] [PMID: 20060144]
[91]
Kotnik, P.; Fischer-Posovszky, P.; Wabitsch, M. RBP4: A controversial adipokine. Eur. J. Endocrinol., 2011, 165(5), 703-711.
[http://dx.doi.org/10.1530/EJE-11-0431] [PMID: 21835764]
[92]
Yang, Q.; Graham, T.E.; Mody, N.; Preitner, F.; Peroni, O.D.; Zabolotny, J.M.; Kotani, K.; Quadro, L.; Kahn, B.B. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 2005, 436(7049), 356-362.
[http://dx.doi.org/10.1038/nature03711] [PMID: 16034410]
[93]
Polonsky, K.S. Retinol-binding protein 4, insulin resistance, and type 2 diabetes. N. Engl. J. Med., 2006, 354(24), 2596-2598.
[http://dx.doi.org/10.1056/NEJMe068091] [PMID: 16775241]
[94]
Liu, J.; Gao, J.; Zhang, J.; Li, P.; Liu, J.; Liu, J.; Xie, X. Evaluation of the association between retinal binding protein 4 polymorphisms and type 2 diabetes in Chinese by DHPLC. Endocrine, 2008, 34(1-3), 23-28.
[http://dx.doi.org/10.1007/s12020-008-9097-3] [PMID: 18937078]
[95]
Abel, E.D.; Peroni, O.; Kim, J.K.; Kim, Y.B.; Boss, O.; Hadro, E.; Minnemann, T.; Shulman, G.I.; Kahn, B.B. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver. Nature, 2001, 409(6821), 729-733.
[http://dx.doi.org/10.1038/35055575] [PMID: 11217863]
[96]
Rocha, M.; Bañuls, C.; Bellod, L.; Rovira-Llopis, S.; Morillas, C.; Solá, E.; Víctor, V.M.; Hernández-Mijares, A. Association of serum retinol binding protein 4 with atherogenic dyslipidemia in morbid obese patients. PLoS One, 2013, 8(11), e78670.
[http://dx.doi.org/10.1371/journal.pone.0078670] [PMID: 24223837]
[97]
Lee, S.J.; Youn, B.S.; Park, J.W.; Niazi, J.H.; Kim, Y.S.; Gu, M.B. ssDNA aptamer-based surface plasmon resonance biosensor for the detection of retinol binding protein 4 for the early diagnosis of type 2 diabetes. Anal. Chem., 2008, 80(8), 2867-2873.
[http://dx.doi.org/10.1021/ac800050a] [PMID: 18324839]
[98]
Torabi, R.; Ghourchian, H. Ultrasensitive nano-aptasensor for monitoring retinol binding protein 4 as a biomarker for diabetes prognosis at early stages. Sci. Rep., 2020, 10(1), 594.
[http://dx.doi.org/10.1038/s41598-019-57396-6] [PMID: 31953481]
[99]
Kharroubi, A.T.; Darwish, H.M.; Abu Al-Halaweh, A.I.; Khammash, U.M. Evaluation of glycated hemoglobin (HbA1c) for diagnosing type 2 diabetes and prediabetes among Palestinian Arab population. PLoS One, 2014, 9(2), e88123.
[http://dx.doi.org/10.1371/journal.pone.0088123] [PMID: 24505401]
[100]
Liu, J.T.; Chen, L.Y.; Shih, M.C.; Chang, Y.; Chen, W.Y. The investigation of recognition interaction between phenylboronate monolayer and glycated hemoglobin using surface plasmon resonance. Anal. Biochem., 2008, 375(1), 90-96.
[http://dx.doi.org/10.1016/j.ab.2008.01.004] [PMID: 18242160]
[101]
Goldstein, D.E.; Little, R.R.; Lorenz, R.A.; Malone, J.I.; Nathan, D.; Peterson, C.M.; Sacks, D.B. Tests of glycemia in diabetes. Diabetes Care, 2004, 27(7), 1761-1773.
[http://dx.doi.org/10.2337/diacare.27.7.1761] [PMID: 15220264]
[102]
Ahmed, N.; Babaei-Jadidi, R.; Howell, S.K.; Thornalley, P.J.; Beisswenger, P.J. Glycated and oxidized protein degradation products are indicators of fasting and postprandial hyperglycemia in diabetes. Diabetes Care, 2005, 28(10), 2465-2471.
[http://dx.doi.org/10.2337/diacare.28.10.2465] [PMID: 16186281]
[103]
Sacks, D.B.; Bruns, D.E.; Goldstein, D.E.; Maclaren, N.K.; McDonald, J.M.; Parrott, M. Guidelines and recommendations for laboratory analysis in the diagnosis and management of diabetes mellitus. Clin. Chem., 2002, 48(3), 436-472.
[http://dx.doi.org/10.1093/clinchem/48.3.436] [PMID: 11861436]
[104]
Nathan, D.M.; Genuth, S.; Lachin, J.; Cleary, P.; Crofford, O.; Davis, M.; Rand, L.; Siebert, C. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N. Engl. J. Med., 1993, 329(14), 977-986.
[http://dx.doi.org/10.1056/NEJM199309303291401] [PMID: 8366922]
[105]
U.P.D.S. Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet, 1998, 352(9131), 837-853.
[http://dx.doi.org/10.1016/S0140-6736(98)07019-6] [PMID: 9742976]
[106]
Ciemins, E.L.; Coon, P.J.; Fowles, J.B.; Min, S.J. Beyond health information technology: Critical factors necessary for effective diabetes disease management. J. Diabetes Sci. Technol., 2009, 3(3), 452-460.
[http://dx.doi.org/10.1177/193229680900300308] [PMID: 20144282]
[107]
Petersen, J.R.; Omoruyi, F.O.; Mohammad, A.A.; Shea, T.J.; Okorodudu, A.O.; Ju, H. Hemoglobin A1c: Assessment of three POC analyzers relative to a central laboratory method. Clin. Chim. Acta, 2010, 411(23-24), 2062-2066.
[http://dx.doi.org/10.1016/j.cca.2010.09.004] [PMID: 20832393]
[108]
Hoelzel, W.; Miedema, K. Development of a reference system for the international standardization of HbA1c/glycohemoglobin determinations. J. Int. Fed. Clin. Chem., 1996, 8(2), 62-4.
[109]
Sharma, P.; Panchal, A.; Yadav, N.; Narang, J. Analytical techniques for the detection of glycated haemoglobin underlining the sensors. Int. J. Biol. Macromol., 2020, 155, 685-696.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.205] [PMID: 32229211]
[110]
Almusharraf, A.Y.; Eissa, S.; Zourob, M. Truncated aptamers for total and glycated hemoglobin, and their integration into a graphene oxide-based fluorometric method for high-throughput screening for diabetes. Mikrochim. Acta, 2018, 185(5), 256.
[http://dx.doi.org/10.1007/s00604-018-2789-3] [PMID: 29675559]
[111]
Singh, V.; Nerimetla, R.; Yang, M.; Krishnan, S. Magnetite-quantum dot immunoarray for plasmon-coupled-fluorescence imaging of blood insulin and glycated hemoglobin. ACS Sens., 2017, 2(7), 909-915.
[http://dx.doi.org/10.1021/acssensors.7b00124] [PMID: 28750536]
[112]
Hehlgans, T.; Pfeffer, K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: Players, rules and the games. Immunology, 2005, 115(1), 1-20.
[http://dx.doi.org/10.1111/j.1365-2567.2005.02143.x] [PMID: 15819693]
[113]
Iwasaki, A.; Medzhitov, R. Control of adaptive immunity by the innate immune system. Nat. Immunol., 2015, 16(4), 343-353.
[http://dx.doi.org/10.1038/ni.3123] [PMID: 25789684]
[114]
Collnot, E.M.; Ali, H.; Lehr, C.M. Nano- and microparticulate drug carriers for targeting of the inflamed intestinal mucosa. J. Control. Release, 2012, 161(2), 235-246.
[http://dx.doi.org/10.1016/j.jconrel.2012.01.028] [PMID: 22306429]
[115]
Cavadini, G.; Petrzilka, S.; Kohler, P.; Jud, C.; Tobler, I.; Birchler, T.; Fontana, A. TNF-α suppresses the expression of clock genes by interfering with E-box-mediated transcription. Proc. Natl. Acad. Sci. USA, 2007, 104(31), 12843-12848.
[http://dx.doi.org/10.1073/pnas.0701466104] [PMID: 17646651]
[116]
Asiedu, M.K.; Ingle, J.N.; Behrens, M.D.; Radisky, D.C.; Knutson, K.L. TGFbeta/TNF(α)-mediated epithelial-mesenchymal transition generates breast cancer stem cells with a claudin-low phenotype. Cancer Res., 2011, 71(13), 4707-4719.
[http://dx.doi.org/10.1158/0008-5472.CAN-10-4554] [PMID: 21555371]
[117]
Hotamisligil, G.S.; Peraldi, P.; Budavari, A.; Ellis, R.; White, M.F.; Spiegelman, B.M. IRS-1-mediated inhibition of insulin receptor tyrosine kinase activity in TNF-α- and obesity-induced insulin resistance. Science, 1996, 271(5249), 665-670.
[http://dx.doi.org/10.1126/science.271.5249.665] [PMID: 8571133]
[118]
Ghosh, S.; Datta, D.; Chaudhry, S.; Dutta, M.; Stroscio, M.A. Rapid detection of Tumor Necrosis Factor-Alpha using Quantum Dot-Based Optical aptasensor. IEEE Trans. Nanobiosci., 2018, 17(4), 417-423.
[http://dx.doi.org/10.1109/TNB.2018.2852261] [PMID: 29994717]
[119]
Miao, P.; Yang, D.; Chen, X.; Guo, Z.; Tang, Y. Voltammetric determination of tumor necrosis factor-α based on the use of an aptamer and magnetic nanoparticles loaded with gold nanoparticles. Mikrochim. Acta, 2017, 184(10), 3901-3907.
[http://dx.doi.org/10.1007/s00604-017-2419-5]
[120]
Ghalehno, M.H.; Mirzaei, M.; Torkzadeh-Mahani, M. Electrochemical aptasensor for tumor necrosis factor α using aptamer–antibody sandwich structure and cobalt hexacyanoferrate for signal amplification. J. Indian Chem. Soc., 2019, 16(8), 1783-1791.
[121]
Kouzuma, T.; Usami, T.; Yamakoshi, M.; Takahashi, M.; Imamura, S. An enzymatic method for the measurement of glycated albumin in biological samples. Clin. Chim. Acta, 2002, 324(1-2), 61-71.
[http://dx.doi.org/10.1016/S0009-8981(02)00207-3] [PMID: 12204426]
[122]
Koga, M. Glycated albumin; clinical usefulness. Clin. Chim. Acta, 2014, 433, 96-104.
[http://dx.doi.org/10.1016/j.cca.2014.03.001] [PMID: 24631132]
[123]
Koga, M.; Kasayama, S. Clinical impact of glycated albumin as another glycemic control marker. Endocr. J., 2010, 57(9), 751-762.
[http://dx.doi.org/10.1507/endocrj.K10E-138] [PMID: 20724796]
[124]
Takahashi, S.; Uchino, H.; Shimizu, T.; Kanazawa, A.; Tamura, Y.; Sakai, K.; Watada, H.; Hirose, T.; Kawamori, R.; Tanaka, Y. Comparison of glycated albumin (GA) and glycated hemoglobin (HbA1c) in type 2 diabetic patients: Usefulness of GA for evaluation of short-term changes in glycemic control. Endocr. J., 2007, 54(1), 139-144.
[http://dx.doi.org/10.1507/endocrj.K06-103] [PMID: 17159300]
[125]
Gallagher, E.J.; Le Roith, D.; Bloomgarden, Z. Review of hemoglobin A1c in the management of diabetes. J. Diabetes, 2009, 1(1), 9-17.
[http://dx.doi.org/10.1111/j.1753-0407.2009.00009.x] [PMID: 20923515]
[126]
Ghosh, S.; Datta, D.; Cheema, M.; Dutta, M.; Stroscio, M.A. Aptasensor based optical detection of glycated albumin for diabetes mellitus diagnosis. Nanotechnology, 2017, 28(43), 435505.
[http://dx.doi.org/10.1088/1361-6528/aa893a] [PMID: 28853715]
[127]
Farzadfard, A.; Shayeh, J.S.; Habibi-Rezaei, M.; Omidi, M. Modification of reduced graphene/Au-aptamer to develop an electrochemical based aptasensor for measurement of glycated albumin. Talanta, 2020, 211, 120722.
[http://dx.doi.org/10.1016/j.talanta.2020.120722] [PMID: 32070572]
[128]
Tertis, M.; Leva, P.I.; Bogdan, D.; Suciu, M.; Graur, F.; Cristea, C. Impedimetric aptasensor for the label-free and selective detection of Interleukin-6 for colorectal cancer screening. Biosens. Bioelectron., 2019, 137, 123-132.
[http://dx.doi.org/10.1016/j.bios.2019.05.012] [PMID: 31085401]
[129]
Vickers, N.J. Animal communication: When i’m calling you, will you answer too? Curr. Biol., 2017, 27(14), R713-R715.
[http://dx.doi.org/10.1016/j.cub.2017.05.064] [PMID: 28743020]
[130]
Messina, G.A.; Panini, N.V.; Martinez, N.A.; Raba, J. Microfluidic immunosensor design for the quantification of interleukin-6 in human serum samples. Anal. Biochem., 2008, 380(2), 262-267.
[http://dx.doi.org/10.1016/j.ab.2008.05.055] [PMID: 18577366]
[131]
Wang, Y.; Sun, J.; Hou, Y.; Zhang, C.; Li, D.; Li, H.; Yang, M.; Fan, C.; Sun, B. RETRACTED: A SERS-based lateral flow assay biosensor for quantitative and ultrasensitive detection of interleukin-6 in unprocessed whole blood. Biosens. Bioelectron., 2019, 141, 111432.
[http://dx.doi.org/10.1016/j.bios.2019.111432] [PMID: 31299628]
[132]
Tertiş, M.; Ciui, B.; Suciu, M.; Săndulescu, R.; Cristea, C. Label-free electrochemical aptasensor based on gold and polypyrrole nanoparticles for interleukin 6 detection. Electrochim. Acta, 2017, 258, 1208-1218.
[http://dx.doi.org/10.1016/j.electacta.2017.11.176]
[133]
Klöting, N.; Graham, T.E.; Berndt, J.; Kralisch, S.; Kovacs, P.; Wason, C.J.; Fasshauer, M.; Schön, M.R.; Stumvoll, M.; Blüher, M.; Kahn, B.B. Serum retinol-binding protein is more highly expressed in visceral than in subcutaneous adipose tissue and is a marker of intra-abdominal fat mass. Cell Metab., 2007, 6(1), 79-87.
[http://dx.doi.org/10.1016/j.cmet.2007.06.002] [PMID: 17618858]
[134]
Salek-Maghsoudi, A.; Vakhshiteh, F.; Torabi, R.; Hassani, S.; Ganjali, M.R.; Norouzi, P.; Hosseini, M.; Abdollahi, M. Recent advances in biosensor technology in assessment of early diabetes biomarkers. Biosens. Bioelectron., 2018, 99, 122-135.
[http://dx.doi.org/10.1016/j.bios.2017.07.047] [PMID: 28750336]
[135]
Lee, S.J.; Park, J.W.; Kim, I.A.; Youn, B.S.; Gu, M.B. Sensitive detection of adipokines for early diagnosis of type 2 diabetes using enzyme-linked antibody-aptamer sandwich (ELAAS) assays. Sens. Actuators B Chem., 2012, 168, 243-248.
[http://dx.doi.org/10.1016/j.snb.2012.04.016]
[136]
Kim, S.H.; Nam, O.; Jin, E.; Gu, M.B. A new coccolith modified electrode-based biosensor using a cognate pair of aptamers with sandwich-type binding. Biosens. Bioelectron., 2019, 123, 160-166.
[http://dx.doi.org/10.1016/j.bios.2018.08.021] [PMID: 30139622]
[137]
Ali, M.; Sajid, M.; Khalid, M.A.U.; Kim, S.W.; Lim, J.H.; Huh, D.; Choi, K.H. A fluorescent lateral flow biosensor for the quantitative detection of Vaspin using upconverting nanoparticles. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2020, 226, 117610.
[http://dx.doi.org/10.1016/j.saa.2019.117610] [PMID: 31606675]
[138]
Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res., 2003, 92(8), 827-839.
[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D] [PMID: 12730128]
[139]
Jones, J.I.; Nguyen, T.T.; Peng, Z.; Chang, M. Targeting MMP-9 in diabetic foot ulcers. Pharmaceuticals (Basel), 2019, 12(2), 79.
[http://dx.doi.org/10.3390/ph12020079] [PMID: 31121851]
[140]
Woessner, J.; Nagase, H. Protein substrates of the MMPs, Matrix metalloproteinases. TIMPs, 2000, 92(8), 87-97.
[141]
Kadoglou, N.P.; Daskalopoulou, S.S.; Perrea, D.; Liapis, C.D. Matrix metalloproteinases and diabetic vascular complications. Angiology, 2005, 56(2), 173-189.
[http://dx.doi.org/10.1177/000331970505600208] [PMID: 15793607]
[142]
Thrailkill, K.M.; Bunn, R.C.; Moreau, C.S.; Cockrell, G.E.; Simpson, P.M.; Coleman, H.N.; Frindik, J.P.; Kemp, S.F.; Fowlkes, J.L. Matrix metalloproteinase-2 dysregulation in type 1 diabetes. Diabetes Care, 2007, 30(9), 2321-2326.
[http://dx.doi.org/10.2337/dc07-0162] [PMID: 17563344]
[143]
Toni, M.; Hermida, J.; Goñi, M.J.; Fernández, P.; Parks, W.C.; Toledo, E.; Montes, R.; Díez, N. Matrix metalloproteinase-10 plays an active role in microvascular complications in type 1 diabetic patients. Diabetologia, 2013, 56(12), 2743-2752.
[http://dx.doi.org/10.1007/s00125-013-3052-4] [PMID: 24078057]
[144]
Gharagozlian, S.; Svennevig, K.; Bangstad, H.J.; Winberg, J.O.; Kolset, S.O. Matrix metalloproteinases in subjects with type 1 diabetes. BMC Clin. Pathol., 2009, 9(1), 7.
[http://dx.doi.org/10.1186/1472-6890-9-7] [PMID: 19758433]
[145]
Giebel, S.J.; Menicucci, G.; McGuire, P.G.; Das, A. Matrix metalloproteinases in early diabetic retinopathy and their role in alteration of the blood–retinal barrier. Lab. Invest., 2005, 85(5), 597-607.
[http://dx.doi.org/10.1038/labinvest.3700251] [PMID: 15711567]
[146]
Scarano, S.; Dausse, E.; Crispo, F.; Toulmé, J.J.; Minunni, M. Design of a dual aptamer-based recognition strategy for human matrix metalloproteinase 9 protein by piezoelectric biosensors. Anal. Chim. Acta, 2015, 897, 1-9.
[http://dx.doi.org/10.1016/j.aca.2015.07.009] [PMID: 26514999]
[147]
Sethi, J.K. Is PBEF/visfatin/Nampt an authentic adipokine relevant to the metabolic syndrome? Curr. Hypertens. Rep., 2007, 9(1), 33-38.
[http://dx.doi.org/10.1007/s11906-007-0007-5] [PMID: 17362669]
[148]
Romacho, T.; Sánchez-Ferrer, C.F.; Peiró, C. Visfatin/Nampt: An adipokine with cardiovascular impact. Mediators Inflamm., 2013, 2013, 1-15.
[http://dx.doi.org/10.1155/2013/946427] [PMID: 23843684]
[149]
Revollo, J.R.; Grimm, A.A.; Imai, S. The regulation of nicotinamide adenine dinucleotide biosynthesis by Nampt/PBEF/visfatin in mammals. Curr. Opin. Gastroenterol., 2007, 23(2), 164-170.
[http://dx.doi.org/10.1097/MOG.0b013e32801b3c8f] [PMID: 17268245]
[150]
Garten, A.; Schuster, S.; Penke, M.; Gorski, T.; de Giorgis, T.; Kiess, W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol., 2015, 11(9), 535-546.
[http://dx.doi.org/10.1038/nrendo.2015.117] [PMID: 26215259]
[151]
Kover, K.; Tong, P.Y.; Watkins, D.; Clements, M.; Stehno-Bittel, L.; Novikova, L.; Bittel, D.; Kibiryeva, N.; Stuhlsatz, J.; Yan, Y.; Ye, S.Q.; Moore, W.V. Expression and regulation of nampt in human islets. PLoS One, 2013, 8(3), e58767.
[http://dx.doi.org/10.1371/journal.pone.0058767] [PMID: 23536823]
[152]
Revollo, J.R.; Körner, A.; Mills, K.F.; Satoh, A.; Wang, T.; Garten, A.; Dasgupta, B.; Sasaki, Y.; Wolberger, C.; Townsend, R.R.; Milbrandt, J.; Kiess, W.; Imai, S. Nampt/PBEF/Visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell Metab., 2007, 6(5), 363-375.
[http://dx.doi.org/10.1016/j.cmet.2007.09.003] [PMID: 17983582]
[153]
Röder, P.V.; Wu, B.; Liu, Y.; Han, W. Pancreatic regulation of glucose homeostasis. Exp. Mol. Med., 2016, 48(3), e219-e219.
[http://dx.doi.org/10.1038/emm.2016.6] [PMID: 26964835]
[154]
Kang, Y.S.; Cha, D.R. The role of visfatin in diabetic nephropathy. Chonnam Med. J., 2011, 47(3), 139-143.
[http://dx.doi.org/10.4068/cmj.2011.47.3.139] [PMID: 22247912]
[155]
Vu, V.; Kim, W.; Fang, X.; Liu, Y.T.; Xu, A.; Sweeney, G. Coculture with primary visceral rat adipocytes from control but not streptozotocin-induced diabetic animals increases glucose uptake in rat skeletal muscle cells: Role of adiponectin. Endocrinology, 2007, 148(9), 4411-4419.
[http://dx.doi.org/10.1210/en.2007-0020] [PMID: 17569760]
[156]
Brema, I. The relationship between plasma visfatin/nampt and type 2 diabetes, obesity, insulin resistance, and cardiovascular disease. Endocrinol. Metab. Int. J, 2016, 3(6), 00068.
[157]
Belo, V.A.; Luizon, M.R.; Lacchini, R.; Miranda, J.A.; Lanna, C.M.M.; Souza-Costa, D.C.; Tanus-Santos, J.E. The effects of NAMPT haplotypes and metabolic risk factors on circulating visfatin/NAMPT levels in childhood obesity. Int. J. Obes., 2015, 39(1), 130-135.
[http://dx.doi.org/10.1038/ijo.2013.173] [PMID: 24100423]
[158]
Wang, P.; van Greevenbroek, M.M.J.; Bouwman, F.G.; Brouwers, M.C.G.J.; van der Kallen, C.J.H.; Smit, E.; Keijer, J.; Mariman, E.C.M. The circulating PBEF/NAMPT/visfatin level is associated with a beneficial blood lipid profile. Pflugers Arch., 2007, 454(6), 971-976.
[http://dx.doi.org/10.1007/s00424-007-0262-y] [PMID: 17429683]
[159]
Berndt, J.; Klöting, N.; Kralisch, S.; Kovacs, P.; Fasshauer, M.; Schön, M.R.; Stumvoll, M.; Blüher, M. Plasma visfatin concentrations and fat depot-specific mRNA expression in humans. Diabetes, 2005, 54(10), 2911-2916.
[http://dx.doi.org/10.2337/diabetes.54.10.2911] [PMID: 16186392]
[160]
Rezvan, N.; Hosseinzadeh-Attar, M.J.; Masoudkabir, F.; Moini, A.; Janani, L.; Mazaherioun, M. Serum visfatin concentrations in gestational diabetes mellitus and normal pregnancy. Arch. Gynecol. Obstet., 2012, 285(5), 1257-1262.
[http://dx.doi.org/10.1007/s00404-011-2156-7] [PMID: 22167446]
[161]
Park, J.W.; Saravan Kallempudi, S.; Niazi, J.H.; Gurbuz, Y.; Youn, B.S.; Gu, M.B. Rapid and sensitive detection of Nampt (PBEF/visfatin) in human serum using an ssDNA aptamer-based capacitive biosensor. Biosens. Bioelectron., 2012, 38(1), 233-238.
[http://dx.doi.org/10.1016/j.bios.2012.05.036] [PMID: 22704839]
[162]
Moshal, K.S.; Sen, U.; Tyagi, N.; Henderson, B.; Steed, M.; Ovechkin, A.V.; Tyagi, S.C. Regulation of homocysteine-induced MMP-9 by ERK1/2 pathway. Am. J. Physiol. Cell Physiol., 2006, 290(3), C883-C891.
[http://dx.doi.org/10.1152/ajpcell.00359.2005] [PMID: 16251475]
[163]
Weber, G.J.; Pushpakumar, S.; Tyagi, S.C.; Sen, U. Homocysteine and hydrogen sulfide in epigenetic, metabolic and microbiota related renovascular hypertension. Pharmacol. Res., 2016, 113(Pt A), 300-312.
[http://dx.doi.org/10.1016/j.phrs.2016.09.002] [PMID: 27602985]
[164]
Pérez-Sepúlveda, A.; España-Perrot, P.P.; Fernández B, X.; Ahumada, V.; Bustos, V.; Arraztoa, J.A.; Dobierzewska, A.; Figueroa-Diesel, H.; Rice, G.E.; Illanes, S.E. Levels of key enzymes of methionine-homocysteine metabolism in preeclampsia. BioMed Res. Int., 2013, 2013, 731962.
[http://dx.doi.org/10.1155/2013/731962] [PMID: 24024209]
[165]
Kamat, P.K.; Mallonee, C.J.; George, A.K.; Tyagi, S.C.; Tyagi, N. Homocysteine, alcoholism, and its potential epigenetic mechanism. Alcohol. Clin. Exp. Res., 2016, 40(12), 2474-2481.
[http://dx.doi.org/10.1111/acer.13234] [PMID: 27805256]
[166]
Jelodar, G.; Mohammadi, M.; Akbari, A.; Nazifi, S. Cyclohexane extract of walnut leaves improves indices of oxidative stress, total homocysteine and lipids profiles in streptozotocin-induced diabetic rats. Physiol. Rep., 2020, 8(1), e14348.
[http://dx.doi.org/10.14814/phy2.14348] [PMID: 31960621]
[167]
Tyagi, S.C.; Rodriguez, W.; Patel, A.M.; Roberts, A.M.; Falcone, J.C.; Passmore, J.C.; Fleming, J.T.; Joshua, I.G. Hyperhomocysteinemic diabetic cardiomyopathy: Oxidative stress, remodeling, and endothelial-myocyte uncoupling. J. Cardiovasc. Pharmacol. Ther., 2005, 10(1), 1-10.
[http://dx.doi.org/10.1177/107424840501000101] [PMID: 15821833]
[168]
Mao, S.; Xiang, W.; Huang, S.; Zhang, A. Association between homocysteine status and the risk of nephropathy in type 2 diabetes mellitus. Clin. Chim. Acta, 2014, 431, 206-210.
[http://dx.doi.org/10.1016/j.cca.2014.02.007] [PMID: 24534450]
[169]
Kundi, H.; Kiziltunc, E.; Ates, I.; Cetin, M.; Barca, A.N.; Ozkayar, N.; Ornek, E. Association between plasma homocysteine levels and end-organ damage in newly diagnosed type 2 diabetes mellitus patients. Endocr. Res., 2017, 42(1), 36-41.
[http://dx.doi.org/10.3109/07435800.2016.1171235] [PMID: 27111290]
[170]
McKeague, M.; Foster, A.; Miguel, Y.; Giamberardino, A.; Verdin, C.; Chan, J.Y.S.; DeRosa, M.C. Development of a DNA aptamer for direct and selective homocysteine detection in human serum. RSC Advances, 2013, 3(46), 24415-24422.
[http://dx.doi.org/10.1039/c3ra43893g]
[171]
Saeed, J.; Mirzaei, M.; Torkzadeh-Mahani, M. A selective and regenerable voltammetric aptasensor for determination of homocysteine. Mikrochim. Acta, 2016, 183(7), 2205-2210.
[http://dx.doi.org/10.1007/s00604-016-1852-1]
[172]
Lau, K.S.; Partridge, E.A.; Grigorian, A.; Silvescu, C.I.; Reinhold, V.N.; Demetriou, M.; Dennis, J.W. Complex N-glycan number and degree of branching cooperate to regulate cell proliferation and differentiation. Cell, 2007, 129(1), 123-134.
[http://dx.doi.org/10.1016/j.cell.2007.01.049] [PMID: 17418791]
[173]
Ziyadeh, F.N. Mediators of diabetic renal disease: The case for tgf-β as the major mediator. J. Am. Soc. Nephrol., 2004, 15(90010)(Suppl. 1), 55S-57.
[http://dx.doi.org/10.1097/01.ASN.0000093460.24823.5B] [PMID: 14684674]
[174]
Zhang, M.Z.; Wang, Y.; Paueksakon, P.; Harris, R.C. Epidermal growth factor receptor inhibition slows progression of diabetic nephropathy in association with a decrease in endoplasmic reticulum stress and an increase in autophagy. Diabetes, 2014, 63(6), 2063-2072.
[http://dx.doi.org/10.2337/db13-1279] [PMID: 24705402]
[175]
Tomana, M.; Schrohenloher, R.E.; Koopman, W.J.; Alarcän, G.S.; Paul, W.A. Abnormal glycosylation of serum igg from patients with chronic inflammatory diseases. Arthritis Rheum., 1988, 31(3), 333-338.
[http://dx.doi.org/10.1002/art.1780310304] [PMID: 3358797]
[176]
Anthony, R.M.; Nimmerjahn, F.; Ashline, D.J.; Reinhold, V.N.; Paulson, J.C.; Ravetch, J.V. Recapitulation of IVIG anti-inflammatory activity with a recombinant IgG Fc. Science, 2008, 320(5874), 373-376.
[http://dx.doi.org/10.1126/science.1154315] [PMID: 18420934]
[177]
Karsten, C.M.; Pandey, M.K.; Figge, J.; Kilchenstein, R.; Taylor, P.R.; Rosas, M.; McDonald, J.U.; Orr, S.J.; Berger, M.; Petzold, D.; Blanchard, V.; Winkler, A.; Hess, C.; Reid, D.M.; Majoul, I.V.; Strait, R.T.; Harris, N.L.; Köhl, G.; Wex, E.; Ludwig, R.; Zillikens, D.; Nimmerjahn, F.; Finkelman, F.D.; Brown, G.D.; Ehlers, M.; Köhl, J. Anti-inflammatory activity of IgG1 mediated by Fc galactosylation and association of FcγRIIB and dectin-1. Nat. Med., 2012, 18(9), 1401-1406.
[http://dx.doi.org/10.1038/nm.2862] [PMID: 22922409]
[178]
Barrios, C.; Zierer, J.; Gudelj, I.; Štambuk, J.; Ugrina, I.; Rodríguez, E.; Soler, M.J.; Pavić, T.; Šimurina, M.; Keser, T.; Pučić-Baković, M.; Mangino, M.; Pascual, J.; Spector, T.D.; Lauc, G.; Menni, C. Glycosylation profile of IgG in moderate kidney dysfunction. J. Am. Soc. Nephrol., 2016, 27(3), 933-941.
[http://dx.doi.org/10.1681/ASN.2015010109] [PMID: 26185202]
[179]
Chen, X.; Wang, Y.; Zhang, Y.; Chen, Z.; Liu, Y.; Li, Z.; Li, J. Sensitive electrochemical aptamer biosensor for dynamic cell surface N-glycan evaluation featuring multivalent recognition and signal amplification on a dendrimer-graphene electrode interface. Anal. Chem., 2014, 86(9), 4278-4286.
[http://dx.doi.org/10.1021/ac404070m] [PMID: 24684138]
[180]
Murphy-Ullrich, J.E.; Poczatek, M.J.C. Activation of latent TGF-β by thrombospondin-1: Mechanisms and physiology. Cytokine Growth Factor Rev., 2000, 11, 1-2, 59-.
[181]
Chen, H.; Sottile, J.; Strickland, D.K.; Mosher, D.F. Binding and degradation of thrombospondin-1 mediated through heparan sulphate proteoglycans and low-density-lipoprotein receptor-related protein: Localization of the functional activity to the trimeric N-terminal heparin-binding region of thrombospondin-1. Biochem. J., 1996, 318(3), 959-963.
[http://dx.doi.org/10.1042/bj3180959] [PMID: 8836144]
[182]
Bornstein, P. Diversity of function is inherent in matricellular proteins: An appraisal of thrombospondin 1. J. Cell Biol., 1995, 130(3), 503-506.
[http://dx.doi.org/10.1083/jcb.130.3.503] [PMID: 7542656]
[183]
Tan, K.; Lawler, J. The interaction of Thrombospondins with extracellular matrix proteins. J. Cell Commun. Signal., 2009, 3(3-4), 177-187.
[http://dx.doi.org/10.1007/s12079-009-0074-2] [PMID: 19830595]
[184]
Ritz, E.; Rychlík, I.; Locatelli, F.; Halimi, S. End-stage renal failure in type 2 diabetes: A medical catastrophe of worldwide dimensions. Am. J. Kidney Dis., 1999, 34(5), 795-808.
[http://dx.doi.org/10.1016/S0272-6386(99)70035-1] [PMID: 10561134]
[185]
Fu, X.; He, J.; Zhang, C.; Chen, J.; Wen, Y.; li, J.; Mao, W.; Zhong, H.; Wu, J.; Ji, X.; Yu, C. Trimetallic signal amplification aptasensor for TSP-1 detection based on Ce-MOF@Au and AuPtRu nanocomposites. Biosens. Bioelectron., 2019, 132, 302-309.
[http://dx.doi.org/10.1016/j.bios.2019.02.054] [PMID: 30884317]
[186]
Jauker, M.; Griesser, H.; Richert, C. Spontaneous formation of RNA strands, peptidyl RNA, and cofactors. Angew. Chem. Int. Ed., 2015, 54(48), 14564-14569.
[http://dx.doi.org/10.1002/anie.201506593] [PMID: 26435376]
[187]
Willett, W.C. Dietary fat plays a major role in obesity: No. Obes. Rev., 2002, 3(2), 59-68.
[http://dx.doi.org/10.1046/j.1467-789X.2002.00060.x] [PMID: 12120421]
[188]
Dzeja, P.; Terzic, A. Adenylate kinase and AMP signaling networks: Metabolic monitoring, signal communication and body energy sensing. Int. J. Mol. Sci., 2009, 10(4), 1729-1772.
[http://dx.doi.org/10.3390/ijms10041729] [PMID: 19468337]
[189]
Kim, Y.; Park, C.W. Adenosine monophosphate–activated protein kinase in diabetic nephropathy. Kidney Res. Clin. Pract., 2016, 35(2), 69-77.
[http://dx.doi.org/10.1016/j.krcp.2016.02.004] [PMID: 27366660]
[190]
Song, Y.; Zhao, C.; Ren, J.; Qu, X. Rapid and ultra-sensitive detection of AMP using a fluorescent and magnetic nano-silica sandwich complex. Chem. Commun. (Camb.), 2009, (15), 1975-1977.
[http://dx.doi.org/10.1039/b818415a] [PMID: 19333462]
[191]
Tanaka, S.; Kuroda, A.; Kato, J.; Ikeda, T.; Takiguchi, N.; Ohtake, H. A sensitive method for detecting AMP by utilizing polyphosphate-dependent ATP regeneration and bioluminescence reactions. Biochem. Eng. J., 2001, 9(3), 193-197.
[http://dx.doi.org/10.1016/S1369-703X(01)00144-9]
[192]
Sallacan, N.; Zayats, M.; Bourenko, T.; Kharitonov, A.B.; Willner, I. Imprinting of nucleotide and monosaccharide recognition sites in acrylamidephenylboronic acid-acrylamide copolymer membranes associated with electronic transducers. Anal. Chem., 2002, 74(3), 702-712.
[http://dx.doi.org/10.1021/ac0109873] [PMID: 11838699]
[193]
Loukovaara, S.; Sahanne, S.; Jalkanen, S.; Yegutkin, G.G. Increased intravitreal adenosine 5′-triphosphate, adenosine 5′-diphosphate and adenosine 5′-monophosphate levels in patients with proliferative diabetic retinopathy. Acta Ophthalmol., 2015, 93(1), 67-73.
[http://dx.doi.org/10.1111/aos.12507] [PMID: 25079888]
[194]
Drexler, J.; Liu, A.C.; Foti, A.G. Fasting plasma cyclic AMP levels in an adult diabetic and non-diabetic group. Acta Diabetol. Lat., 1977, 14(3-4), 112-118.
[http://dx.doi.org/10.1007/BF02581398] [PMID: 204138]
[195]
Shen, L.; Chen, Z.; Li, Y.; Jing, P.; Xie, S.; He, S.; He, P.; Shao, Y. A chronocoulometric aptamer sensor for adenosine monophosphate. Chem. Commun. (Camb.), 2007, (21), 2169-2171.
[http://dx.doi.org/10.1039/b618909a] [PMID: 17520125]
[196]
Datta, D.; Meshik, X.; Mukherjee, S.; Sarkar, K.; Choi, M.S.; Mazouchi, M.; Farid, S.; Wang, Y.Y.; Burke, P.J.; Dutta, M.; Stroscio, M.A. Submillimolar detection of adenosine monophosphate using graphene-based electrochemical aptasensor. IEEE Trans. Nanotechnol., 2017, 16(2), 196-202.
[http://dx.doi.org/10.1109/TNANO.2016.2647715]
[197]
Chantry, D.; Turner, M.; Abney, E.; Feldmann, M. Modulation of cytokine production by transforming growth factor-beta. J. Immunol., 1989, 142(12), 4295-4300.
[PMID: 2542408]
[198]
Cameron, N.; Cotter, M. Pro-inflammatory mechanisms in diabetic neuropathy: Focus on the nuclear factor kappa B pathway. Curr. Drug Targets, 2008, 9(1), 60-67.
[http://dx.doi.org/10.2174/138945008783431718] [PMID: 18220713]
[199]
Horiguchi, M.; Ota, M.; Rifkin, D.B. Matrix control of transforming growth factor- function. J. Biochem., 2012, 152(4), 321-329.
[http://dx.doi.org/10.1093/jb/mvs089] [PMID: 22923731]
[200]
Fukumoto, H.; Naito, Z.; Asano, G.; Aramaki, T. Immunohistochemical and morphometric evaluations of coronary atherosclerotic plaques associated with myocardial infarction and diabetes mellitus. J. Atheroscler. Thromb., 1998, 5(1), 29-35.
[http://dx.doi.org/10.5551/jat1994.5.29] [PMID: 10077455]
[201]
Boulton, A.J.M.; Malik, R.A.; Arezzo, J.C.; Sosenko, J.M. Diabetic somatic neuropathies. Diabetes Care, 2004, 27(6), 1458-1486.
[http://dx.doi.org/10.2337/diacare.27.6.1458] [PMID: 15161806]
[202]
Tavakoli, M.; Quattrini, C.; Abbott, C.; Kallinikos, P.; Marshall, A.; Finnigan, J.; Morgan, P.; Efron, N.; Boulton, A.J.M.; Malik, R.A. Corneal confocal microscopy: A novel noninvasive test to diagnose and stratify the severity of human diabetic neuropathy. Diabetes Care, 2010, 33(8), 1792-1797.
[http://dx.doi.org/10.2337/dc10-0253] [PMID: 20435796]
[203]
Boulton, A.J.M.; Vileikyte, L.; Ragnarson-Tennvall, G.; Apelqvist, J. The global burden of diabetic foot disease. Lancet, 2005, 366(9498), 1719-1724.
[http://dx.doi.org/10.1016/S0140-6736(05)67698-2] [PMID: 16291066]
[204]
Matharu, Z.; Patel, D.; Gao, Y.; Haque, A.; Zhou, Q.; Revzin, A. Detecting transforming growth factor-β release from liver cells using an aptasensor integrated with microfluidics. Anal. Chem., 2014, 86(17), 8865-8872.
[http://dx.doi.org/10.1021/ac502383e] [PMID: 25105888]
[205]
Osaki, S.; Johnson, D.A.; Frieden, E. The possible significance of the ferrous oxidase activity of ceruloplasmin in normal human serum. J. Biol. Chem., 1966, 241(12), 2746-2751.
[http://dx.doi.org/10.1016/S0021-9258(18)96527-0] [PMID: 5912351]
[206]
Wirth, P.L.; Linder, M.C. Distribution of copper among components of human serum. J. Natl. Cancer Inst., 1985, 75(2), 277-284.
[PMID: 3860683]
[207]
Ojeda, I.; Moreno-Guzmán, M.; González-Cortés, A.; Yáñez-Sedeño, P.; Pingarrón, J.M. Electrochemical magnetic immunosensors for the determination of ceruloplasmin. Electroanalysis, 2013, 25(9), 2166-2174.
[http://dx.doi.org/10.1002/elan.201300269]
[208]
Haghshenas, E.; Madrakian, T.; Afkhami, A.; Saify Nabiabad, H. An electrochemical ceruloplasmin aptasensor using a glassy carbon electrode modified by diazonium-functionalized multiwalled carbon nanotubes. J. Indian Chem. Soc., 2019, 16(3), 593-602.
[209]
Chateauvieux, S.; Grigorakaki, C.; Morceau, F.; Dicato, M.; Diederich, M. Erythropoietin, erythropoiesis and beyond. Biochem. Pharmacol., 2011, 82(10), 1291-1303.
[http://dx.doi.org/10.1016/j.bcp.2011.06.045] [PMID: 21782802]
[210]
Zhang, Y.; Wang, L.; Dey, S.; Alnaeeli, M.; Suresh, S.; Rogers, H.; Teng, R.; Noguchi, C. Erythropoietin action in stress response, tissue maintenance and metabolism. Int. J. Mol. Sci., 2014, 15(6), 10296-10333.
[http://dx.doi.org/10.3390/ijms150610296] [PMID: 24918289]
[211]
Choi, D.; Retnakaran, R.; Woo, M. The extra-hematopoietic role of erythropoietin in diabetes mellitus. Curr. Diabetes Rev., 2011, 7(4), 284-290.
[http://dx.doi.org/10.2174/157339911796397820] [PMID: 21644916]
[212]
Christensen, B.; Nellemann, B.; Larsen, M.S.; Thams, L.; Sieljacks, P.; Vestergaard, P.F.; Bibby, B.M.; Vissing, K.; Stødkilde-Jørgensen, H.; Pedersen, S.B.; Møller, N.; Nielsen, S.; Jessen, N.; Jørgensen, J.O.L. Whole body metabolic effects of prolonged endurance training in combination with erythropoietin treatment in humans: A randomized placebo controlled trial. Am. J. Physiol. Endocrinol. Metab., 2013, 305(7), E879-E889.
[http://dx.doi.org/10.1152/ajpendo.00269.2013] [PMID: 23921143]
[213]
Kristensen, P.L.; Høi-Hansen, T.; Olsen, N.V.; Pedersen-Bjergaard, U.; Thorsteinsson, B. Erythropoietin during hypoglycaemia in type 1 diabetes: Relation to basal renin-angiotensin system activity and cognitive function. Diabetes Res. Clin. Pract., 2009, 85(1), 75-84.
[http://dx.doi.org/10.1016/j.diabres.2009.01.008] [PMID: 19211168]
[214]
Abellan, R.; Ventura, R.; Pichini, S.; Remacha, A.F.; Pascual, J.A.; Pacifici, R.; Di Giovannandrea, R.; Zuccaro, P.; Segura, J. Evaluation of immunoassays for the measurement of erythropoietin (EPO) as an indirect biomarker of recombinant human EPO misuse in sport. J. Pharm. Biomed. Anal., 2004, 35(5), 1169-1177.
[http://dx.doi.org/10.1016/j.jpba.2004.02.001] [PMID: 15336362]
[215]
Stoyanoff, T.R.; Todaro, J.S.; Aguirre, M.V.; Zimmermann, M.C.; Brandan, N.C. Amelioration of lipopolysaccharide-induced acute kidney injury by erythropoietin: Involvement of mitochondria-regulated apoptosis. Toxicology, 2014, 318, 13-21.
[http://dx.doi.org/10.1016/j.tox.2014.01.011] [PMID: 24561306]
[216]
Dimitrijevic, Z.M.; Cvetkovic, T.P.; Djordjevic, V.M.; Pavlovic, D.D.; Stefanovic, N.Z.; Stojanovic, I.R.; Paunovic, G.J.; Velickovic-Radovanovic, R.M. How the duration period of erythropoietin treatment influences the oxidative status of hemodialysis patients. Int. J. Med. Sci., 2012, 9(9), 808-815.
[http://dx.doi.org/10.7150/ijms.4910] [PMID: 23136545]
[217]
Nairz, M.; Sonnweber, T.; Schroll, A.; Theurl, I.; Weiss, G. The pleiotropic effects of erythropoietin in infection and inflammation. Microbes Infect., 2012, 14(3), 238-246.
[http://dx.doi.org/10.1016/j.micinf.2011.10.005] [PMID: 22094132]
[218]
Chen, S.; Li, J.; Peng, H.; Zhou, J.; Fang, H. Administration of erythropoietin exerts protective effects against glucocorticoid-induced osteonecrosis of the femoral head in rats. Int. J. Mol. Med., 2014, 33(4), 840-848.
[http://dx.doi.org/10.3892/ijmm.2014.1644] [PMID: 24503957]
[219]
Chen, L.N.; Sun, Q.; Liu, S.Q.; Hu, H.; Lv, J.; Ji, W.J.; Wang, M.; Chen, M.X.; Zhou, J. Erythropoietin improves glucose metabolism and pancreatic β-cell damage in experimental diabetic rats. Mol. Med. Rep., 2015, 12(4), 5391-5398.
[http://dx.doi.org/10.3892/mmr.2015.4006] [PMID: 26126591]
[220]
Fenjves, E.S.; Ochoa, M.S.; Cabrera, O.; Mendez, A.J.; Kenyon, N.S.; Inverardi, L.; Ricordi, C. Human, nonhuman primate, and rat pancreatic islets express erythropoietin receptors1. Transplantation, 2003, 75(8), 1356-1360.
[http://dx.doi.org/10.1097/01.TP.0000062862.88375.BD] [PMID: 12717230]
[221]
Chen, Z.; Li, H.; Zhao, Y.; Xu, M.; Xu, D. Magnetic nanoparticles and polydopamine amplified FP aptasensor for the highly sensitive detection of rHuEPO-α. Talanta, 2018, 189, 143-149.
[http://dx.doi.org/10.1016/j.talanta.2018.05.061] [PMID: 30086898]
[222]
Liu, S.; Shen, Z.; Deng, L.; Liu, G. Smartphone assisted portable biochip for non-invasive simultaneous monitoring of glucose and insulin towards precise diagnosis of prediabetes/diabetes. Biosens. Bioelectron., 2022, 209, 114251.
[http://dx.doi.org/10.1016/j.bios.2022.114251] [PMID: 35405503]
[223]
Kohler, N.; Lipton, A. Platelets as a source of fibroblast growth-promoting activity. Exp. Cell Res., 1974, 87(2), 297-301.
[http://dx.doi.org/10.1016/0014-4827(74)90484-4] [PMID: 4370268]
[224]
Zhang, H.; Li, X.F.; Le, X.C. Differentiation and detection of PDGF isomers and their receptors by tunable aptamer capillary electrophoresis. Anal. Chem., 2009, 81(18), 7795-7800.
[http://dx.doi.org/10.1021/ac901471w] [PMID: 19691297]
[225]
Pierce, G.F.; Tarpley, J.E.; Tseng, J.; Bready, J.; Chang, D.; Kenney, W.C.; Rudolph, R.; Robson, M.C.; Vande Berg, J.; Reid, P. Detection of platelet-derived growth factor (PDGF)-AA in actively healing human wounds treated with recombinant PDGF-BB and absence of PDGF in chronic nonhealing wounds. J. Clin. Invest., 1995, 96(3), 1336-1350.
[http://dx.doi.org/10.1172/JCI118169] [PMID: 7657809]
[226]
Yang, X.H.; Sun, S.; Liu, P.; Wang, K.M.; Wang, Q.; Liu, J.B.; Huang, J.; He, L.L. A novel fluorescent detection for PDGF-BB based on dsDNA-templated copper nanoparticles. Chin. Chem. Lett., 2014, 25(1), 9-14.
[http://dx.doi.org/10.1016/j.cclet.2013.10.032]
[227]
Zhang, J.J.; Cao, J.T.; Shi, G.F.; Huang, K.J.; Liu, Y.M.; Ren, S.W. A luminol electrochemiluminescence aptasensor based on glucose oxidase modified gold nanoparticles for measurement of platelet-derived growth factor BB. Talanta, 2015, 132, 65-71.
[http://dx.doi.org/10.1016/j.talanta.2014.08.058] [PMID: 25476280]
[228]
Menon, S.; Mathew, M.R.; Sam, S.; Keerthi, K.; Kumar, K.G. Recent advances and challenges in electrochemical biosensors for emerging and re-emerging infectious diseases. J. Electroanal. Chem. (Lausanne), 2020, 878, 114596.
[http://dx.doi.org/10.1016/j.jelechem.2020.114596] [PMID: 32863810]
[229]
Anik, Ü. Electrochemical medical biosensors for POC applications, Medical biosensors for point of care (POC) applications; Elsevier, 2017, pp. 275-292.
[http://dx.doi.org/10.1016/B978-0-08-100072-4.00012-5]
[230]
Zhang, C.G.; Chang, S.J.; Settu, K.; Jung Chen, C.; Liu, J.T. High-sensitivity glycated hemoglobin (HbA1c) aptasensor in rapid-prototyping surface plasmon resonance. Sens. Actuators B Chem., 2019, 279, 267-273.
[http://dx.doi.org/10.1016/j.snb.2018.09.077]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy