Review Article

COVID-19中的大麻素受体:肇事者和受害者

卷 30, 期 34, 2023

发表于: 04 November, 2022

页: [3832 - 3845] 页: 14

弟呕挨: 10.2174/0929867329666220829145029

价格: $65

conference banner
摘要

COVID-19 由 SARS-CoV-2 引起,在严重受影响的病例中会导致急性肺损伤 (ALI)、急性呼吸窘迫综合征 (ARDS) 和肺外表现。然而,大多数受影响的病例是轻度或无症状的。大麻素(CBs),如四氢大麻酚(THC)和大麻二酚(CBD),作用于称为CB1和CB2的G蛋白偶联受体,具有抗炎作用。许多已发表的研究表明,CBs对各种炎症性疾病、病毒感染以及ALI和ARDS的衰减有效。因此,本叙述性综述旨在总结CBs在COVID-19中可能的免疫学作用。CBs的影响是有争议的,尽管它们通过CB2受体具有有益作用,通过CB1受体对ALI,ARDS和过度炎症有不利影响,这是COVID-19的标志。本叙述性综述表明,CBs通过抑制促炎细胞因子来有效管理ALI和ARDS,这在COVID-19中很常见。因此,CB可用于治疗COVID-19,因为它们具有强大的抗炎作用,抑制促炎细胞因子并抑制炎症信号通路。

关键词: COVID-19、SARS-CoV-2、急性肺损伤、大麻素、急性呼吸窘迫综合征、抗炎作用。

[1]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Alzahrani, K.J.; Cruz-Martins, N.; Batiha, G.E.S. The potential role of neopterin in Covid-19: A new perspective. Mol. Cell. Biochem., 2021, 476(11), 4161-4166.
[http://dx.doi.org/10.1007/s11010-021-04232-z] [PMID: 34319496]
[2]
Sohrabi, C.; Alsafi, Z.; O’Neill, N.; Khan, M.; Kerwan, A.; Al-Jabir, A.; Iosifidis, C.; Agha, R. World Health Organization declares global emergency: A review of the 2019 novel coronavirus (COVID-19). Int. J. Surg., 2020, 76, 71-76.
[http://dx.doi.org/10.1016/j.ijsu.2020.02.034] [PMID: 32112977]
[3]
Al-Kuraishy, H.; Al-Gareeb, A.; Al-Niemi, M.; Al-Buhadily, A.; Al-Harchan, N.; Lugnier, C. COVID-19 and phosphodiesterase enzyme type 5 inhibitors. J. Microsc. Ultrastruct., 2020, 8(4), 141-145.
[http://dx.doi.org/10.4103/JMAU.JMAU_63_20] [PMID: 33623736]
[4]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Qusty, N.; Cruz-Martins, N.; El-Saber Batiha, G. Sequential doxycycline and colchicine combination therapy in Covid-19: The salutary effects. Pulm. Pharmacol. Ther., 2021, 67, 102008.
[http://dx.doi.org/10.1016/j.pupt.2021.102008] [PMID: 33727066]
[5]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Alqarni, M.; Cruz-Martins, N.; El-Saber Batiha, G. Pleiotropic effects of tetracyclines in the management of COVID-19: Emerging perspectives. Front. Pharmacol., 2021, 12, 642822.
[http://dx.doi.org/10.3389/fphar.2021.642822] [PMID: 33967777]
[6]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Almulaiky, Y.Q.; Cruz-Martins, N.; El-Saber Batiha, G. Role of leukotriene pathway and montelukast in pulmonary and extrapulmonary manifestations of Covid-19: The enigmatic entity. Eur. J. Pharmacol., 2021, 904, 174196.
[http://dx.doi.org/10.1016/j.ejphar.2021.174196] [PMID: 34004207]
[7]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Alzahrani, K.J.; Alexiou, A.; Batiha, G.E.S. Niclosamide for Covid-19: Bridging the gap. Mol. Biol. Rep., 2021, 48(12), 8195-8202.
[http://dx.doi.org/10.1007/s11033-021-06770-7] [PMID: 34664162]
[8]
Onohuean, H.; Al-kuraishy, H.M.; Al-Gareeb, A.I.; Qusti, S.; Alshammari, E.M.; Batiha, G.E.S. Covid-19 and development of heart failure: Mystery and truth. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(10), 2013-2021.
[http://dx.doi.org/10.1007/s00210-021-02147-6] [PMID: 34480616]
[9]
Grotenhermen, F. Cannabinoids. Curr. Drug Targets CNS Neurol. Disord., 2005, 4(5), 507-530.
[http://dx.doi.org/10.2174/156800705774322111] [PMID: 16266285]
[10]
Mechoulam, R. Cannabinoids research. Available from: cannabinoids.huji.ac.il
[11]
Kumar, R.N.; Chambers, W.A.; Pertwee, R.G. Pharmacological actions and therapeutic uses of cannabis and cannabinoids. Anaesthesia, 2001, 56(11), 1059-1068.
[PMID: 11703238]
[12]
Shahbazi, F.; Grandi, V.; Banerjee, A.; Trant, J.F. Cannabinoids and cannabinoid receptors: The story so far. iScience, 2020, 23(7), 101301.
[http://dx.doi.org/10.1016/j.isci.2020.101301] [PMID: 32629422]
[13]
Scherma, M.; Masia, P.; Satta, V.; Fratta, W.; Fadda, P.; Tanda, G. Brain activity of anandamide: A rewarding bliss? Acta Pharmacol. Sin., 2019, 40(3), 309-323.
[http://dx.doi.org/10.1038/s41401-018-0075-x] [PMID: 30050084]
[14]
Maccarrone, M. Metabolism of the endocannabinoid anandamide: Open questions after 25 years. Front. Mol. Neurosci., 2017, 10, 166.
[http://dx.doi.org/10.3389/fnmol.2017.00166] [PMID: 28611591]
[15]
Fazio, D.; Criscuolo, E.; Piccoli, A.; Barboni, B.; Fezza, F.; Maccarrone, M. Advances in the discovery of fatty acid amide hydrolase inhibitors: What does the future hold? Expert Opin. Drug Discov., 2020, 15(7), 765-778.
[http://dx.doi.org/10.1080/17460441.2020.1751118] [PMID: 32292082]
[16]
Bartholomäus, R.; Nicolussi, S.; Baumann, A.; Rau, M.; Simão, A.C.; Gertsch, J.; Altmann, K.H. Total synthesis of the endocannabinoid uptake inhibitor guineensine and SAR studies. ChemMedChem, 2019, 14(17), 1590-1596.
[http://dx.doi.org/10.1002/cmdc.201900390] [PMID: 31322825]
[17]
Morris, A. Developing novel chemotherapeutics: A structure-activity study of anandamide analogs and their cytotoxic profiles. Available from: http://hdl.handle.net/ 10342/7621
[18]
Di Marzo, V. New approaches and challenges to targeting the endocannabinoid system. Nat. Rev. Drug Discov., 2018, 17(9), 623-639.
[http://dx.doi.org/10.1038/nrd.2018.115] [PMID: 30116049]
[19]
Patel, S.; Hill, M.N.; Cheer, J.F.; Wotjak, C.T.; Holmes, A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci. Biobehav. Rev., 2017, 76(Pt A), 56-66.
[http://dx.doi.org/10.1016/j.neubiorev.2016.12.033] [PMID: 28434588]
[20]
Reiss, C.S. Cannabinoids and viral infections. Pharmaceuticals (Basel), 2010, 3(6), 1873-1886.
[http://dx.doi.org/10.3390/ph3061873] [PMID: 20634917]
[21]
Massi, P.; Vaccani, A.; Parolaro, D. Cannabinoids, immune system and cytokine network. Curr. Pharm. Des., 2006, 12(24), 3135-3146.
[http://dx.doi.org/10.2174/138161206777947425] [PMID: 16918439]
[22]
Tanasescu, R.; Constantinescu, C.S. Cannabinoids and the immune system: An overview. Immunobiology, 2010, 215(8), 588-597.
[http://dx.doi.org/10.1016/j.imbio.2009.12.005] [PMID: 20153077]
[23]
Croxford, J.L.; Yamamura, T. Cannabinoids and the immune system: Potential for the treatment of inflammatory diseases? J. Neuroimmunol., 2005, 166(1-2), 3-18.
[http://dx.doi.org/10.1016/j.jneuroim.2005.04.023] [PMID: 16023222]
[24]
Nagarkatti, P.; Pandey, R.; Rieder, S.A.; Hegde, V.L.; Nagarkatti, M. Cannabinoids as novel anti-inflammatory drugs. Future Med. Chem., 2009, 1(7), 1333-1349.
[http://dx.doi.org/10.4155/fmc.09.93] [PMID: 20191092]
[25]
Carrier, E.J.; Auchampach, J.A.; Hillard, C.J. Inhibition of an equilibrative nucleoside transporter by cannabidiol: A mechanism of cannabinoid immunosuppression. Proc. Natl. Acad. Sci. USA, 2006, 103(20), 7895-7900.
[http://dx.doi.org/10.1073/pnas.0511232103] [PMID: 16672367]
[26]
Ossola, C.A.; Balcarcel, N.B.; Astrauskas, J.I.; Bozzini, C.; Elverdin, J.C.; Fernández-Solari, J. A new target to ameliorate the damage of periodontal disease: The role of transient receptor potential vanilloid type1 in contrast to that of specific cannabinoid receptors in rats. J. Periodontol., 2019, 90(11), 1325-1335.
[http://dx.doi.org/10.1002/JPER.18-0766] [PMID: 31077362]
[27]
Smesny, S.; Rosburg, T.; Baur, K.; Rudolph, N.; Sauer, H. Cannabinoids influence lipid-arachidonic acid pathways in schizophrenia. Neuropsychopharmacology, 2007, 32(10), 2067-2073.
[http://dx.doi.org/10.1038/sj.npp.1301343] [PMID: 17314920]
[28]
Ruhl, T.; Corsten, C.; Beier, J.P.; Kim, B.S. The immunosuppressive effect of the endocannabinoid system on the inflammatory phenotypes of macrophages and mesenchymal stromal cells: A comparative study. Pharmacol. Rep., 2021, 73(1), 143-153.
[http://dx.doi.org/10.1007/s43440-020-00166-3] [PMID: 33026642]
[29]
Robinson, E.S.; Alves, P.; Bashir, M.M.; Zeidi, M.; Feng, R.; Werth, V.P. Cannabinoid reduces inflammatory cytokines tumor necrosis factor alpha and type I interferons in dermatomyositis in vitro. J. Invest. Dermatol., 2017, 137(11), 2445-2447.
[http://dx.doi.org/10.1016/j.jid.2017.05.035] [PMID: 28652111]
[30]
Henshaw, F.R.; Dewsbury, L.S.; Lim, C.K.; Steiner, G.Z. The effects of cannabinoids on pro- and anti-inflammatory cytokines: A systematic review of in vivo studies. Cannabis Cannabinoid Res., 2021, 6(3), 177-195.
[http://dx.doi.org/10.1089/can.2020.0105] [PMID: 33998900]
[31]
Irrera, N.; D’Ascola, A.; Pallio, G.; Bitto, A.; Mazzon, E.; Mannino, F.; Squadrito, V.; Arcoraci, V.; Minutoli, L.; Campo, G.M.; Avenoso, A.; Bongiorno, E.B.; Vaccaro, M.; Squadrito, F.; Altavilla, D. β-Caryophyllene mitigates collagen antibody induced arthritis (CAIA) in mice through a cross-talk between CB2 and PPAR-γ receptors. Biomolecules, 2019, 9(8), 326.
[http://dx.doi.org/10.3390/biom9080326] [PMID: 31370242]
[32]
Celorrio, M.; Rojo-Bustamante, E.; Fernández-Suárez, D.; Sáez, E.; Estella-Hermoso de Mendoza, A.; Müller, C.E.; Ramírez, M.J.; Oyarzábal, J.; Franco, R.; Aymerich, M.S. GPR55: A therapeutic target for Parkinson’s disease? Neuropharmacology, 2017, 125, 319-332.
[http://dx.doi.org/10.1016/j.neuropharm.2017.08.017] [PMID: 28807673]
[33]
Bujak, J.K.; Kosmala, D.; Szopa, I.M.; Majchrzak, K.; Bednarczyk, P. Inflammation, cancer and immunity—implication of TRPV1 channel. Front. Oncol., 2019, 9, 1087.
[http://dx.doi.org/10.3389/fonc.2019.01087] [PMID: 31681615]
[34]
Latko, M.; Czyrek, A.; Porębska, N.; Kucińska, M.; Otlewski, J.; Zakrzewska, M.; Opaliński, Ł. Cross-talk between fibroblast growth factor receptors and other cell surface proteins. Cells, 2019, 8(5), 455.
[http://dx.doi.org/10.3390/cells8050455] [PMID: 31091809]
[35]
Murphy, N.; Cowley, T.R.; Blau, C.W.; Dempsey, C.N.; Noonan, J.; Gowran, A.; Tanveer, R.; Olango, W.M.; Finn, D.P.; Campbell, V.A.; Lynch, M.A. The fatty acid amide hydrolase inhibitor URB597 exerts anti-inflammatory effects in hippocampus of aged rats and restores an age-related deficit in long-term potentiation. J. Neuroinflammation, 2012, 9(1), 581.
[http://dx.doi.org/10.1186/1742-2094-9-79] [PMID: 22537429]
[36]
Chiurchiù, V.; Scipioni, L.; Arosio, B.; Mari, D.; Oddi, S.; Maccarrone, M. Anti-inflammatory effects of fatty acid amide hydrolase inhibition in monocytes/macrophages from alzheimer’s disease patients. Biomolecules, 2021, 11(4), 502.
[http://dx.doi.org/10.3390/biom11040502] [PMID: 33810505]
[37]
Shamran, H.; Singh, N.P.; Zumbrun, E.E.; Murphy, A.; Taub, D.D.; Mishra, M.K.; Price, R.L.; Chatterjee, S.; Nagarkatti, M.; Nagarkatti, P.S.; Singh, U.P. Fatty acid amide hydrolase (FAAH) blockade ameliorates experimental colitis by altering microRNA expression and suppressing inflammation. Brain Behav. Immun., 2017, 59, 10-20.
[http://dx.doi.org/10.1016/j.bbi.2016.06.008] [PMID: 27327245]
[38]
Maggirwar, S.B.; Khalsa, J.H. The link between cannabis use, immune system, and viral infections. Viruses, 2021, 13(6), 1099.
[http://dx.doi.org/10.3390/v13061099] [PMID: 34207524]
[39]
Karmaus, P.W.F.; Chen, W.; Crawford, R.; Kaplan, B.L.F.; Kaminski, N.E. Δ9-tetrahydrocannabinol impairs the inflammatory response to influenza infection: role of antigen-presenting cells and the cannabinoid receptors 1 and 2. Toxicol. Sci., 2013, 131(2), 419-433.
[http://dx.doi.org/10.1093/toxsci/kfs315] [PMID: 23152191]
[40]
Sun, L.J.; Yu, J.W.; Wan, L.; Zhang, X.Y.; Shi, Y.G.; Chen, M.Y. Endocannabinoid system activation contributes to glucose metabolism disorders of hepatocytes and promotes hepatitis C virus replication. Int. J. Infect. Dis., 2014, 23, 75-81.
[http://dx.doi.org/10.1016/j.ijid.2013.12.017] [PMID: 24704332]
[41]
Huemer, H.P.; Lassnig, C.; Bernhard, D.; Sturm, S.; Nowotny, N.; Kitchen, M.; Pavlic, M. Cannabinoids lead to enhanced virulence of the smallpox vaccine (vaccinia) virus. Immunobiology, 2011, 216(6), 670-677.
[http://dx.doi.org/10.1016/j.imbio.2010.11.001] [PMID: 21131094]
[42]
Tahamtan, A.; Samieipoor, Y.; Nayeri, F.S.; Rahbarimanesh, A.A.; Izadi, A.; Rashidi-Nezhad, A.; Tavakoli-Yaraki, M.; Farahmand, M.; Bont, L.; Shokri, F.; Mokhatri-Azad, T.; Salimi, V. Effects of cannabinoid receptor type 2 in respiratory syncytial virus infection in human subjects and mice. Virulence, 2018, 9(1), 217-230.
[http://dx.doi.org/10.1080/21505594.2017.1389369] [PMID: 28992427]
[43]
Armas-Rillo, L.; Valera, M.S.; Marrero-Hernández, S.; Valenzuela-Fernández, A. Membrane dynamics associated with viral infection. Rev. Med. Virol., 2016, 26(3), 146-160.
[http://dx.doi.org/10.1002/rmv.1872] [PMID: 26817660]
[44]
Athanasiou, A.; Clarke, A.B.; Turner, A.E.; Kumaran, N.M.; Vakilpour, S.; Smith, P.A.; Bagiokou, D.; Bradshaw, T.D.; Westwell, A.D.; Fang, L.; Lobo, D.N.; Constantinescu, C.S.; Calabrese, V.; Loesch, A.; Alexander, S.P.H.; Clothier, R.H.; Kendall, D.A.; Bates, T.E. Cannabinoid receptor agonists are mitochondrial inhibitors: A unified hypothesis of how cannabinoids modulate mitochondrial function and induce cell death. Biochem. Biophys. Res. Commun., 2007, 364(1), 131-137.
[http://dx.doi.org/10.1016/j.bbrc.2007.09.107] [PMID: 17931597]
[45]
Silva, J.P.; Araújo, A.M.; de Pinho, P.G.; Carmo, H.; Carvalho, F. Synthetic cannabinoids JWH-122 and THJ-2201 disrupt endocannabinoid-regulated mitochondrial function and activate apoptotic pathways as a primary mechanism of in vitro nephrotoxicity at in vivo relevant concentrations. Toxicol. Sci., 2019, 169(2), 422-435.
[http://dx.doi.org/10.1093/toxsci/kfz050] [PMID: 30796436]
[46]
Peterson, P.K.; Gekker, G.; Hu, S.; Cabral, G.; Lokensgard, J.R. Cannabinoids and morphine differentially affect HIV-1 expression in CD4+ lymphocyte and microglial cell cultures. J. Neuroimmunol., 2004, 147(1-2), 123-126.
[http://dx.doi.org/10.1016/j.jneuroim.2003.10.026] [PMID: 14741442]
[47]
Abrams, D.I.; Hilton, J.F.; Leiser, R.J.; Shade, S.B.; Elbeik, T.A.; Aweeka, F.T.; Benowitz, N.L.; Bredt, B.M.; Kosel, B.; Aberg, J.A.; Deeks, S.G.; Mitchell, T.F.; Mulligan, K.; Bacchetti, P.; McCune, J.M.; Schambelan, M. Short-term effects of cannabinoids in patients with HIV-1 infection: A randomized, placebo-controlled clinical trial. Ann. Intern. Med., 2003, 139(4), 258-266.
[http://dx.doi.org/10.7326/0003-4819-139-4-200308190-00008] [PMID: 12965981]
[48]
Kim, H.J.; Shin, A.H.; Thayer, S.A. Activation of cannabinoid type 2 receptors inhibits HIV-1 envelope glycoprotein gp120-induced synapse loss. Mol. Pharmacol., 2011, 80(3), 357-366.
[http://dx.doi.org/10.1124/mol.111.071647] [PMID: 21670103]
[49]
Kumar, V.; Torben, W.; Mansfield, J.; Alvarez, X.; Vande Stouwe, C.; Li, J.; Byrareddy, S.N.; Didier, P.J.; Pahar, B.; Molina, P.E.; Mohan, M. Cannabinoid attenuation of intestinal inflammation in chronic SIV-infected rhesus macaques involves T cell modulation and differential expression of micro-RNAs and pro-inflammatory genes. Front. Immunol., 2019, 10, 914.
[http://dx.doi.org/10.3389/fimmu.2019.00914] [PMID: 31114576]
[50]
Tahamtan, A.; Tavakoli-Yaraki, M.; Shadab, A.; Rezaei, F.; Marashi, S.M.; Shokri, F.; Mokhatri-Azad, T.; Salimi, V. The role of cannabinoid receptor 1 in the immunopathology of respiratory syncytial virus. Viral Immunol., 2018, 31(4), 292-298.
[http://dx.doi.org/10.1089/vim.2017.0098] [PMID: 29461930]
[51]
Tahamtan, A.; Samadizadeh, S.; Rastegar, M.; Nakstad, B.; Salimi, V. Respiratory syncytial virus infection: Why does disease severity vary among individuals? Expert Rev. Respir. Med., 2020, 14(4), 415-423.
[http://dx.doi.org/10.1080/17476348.2020.1724095] [PMID: 31995408]
[52]
Beji, C.; Loucif, H.; Telittchenko, R.; Olagnier, D.; Dagenais-Lussier, X.; van Grevenynghe, J. Cannabinoid-induced immunomodulation during viral infections: A focus on mitochondria. Viruses, 2020, 12(8), 875.
[http://dx.doi.org/10.3390/v12080875] [PMID: 32796517]
[53]
Bhatt, H.K.; Song, D.; Musgrave, G.; Rao, P.S.S. Cannabinoid-induced changes in the immune system: The role of microRNAs. Int. Immunopharmacol., 2021, 98, 107832.
[http://dx.doi.org/10.1016/j.intimp.2021.107832] [PMID: 34107381]
[54]
Nagre, N. Activation of cannabinoid-2 receptor protects against pseudomonas aeruginosa induced acute lung injury and inflammation. TP113 Acute Lung Injury Repair, American Thoracic Society 2021 InternationalSan Diego, CA2021, 2021, pp. A4363-A4363.
[http://dx.doi.org/10.1164/ajrccm-conference.2021.203.1_MeetingAbstracts.A4363]
[55]
Zawatsky, C.N.; Abdalla, J.; Cinar, R. Synthetic cannabinoids induce acute lung inflammation via cannabinoid receptor 1 activation. ERJ Open Res., 2020, 6(3), 00121-2020.
[http://dx.doi.org/10.1183/23120541.00121-2020] [PMID: 32832534]
[56]
Conuel, E.J.; Chieng, H.C.; Fantauzzi, J.; Pokhrel, K.; Goldman, C.; Smith, T.C.; Tiwari, A.; Chopra, A.; Judson, M.A. Cannabinoid oil vaping-associated lung injury and its radiographic appearance. Am. J. Med., 2020, 133(7), 865-867.
[http://dx.doi.org/10.1016/j.amjmed.2019.10.032] [PMID: 31751528]
[57]
Liu, A.P.; Yuan, Q.H.; Zhang, B.; Yang, L.; He, Q.W.; Chen, K.; Liu, Q.S.; Li, Z.; Zhan, J. Cannabinoid receptor 2 activation alleviates septic lung injury by promoting autophagy via inhibition of inflammatory mediator release. Cell. Signal., 2020, 69, 109556.
[http://dx.doi.org/10.1016/j.cellsig.2020.109556] [PMID: 32027949]
[58]
Zeng, J.; Li, X.; Cheng, Y.; Ke, B.; Wang, R. Activation of cannabinoid receptor type 2 reduces lung ischemia reperfusion injury through PI3K/Akt pathway. Int. J. Clin. Exp. Pathol., 2019, 12(11), 4096-4105.
[PMID: 31933805]
[59]
Ribeiro, A.; Ferraz-de-Paula, V.; Pinheiro, M.L.; Vitoretti, L.B.; Mariano-Souza, D.P.; Quinteiro-Filho, W.M.; Akamine, A.T.; Almeida, V.I.; Quevedo, J.; Dal-Pizzol, F.; Hallak, J.E.; Zuardi, A.W.; Crippa, J.A.; Palermo-Neto, J. Cannabidiol, a non-psychotropic plant-derived cannabinoid, decreases inflammation in a murine model of acute lung injury: Role for the adenosine A2A receptor. Eur. J. Pharmacol., 2012, 678(1-3), 78-85.
[http://dx.doi.org/10.1016/j.ejphar.2011.12.043] [PMID: 22265864]
[60]
Chen, M.; Yan, X.T.; Ye, L.; Tang, J.J.; Zhang, Z.Z.; He, X.H. Dexmedetomidine ameliorates lung injury induced by intestinal ischemia/reperfusion by upregulating cannabinoid receptor 2, followed by the activation of the phosphatidylinositol 3-kinase/Akt pathway. Oxid. Med. Cell. Longev., 2020, 2020, 1-14.
[http://dx.doi.org/10.1155/2020/6120194] [PMID: 32655771]
[61]
Mohammed, A.; Alghetaa, H.K.; Zhou, J.; Chatterjee, S.; Nagarkatti, P.; Nagarkatti, M. Protective effects of Δ 9 tetrahydrocannabinol against enterotoxininduced acute respiratory distress syndrome are mediated by modulation of microbiota. Br. J. Pharmacol., 2020, 177(22), 5078-5095.
[http://dx.doi.org/10.1111/bph.15226] [PMID: 32754917]
[62]
Mohammed, A.; Alghetaa, F.K. H.; Miranda, K.; Wilson, K.; P Singh, N.; Cai, G.; Putluri, N.; Nagarkatti, P.; Nagarkatti, M. 9-tetrahydrocannabinol prevents mortality from acute respiratory distress syndrome through the induction of apoptosis in immune cells, leading to cytokine storm suppression. Int. J. Mol. Sci., 2020, 21(17), 6244.
[http://dx.doi.org/10.3390/ijms21176244] [PMID: 32872332]
[63]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Faidah, H.; Al-Maiahy, T.J.; Cruz-Martins, N.; Batiha, G.E.S. The looming effects of estrogen in Covid-19: A rocky rollout. Front. Nutr., 2021, 8, 649128.
[http://dx.doi.org/10.3389/fnut.2021.649128] [PMID: 33816542]
[64]
Vitiello, A.; Ferrara, F. Colchicine and SARS-CoV-2: Management of the hyperinflammatory state. Respir. Med., 2021, 178, 106322.
[http://dx.doi.org/10.1016/j.rmed.2021.106322] [PMID: 33550151]
[65]
Boligan, K.F.; von Gunten, S. Innate lymphoid cells in asthma: cannabinoids on the balance. Allergy, 2017, 72(6), 839-841.
[http://dx.doi.org/10.1111/all.13145] [PMID: 28226397]
[66]
García-Baos, A.; Alegre-Zurano, L.; Cantacorps, L.; Martín-Sánchez, A.; Valverde, O. Role of cannabinoids in alcohol-induced neuroinflammation. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2021, 104, 110054.
[http://dx.doi.org/10.1016/j.pnpbp.2020.110054] [PMID: 32758518]
[67]
Luo, W.; Li, Y.X.; Jiang, L.J.; Chen, Q.; Wang, T.; Ye, D.W. Targeting JAK-STAT signaling to control cytokine release syndrome in COVID-19. Trends Pharmacol. Sci., 2020, 41(8), 531-543.
[http://dx.doi.org/10.1016/j.tips.2020.06.007] [PMID: 32580895]
[68]
Satarker, S.; Tom, A.A.; Shaji, R.A.; Alosious, A.; Luvis, M.; Nampoothiri, M. JAK-STAT pathway inhibition and their implications in COVID-19 therapy. Postgrad. Med., 2021, 133(5), 489-507.
[http://dx.doi.org/10.1080/00325481.2020.1855921] [PMID: 33245005]
[69]
van den Berg, D.F.; te Velde, A.A. Severe COVID-19: NLRP3 inflammasome dysregulated. Front. Immunol., 2020, 11, 1580.
[http://dx.doi.org/10.3389/fimmu.2020.01580] [PMID: 32670297]
[70]
Freeman, T.L.; Swartz, T.H. Targeting the NLRP3 inflammasome in severe COVID-19. Front. Immunol., 2020, 11, 1518.
[http://dx.doi.org/10.3389/fimmu.2020.01518] [PMID: 32655582]
[71]
Yu, W.; Jin, G.; Zhang, J.; Wei, W. Selective activation of cannabinoid receptor 2 attenuates myocardial infarction via suppressing NLRP3 inflammasome. Inflammation, 2019, 42(3), 904-914.
[http://dx.doi.org/10.1007/s10753-018-0945-x] [PMID: 30554372]
[72]
Han, J.H.; Shin, H.; Rho, J.G.; Kim, J.E.; Son, D.H.; Yoon, J.; Lee, Y.J.; Park, J.H.; Song, B.J.; Choi, C.S.; Yoon, S.G.; Kim, I.Y.; Lee, E.K.; Seong, J.K.; Kim, K.W.; Kim, W. Peripheral cannabinoid 1 receptor blockade mitigates adipose tissue inflammation via NLRP3 inflammasome in mouse models of obesity. Diabetes Obes. Metab., 2018, 20(9), 2179-2189.
[http://dx.doi.org/10.1111/dom.13350] [PMID: 29740969]
[73]
Grimes, J.M.; Grimes, K.V. p38 MAPK inhibition: A promising therapeutic approach for COVID-19. J. Mol. Cell. Cardiol., 2020, 144, 63-65.
[http://dx.doi.org/10.1016/j.yjmcc.2020.05.007] [PMID: 32422320]
[74]
Faubert Kaplan, B.L.; Kaminski, N.E. Cannabinoids inhibit the activation of ERK MAPK in PMA/Io-stimulated mouse splenocytes. Int. Immunopharmacol., 2003, 3(10-11), 1503-1510.
[http://dx.doi.org/10.1016/S1567-5769(03)00163-2] [PMID: 12946447]
[75]
Greenhough, A.; Patsos, H.A.; Williams, A.C.; Paraskeva, C. The cannabinoid δ 9 tetrahydrocannabinol inhibits RASMAPK and PI3KAKT survival signalling and induces BADmediated apoptosis in colorectal cancer cells. Int. J. Cancer, 2007, 121(10), 2172-2180.
[http://dx.doi.org/10.1002/ijc.22917] [PMID: 17583570]
[76]
Liu, C.; Sadat, S.H.; Ebisumoto, K.; Sakai, A.; Panuganti, B.A.; Ren, S.; Goto, Y.; Haft, S.; Fukusumi, T.; Ando, M.; Saito, Y.; Guo, T.; Tamayo, P.; Yeerna, H.; Kim, W.; Hubbard, J.; Sharabi, A.B.; Gutkind, J.S.; Califano, J.A. Cannabinoids promote progression of HPV-positive head and neck squamous cell carcinoma via p38 MAPK activation. Clin. Cancer Res., 2020, 26(11), 2693-2703.
[http://dx.doi.org/10.1158/1078-0432.CCR-18-3301] [PMID: 31932491]
[77]
Derkinderen, P.; Ledent, C.; Parmentier, M.; Girault, J.A. Cannabinoids activate p38 mitogen-activated protein kinases through CB1 receptors in hippocampus. J. Neurochem., 2001, 77(3), 957-960.
[http://dx.doi.org/10.1046/j.1471-4159.2001.00333.x] [PMID: 11331425]
[78]
El Biali, M.; Broers, B.; Besson, M.; Demeules, J. Cannabinoids and COVID-19. Med. Cannabis Cannabinoids, 2020, 3(2), 111-115.
[http://dx.doi.org/10.1159/000510799] [PMID: 34671712]
[79]
Khalid, S.; Almalki, F.A.; Hadda, T.B.; Bader, A.; Abu-Izneid, T.; Berredjem, M.; Elsharkawy, E.R.; Alqahtani, A.M. Medicinal applications of cannabinoids extracted from Cannabis sativa (L.): A new route in the fight against covid-19? Curr. Pharm. Des., 2021, 27(13), 1564-1578.
[http://dx.doi.org/10.2174/1381612826666201202125807] [PMID: 33267756]
[80]
Zheng, Y.; Li, R.; Liu, S. Immunoregulation with mTOR inhibitors to prevent COVID19 severity: A novel intervention strategy beyond vaccines and specific antiviral medicines. J. Med. Virol., 2020, 92(9), 1495-1500.
[http://dx.doi.org/10.1002/jmv.26009] [PMID: 32410266]
[81]
Utomo, W.K.; de Vries, M.; Braat, H.; Bruno, M.J.; Parikh, K.; Comalada, M.; Peppelenbosch, M.P.; van Goor, H.; Fuhler, G.M. Modulation of human peripheral blood mononuclear cell signaling by medicinal cannabinoids. Front. Mol. Neurosci., 2017, 10, 14.
[http://dx.doi.org/10.3389/fnmol.2017.00014] [PMID: 28174520]
[82]
Wargo, K.A.; Geveden, B.N.; McConnell, V.J. Cannabinoid-induced pancreatitis: a case series. JOP, 2007, 8(5), 579-583.
[PMID: 17873462]
[83]
Mazza, M.G.; De Lorenzo, R.; Conte, C.; Poletti, S.; Vai, B.; Bollettini, I.; Melloni, E.M.T.; Furlan, R.; Ciceri, F.; Rovere-Querini, P.; Benedetti, F. Anxiety and depression in COVID-19 survivors: Role of inflammatory and clinical predictors. Brain Behav. Immun., 2020, 89, 594-600.
[http://dx.doi.org/10.1016/j.bbi.2020.07.037] [PMID: 32738287]
[84]
Stampanoni Bassi, M.; Gilio, L.; Maffei, P.; Dolcetti, E.; Bruno, A.; Buttari, F.; Centonze, D.; Iezzi, E. Exploiting the multifaceted effects of cannabinoids on mood to boost their therapeutic use against anxiety and depression. Front. Mol. Neurosci., 2018, 11, 424.
[http://dx.doi.org/10.3389/fnmol.2018.00424] [PMID: 30515077]
[85]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Qusti, S.; Alshammari, E.M.; Gyebi, G.A.; Batiha, G.E.S. Covid-19-induced dysautonomia: A menace of sympathetic storm. ASN Neuro, 2021, 13
[http://dx.doi.org/10.1177/17590914211057635] [PMID: 34755562]
[86]
Marchalant, Y.; Brothers, H.M.; Norman, G.J.; Karelina, K.; DeVries, A.C.; Wenk, G.L. Cannabinoids attenuate the effects of aging upon neuroinflammation and neurogenesis. Neurobiol. Dis., 2009, 34(2), 300-307.
[http://dx.doi.org/10.1016/j.nbd.2009.01.014] [PMID: 19385063]
[87]
Nichols, J.M.; Kaplan, B.L.F. Immune responses regulated by cannabidiol. Cannabis Cannabinoid Res., 2020, 5(1), 12-31.
[http://dx.doi.org/10.1089/can.2018.0073] [PMID: 32322673]
[88]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Mostafa-Hedeab, G.; Kasozi, K.I.; Zirintunda, G.; Aslam, A.; Allahyani, M.; Welburn, S.C.; Batiha, G.E.S. Effects of β-blockers on the sympathetic and cytokines storms in Covid-19. Front. Immunol., 2021, 12, 749291.
[http://dx.doi.org/10.3389/fimmu.2021.749291] [PMID: 34867978]
[89]
Leite-Avalca, M.C.G.; Lomba, L.A.; Bastos-Pereira, A.L.; Brito, H.O.; Fraga, D.; Zampronio, A.R. Involvement of central endothelin ETA and cannabinoid CB1 receptors and arginine vasopressin release in sepsis induced by cecal ligation and puncture in rats. Shock, 2016, 46(3), 290-296.
[http://dx.doi.org/10.1097/SHK.0000000000000598] [PMID: 26925810]
[90]
Barna, I.; Csabai, K.; Makara, G.; Zelena, D. CANNABINOID-MEDIATED REGULATION OF THE HYPOTHALAMO-PITUITARY-ADRENAL AXIS in rats: AGE DEPENDENT ROLE OF VASOPRESSIN. Endocr. Regul., 2009, 43(1), 13-21.
[http://dx.doi.org/10.4149/endo_2009_01_13] [PMID: 19309234]
[91]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; Qusti, S.; Alshammari, E.M.; Atanu, F.O.; Batiha, G.E.S. Arginine vasopressin and pathophysiology of COVID-19: An innovative perspective. Biomed. Pharmacother., 2021, 143, 112193.
[http://dx.doi.org/10.1016/j.biopha.2021.112193] [PMID: 34543987]
[92]
Luce, V.; Fernandez Solari, J.; Rettori, V.; De Laurentiis, A. The inhibitory effect of anandamide on oxytocin and vasopressin secretion from neurohypophysis is mediated by nitric oxide. Regul. Pept., 2014, 188, 31-39.
[http://dx.doi.org/10.1016/j.regpep.2013.12.004] [PMID: 24342802]
[93]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Butnariu, M.; Batiha, G.E.S. The crucial role of prolactin-lactogenic hormone in Covid-19. Mol. Cell. Biochem., 2022, 477(5), 1381-1392.
[http://dx.doi.org/10.1007/s11010-022-04381-9] [PMID: 35147901]
[94]
Al-Kuraishy, H.M.; Al-Gareeb, A.I.; Al-hussaniy, H.A.; Al-Harcan, N.A.H.; Alexiou, A.; Batiha, G.E.S. Neutrophil Extracellular Traps (NETs) and Covid-19: A new frontiers for therapeutic modality. Int. Immunopharmacol., 2022, 104, 108516.
[http://dx.doi.org/10.1016/j.intimp.2021.108516] [PMID: 35032828]
[95]
Wang, B.; Li, D.; Fiselier, A.; Kovalchuk, I.; Kovalchuk, O. New AKT-dependent mechanisms of anti-COVID-19 action of high-CBD Cannabis sativa extracts. Cell Death Discov., 2022, 8(1), 110.
[http://dx.doi.org/10.1038/s41420-022-00876-y] [PMID: 35277472]
[96]
Wang, B.; Kovalchuk, A.; Li, D.; Rodriguez-Juarez, R.; Ilnytskyy, Y.; Kovalchuk, I.; Kovalchuk, O. In search of preventive strategies: novel high-CBD Cannabis sativa extracts modulate ACE2 expression in COVID-19 gateway tissues. Aging (Albany NY), 2020, 12(22), 22425-22444.
[PMID: 33221759]
[97]
Salles, É.L.; Khodadadi, H.; Jarrahi, A.; Ahluwalia, M.; Paffaro, V.A., Jr; Costigliola, V.; Yu, J.C.; Hess, D.C.; Dhandapani, K.M.; Baban, B. Cannabidiol (CBD) modulation of apelin in acute respiratory distress syndrome. J. Cell. Mol. Med., 2020, 24(21), 12869-12872.
[http://dx.doi.org/10.1111/jcmm.15883] [PMID: 33058425]
[98]
Nguyen, L.C.; Yang, D.; Nicolaescu, V.; Best, T.J.; Gula, H.; Saxena, D.; Gabbard, J.D.; Chen, S.N.; Ohtsuki, T.; Friesen, J.B.; Drayman, N.; Mohamed, A.; Dann, C.; Silva, D.; Robinson-Mailman, L.; Valdespino, A.; Stock, L.; Suárez, E.; Jones, K.A.; Azizi, S.A.; Demarco, J.K.; Severson, W.E.; Anderson, C.D.; Millis, J.M.; Dickinson, B.C.; Tay, S.; Oakes, S.A.; Pauli, G.F.; Palmer, K.E.; Meltzer, D.O.; Randall, G.; Rosner, M.R. Cannabidiol inhibits SARS-CoV-2 replication through induction of the host ER stress and innate immune responses. Sci. Adv., 2022, 8(8), eabi6110.
[http://dx.doi.org/10.1126/sciadv.abi6110] [PMID: 35050692]
[99]
Blanco-Melo, D.; Nilsson-Payant, B.E.; Liu, W.C.; Uhl, S.; Hoagland, D.; Møller, R.; Jordan, T.X.; Oishi, K.; Panis, M.; Sachs, D.; Wang, T.T.; Schwartz, R.E.; Lim, J.K.; Albrecht, R.A.; tenOever, B.R. Imbalanced host response to SARS-CoV-2 drives development of COVID-19. Cell, 2020, 181(5), 1036-1045.e9.
[http://dx.doi.org/10.1016/j.cell.2020.04.026] [PMID: 32416070]
[100]
Al-kuraishy, H.M.; Al-Gareeb, A.I.; El-Saber Batiha, G. The possible role of ursolic acid in Covid-19: A real game changer. Clin. Nutr. ESPEN, 2022, 47, 414-417.
[http://dx.doi.org/10.1016/j.clnesp.2021.12.030] [PMID: 35063236]
[101]
El-Saber Batiha, G.; Al-Gareeb, A.I.; Saad, H.M.; Al-kuraishy, H.M. COVID-19 and corticosteroids: a narrative review. Inflammopharmacology, 2022, 30(4), 1189-1205. Epub ahead of print
[http://dx.doi.org/10.1007/s10787-022-00987-z] [PMID: 35562628]
[102]
Dobovišek, L.; Hojnik, M.; Ferk, P. Overlapping molecular pathways between cannabinoid receptors type 1 and 2 and estrogens/androgens on the periphery and their involvement in the pathogenesis of common diseases (Review). Int. J. Mol. Med., 2016, 38(6), 1642-1651.
[http://dx.doi.org/10.3892/ijmm.2016.2779] [PMID: 27779654]
[103]
Rossi, F.; Bellini, G.; Luongo, L.; Mancusi, S.; Torella, M.; Tortora, C.; Manzo, I.; Guida, F.; Nobili, B.; de Novellis, V.; Maione, S. The 17-β-oestradiol inhibits osteoclast activity by increasing the cannabinoid CB2 receptor expression. Pharmacol. Res., 2013, 68(1), 7-15.
[http://dx.doi.org/10.1016/j.phrs.2012.10.017] [PMID: 23142558]
[104]
Franks, L.N.; Ford, B.M.; Prather, P.L. Selective estrogen receptor modulators: Cannabinoid receptor inverse agonists with differential CB1 and CB2 selectivity. Front. Pharmacol., 2016, 7, 503.
[http://dx.doi.org/10.3389/fphar.2016.00503] [PMID: 28066250]
[105]
Kumar, P.; Song, Z.H. Identification of raloxifene as a novel CB2 inverse agonist. Biochem. Biophys. Res. Commun., 2013, 435(1), 76-81.
[http://dx.doi.org/10.1016/j.bbrc.2013.04.040] [PMID: 23611779]
[106]
Kerbrat, A.; Ferré, J.C.; Fillatre, P.; Ronzière, T.; Vannier, S.; Carsin-Nicol, B.; Lavoué, S.; Vérin, M.; Gauvrit, J.Y.; Le Tulzo, Y.; Edan, G. Acute neurologic disorder from an inhibitor of fatty acid amide hydrolase. N. Engl. J. Med., 2016, 375(18), 1717-1725.
[http://dx.doi.org/10.1056/NEJMoa1604221] [PMID: 27806235]
[107]
Burstein, S. Eicosanoids as mediators of cannabinoid action. In: Marijuana/Cannabinoids; , 2019; 2019, pp. 73-92.
[http://dx.doi.org/10.1201/9780429276279-3]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy