Generic placeholder image

Drug Delivery Letters

Editor-in-Chief

ISSN (Print): 2210-3031
ISSN (Online): 2210-304X

Review Article

Nanomedicine “New Food for an Old Mouth”: Novel Approaches for the Treatment of COVID-19

Author(s): Somayeh Handali, Ismaeil Haririan, Mohammad Vaziri and Farid Abedin Dorkoosh*

Volume 13, Issue 2, 2023

Published on: 17 October, 2022

Page: [83 - 91] Pages: 9

DOI: 10.2174/2210303112666220829125054

Price: $65

conference banner
Abstract

Coronavirus disease (COVID-19) is an infectious disease caused by coronavirus. Developing specific drugs for inhibiting replication and viral entry is crucial. Several clinical trial studies are underway to evaluate the efficacy of anti-viral drugs for COVID-19 patients. Nanomedicine formulations can present a novel strategy for targeting the virus life cycle. Nano-drug delivery systems can modify the pharmacodynamics and pharmacokinetics properties of anti-viral drugs and reduce their adverse effects. Moreover, nanocarriers can directly exhibit anti-viral effects. A number of nanocarriers have been studied for this purpose, including liposomes, dendrimers, exosomes and decoy nanoparticles (NPs). Among them, decoy NPs have been considered more as nanodecoys can efficiently protect host cells from the infection of SARS-CoV-2. The aim of this review article is to highlight the probable nanomedicine therapeutic strategies to develop anti-viral drug delivery systems for the treatment of COVID-19.

Keywords: COVID-19, coronavirus, nanomedicine, nanocarrier, solid lipid nanoparticles (SLNs), RNA-dependent RNA polymerase (RdRp).

« Previous
[1]
Amin, J.A.; Ghasemi, S. The possible of immunotherapy for COVID-19: A systematic review. Int. Immunopharmacol., 2020, 83, 106455.
[2]
Kai, H.; Kai, M. Interactions of coronaviruses with ACE2, angiotensin II, and RAS inhibitors lessons from available evidence and insights into COVID-19. Hypertens. Res., 2020, 43(7), 648-654.
[http://dx.doi.org/10.1038/s41440-020-0455-8] [PMID: 32341442]
[3]
Alanagreh, L.; Alzoughool, F.; Atoum, M. The human coronavirus disease COVID-19: Its origin, characteristics, and insights into potential drugs and its mechanisms. Pathogens, 2020, 9(5), 331.
[http://dx.doi.org/10.3390/pathogens9050331] [PMID: 32365466]
[4]
Wu, C.; Liu, Y.; Yang, Y.; Zhang, P.; Zhong, W.; Wang, Y.; Wang, Q.; Xu, Y.; Li, M.; Li, X.; Zheng, M.; Chen, L.; Li, H. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharm. Sin. B, 2020, 10(5), 766-788.
[http://dx.doi.org/10.1016/j.apsb.2020.02.008] [PMID: 32292689]
[5]
Lembo, D.; Donalisio, M.; Civra, A.; Argenziano, M.; Cavalli, R. Nanomedicine formulations for the delivery of antiviral drugs: A promising solution for the treatment of viral infections. Expert Opin. Drug Deliv., 2018, 15(1), 93-114.
[http://dx.doi.org/10.1080/17425247.2017.1360863] [PMID: 28749739]
[6]
Begum, S.; Pramanik, A.; Davis, D.; Patibandla, S.; Gates, K.; Gao, Y.; Ray, P.C. 2D and heterostructure nanomaterial based strategies for combating drug-resistant bacteria. ACS Omega, 2020, 5(7), 3116-3130.
[http://dx.doi.org/10.1021/acsomega.9b03919] [PMID: 32118128]
[7]
Chakravarty, M.; Vora, A. Nanotechnology-based antiviral therapeutics. Drug Deliv. Transl. Res., 2021, 11(3), 748-787.
[PMID: 32748035]
[8]
Sanders, J.M.; Monogue, M.L.; Jodlowski, T.Z.; Cutrell, J.B. Pharmacologic treatments for coronavirus disease 2019 (COVID-19): A review. JAMA, 2020, 323(18), 1824-1836.
[http://dx.doi.org/10.1001/jama.2020.6019] [PMID: 32282022]
[9]
Cai, Q.; Yang, M.; Liu, D.; Chen, J.; Shu, D.; Xia, J.; Liao, X.; Gu, Y.; Cai, Q.; Yang, Y.; Shen, C.; Li, X.; Peng, L.; Huang, D.; Zhang, J.; Zhang, S.; Wang, F.; Liu, J.; Chen, L.; Chen, S.; Wang, Z.; Zhang, Z.; Cao, R.; Zhong, W.; Liu, Y.; Liu, L. Experimental treatment with favipiravir for COVID-19: An open-label control study. Engineering, 2020, 6(10), 1192-1198.
[http://dx.doi.org/10.1016/j.eng.2020.03.007] [PMID: 32346491]
[10]
Li, X.; Geng, M.; Peng, Y.; Meng, L.; Lu, S. Molecular immune pathogenesis and diagnosis of COVID-19. J. Pharm. Anal., 2020, 10(2), 102-108.
[http://dx.doi.org/10.1016/j.jpha.2020.03.001] [PMID: 32282863]
[11]
Wang, Y.; Zhang, D.; Du, G.; Du, R.; Zhao, J.; Jin, Y.; Fu, S.; Gao, L.; Cheng, Z.; Lu, Q.; Hu, Y.; Luo, G.; Wang, K.; Lu, Y.; Li, H.; Wang, S.; Ruan, S.; Yang, C.; Mei, C.; Wang, Y.; Ding, D.; Wu, F.; Tang, X.; Ye, X.; Ye, Y.; Liu, B.; Yang, J.; Yin, W.; Wang, A.; Fan, G.; Zhou, F.; Liu, Z.; Gu, X.; Xu, J.; Shang, L.; Zhang, Y.; Cao, L.; Guo, T.; Wan, Y.; Qin, H.; Jiang, Y.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Cao, B.; Wang, C. Remdesivir in adults with severe COVID-19: A randomised, double-blind, placebo-controlled, multicentre trial. Lancet, 2020, 395(10236), 1569-1578.
[http://dx.doi.org/10.1016/S0140-6736(20)31022-9] [PMID: 32423584]
[12]
Zhang, C.; Wu, Z.; Li, J.W.; Zhao, H.; Wang, G.Q. Cytokine release syndrome in severe COVID-19: interleukin-6 receptor antagonist tocilizumab may be the key to reduce mortality. Int. J. Antimicrob. Agents, 2020, 55(5), 105954.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105954] [PMID: 32234467]
[13]
Klopfenstein, T.; Zayet, S.; Lohse, A.; Balblanc, J.C.; Badie, J.; Royer, P.Y.; Toko, L.; Mezher, C.; Kadiane-Oussou, N.J.; Bossert, M.; Bozgan, A.M.; Charpentier, A.; Roux, M.F.; Contreras, R.; Mazurier, I.; Dussert, P.; Gendrin, V.; Conrozier, T. Tocilizumab therapy reduced intensive care unit admissions and/or mortality in COVID-19 patients. Med. Mal. Infect., 2020, 50(5), 397-400.
[http://dx.doi.org/10.1016/j.medmal.2020.05.001] [PMID: 32387320]
[14]
Alzghari, S.K.; Acuña, V.S. Supportive treatment with tocilizumab for COVID-19: A systematic review. J. Clin. Virol., 2020, 127, 104380.
[http://dx.doi.org/10.1016/j.jcv.2020.104380] [PMID: 32353761]
[15]
Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F.G.; Horby, P.W.; Zhang, D.; Wang, C. A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. N. Engl. J. Med., 2020, 382(19), 1787-1799.
[http://dx.doi.org/10.1056/NEJMoa2001282] [PMID: 32187464]
[16]
Vankadari, N. Arbidol: A potential antiviral drug for the treatment of SARS-CoV-2 by blocking trimerization of the spike glycoprotein. Int. J. Antimicrob. Agents, 2020, 56(2), 105998.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105998] [PMID: 32360231]
[17]
Deng, L.; Li, C.; Zeng, Q.; Liu, X.; Li, X.; Zhang, H.; Hong, Z.; Xia, J. Arbidol combined with LPV/r versus LPV/r alone against corona virus disease 2019: A retrospective cohort study. J. Infect., 2020, 81(1), e1-e5.
[http://dx.doi.org/10.1016/j.jinf.2020.03.002] [PMID: 32171872]
[18]
Zhu, Z.; Lu, Z.; Xu, T.; Chen, C.; Yang, G.; Zha, T.; Lu, J.; Xue, Y. Arbidol monotherapy is superior to lopinavir/ritonavir in treating COVID-19. J. Infect., 2020, 81(1), e21-e23.
[http://dx.doi.org/10.1016/j.jinf.2020.03.060] [PMID: 32283143]
[19]
Cantini, F.; Niccoli, L.; Matarrese, D.; Nicastri, E.; Stobbione, P.; Goletti, D. Baricitinib therapy in COVID-19: A pilot study on safety and clinical impact. J. Infect., 2020, 81(2), 318-356.
[http://dx.doi.org/10.1016/j.jinf.2020.04.017] [PMID: 32333918]
[20]
Praveen, D.; Puvvada, R.C. M, V.A. Janus kinase inhibitor baricitinib is not an ideal option for management of COVID-19. Int. J. Antimicrob. Agents, 2020, 55(5), 105967.
[http://dx.doi.org/10.1016/j.ijantimicag.2020.105967] [PMID: 32259575]
[21]
Harigai, M.; Winthrop, K.; Takeuchi, T.; Hsieh, T.Y.; Chen, Y.M.; Smolen, J.S.; Burmester, G.; Walls, C.; Wu, W.S.; Dickson, C.; Liao, R.; Genovese, M.C. Evaluation of hepatitis B virus in clinical trials of baricitinib in rheumatoid arthritis. RMD Open, 2020, 6(1), e001095.
[http://dx.doi.org/10.1136/rmdopen-2019-001095] [PMID: 32098857]
[22]
Winthrop, K.L.; Curtis, J.R.; Lindsey, S.; Tanaka, Y.; Yamaoka, K.; Valdez, H.; Hirose, T.; Nduaka, C.I.; Wang, L.; Mendelsohn, A.M.; Fan, H.; Chen, C.; Bananis, E. Herpes zoster and tofacitinib: Clinical outcomes and the risk of concomitant therapy. Arthritis Rheumatol., 2017, 69(10), 1960-1968.
[http://dx.doi.org/10.1002/art.40189] [PMID: 28845604]
[23]
Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: A retrospective cohort study. Lancet, 2020, 395(10229), 1054-1062.
[http://dx.doi.org/10.1016/S0140-6736(20)30566-3] [PMID: 32171076]
[24]
Tu, Y.F.; Chien, C.S.; Yarmishyn, A.A.; Lin, Y.Y.; Luo, Y.H.; Lin, Y.T.; Lai, W.Y.; Yang, D.M.; Chou, S.J.; Yang, Y.P.; Wang, M.L.; Chiou, S.H. A review of SARS-CoV-2 and the ongoing clinical trials. Int. J. Mol. Sci., 2020, 21(7), 2657.
[http://dx.doi.org/10.3390/ijms21072657] [PMID: 32290293]
[25]
Diurno, F.; Numis, F.G.; Porta, G.; Cirillo, F.; Maddaluno, S.; Ragozzino, A.; De Negri, P.; Di Gennaro, C.; Pagano, A.; Allegorico, E.; Bressy, L.; Bosso, G.; Ferrara, A.; Serra, C.; Montisci, A.; D’Amico, M.; Schiano Lo Morello, S.; Di Costanzo, G.; Tucci, A.G.; Marchetti, P.; Di Vincenzo, U.; Sorrentino, I.; Casciotta, A.; Fusco, M.; Buonerba, C.; Berretta, M.; Ceccarelli, M.; Nunnari, G.; Diessa, Y.; Cicala, S.; Facchini, G. Eculizumab treatment in patients with COVID-19: Preliminary results from real life ASL napoli 2 nord experience. Eur. Rev. Med. Pharmacol. Sci., 2020, 24(7), 4040-4047.
[PMID: 32329881]
[26]
Bian, H.; Zheng, Z.H.; Wei, D.; Zhang, Z.; Kang, W.Z.; Hao, C.Q. Meplazumab treats COVID-19 pneumonia: An open-labelled, concurrent controlled add-on clinical trial. medRxiv, 2020.
[http://dx.doi.org/10.1101/2020.03.21.20040691]
[27]
Dimopoulos, G.; de Mast, Q.; Markou, N.; Theodorakopoulou, M.; Komnos, A.; Mouktaroudi, M.; Netea, M.G.; Spyridopoulos, T.; Verheggen, R.J.; Hoogerwerf, J.; Lachana, A.; van de Veerdonk, F.L.; Giamarellos-Bourboulis, E.J. Favorable anakinra responses in severe COVID-19 patients with secondary hemophagocytic lymphohistiocytosis. Cell Host Microbe, 2020, 28(1), 117-123.e1.
[http://dx.doi.org/10.1016/j.chom.2020.05.007] [PMID: 32411313]
[28]
Cao, Y.; Wei, J.; Zou, L.; Jiang, T.; Wang, G.; Chen, L.; Huang, L.; Meng, F.; Huang, L.; Wang, N.; Zhou, X.; Luo, H.; Mao, Z.; Chen, X.; Xie, J.; Liu, J.; Cheng, H.; Zhao, J.; Huang, G.; Wang, W.; Zhou, J. Ruxolitinib in treatment of severe coronavirus disease 2019 (COVID-19): A multicenter, single-blind, randomized controlled trial. J. Allergy Clin. Immunol., 2020, 146(1), 137-146.e3.
[http://dx.doi.org/10.1016/j.jaci.2020.05.019] [PMID: 32470486]
[29]
Becker, R.C. Covid-19 treatment update: Follow the scientific evidence. J. Thromb. Thrombolysis, 2020, 50(1), 43-53.
[http://dx.doi.org/10.1007/s11239-020-02120-9] [PMID: 32338320]
[30]
Karalis, V.; Ismailos, G.; Karatza, E. Chloroquine dosage regimens in patients with COVID-19: Safety risks and optimization using simulations. Saf. Sci., 2020, 129, 104842.
[http://dx.doi.org/10.1016/j.ssci.2020.104842] [PMID: 32501367]
[31]
Gurwitz, D. Angiotensin receptor blockers as tentative SARS‐CoV‐2 therapeutics. Drug Dev. Res., 2020, 81(5), 537-540.
[http://dx.doi.org/10.1002/ddr.21656] [PMID: 32129518]
[32]
Mehta, N.; Mazer-Amirshahi, M.; Alkindi, N.; Pourmand, A. Pharmacotherapy in COVID-19; A narrative review for emergency providers. Am. J. Emerg. Med., 2020, 38(7), 1488-1493.
[http://dx.doi.org/10.1016/j.ajem.2020.04.035] [PMID: 32336586]
[33]
Liu, J.; Li, S.; Li, G.; Li, X.; Yu, C.; Fu, Z.; Li, X.; Teng, L.; Li, Y.; Sun, F. Highly bioactive, bevacizumab-loaded, sustained-release PLGA/PCADK microspheres for intravitreal therapy in ocular diseases. Int. J. Pharm., 2019, 563, 228-236.
[http://dx.doi.org/10.1016/j.ijpharm.2019.04.012] [PMID: 30959236]
[34]
Hamada, S.; Ichiyasu, H.; Ikeda, T.; Inaba, M.; Kashiwabara, K.; Sadamatsu, T.; Sato, N.; Akaike, K.; Okabayashi, H.; Saruwatari, K.; Tomita, Y.; Saeki, S.; Hirata, N.; Yoshinaga, T.; Fujii, K. Protective effect of bevacizumab on chemotherapy-related acute exacerbation of interstitial lung disease in patients with advanced non-squamous non-small cell lung cancer. BMC Pulm. Med., 2019, 19(1), 72.
[http://dx.doi.org/10.1186/s12890-019-0838-2] [PMID: 30940113]
[35]
Zhou, Q.; Wang, D.; Liu, Y.; Yang, X.; Lucas, R.; Fischer, B. Solnatide demonstrates profound therapeutic activity in a rat model of pulmonary edema induced by acute hypobaric hypoxia and exercise. Chest, 2017, 151(3), 658-667.
[http://dx.doi.org/10.1016/j.chest.2016.10.030] [PMID: 27815150]
[36]
Fishbane, S.; Hirsch, J.S.; Nair, V. Special considerations for paxlovid treatment among transplant recipients with SARS-CoV-2 infection. Am. J. Kidney Dis., 2022, 79(4), 480-482.
[http://dx.doi.org/10.1053/j.ajkd.2022.01.001] [PMID: 35032591]
[37]
Wang, Y.; Li, P.; Solanki, K.; Li, Y.; Ma, Z.; Peppelenbosch, M.P.; Baig, M.S.; Pan, Q. Viral polymerase binding and broad-spectrum antiviral activity of molnupiravir against human seasonal coronaviruses. Virology, 2021, 564, 33-38.
[http://dx.doi.org/10.1016/j.virol.2021.09.009] [PMID: 34619630]
[38]
Haga, S.; Yamamoto, N.; Nakai-Murakami, C.; Osawa, Y.; Tokunaga, K.; Sata, T.; Yamamoto, N.; Sasazuki, T.; Ishizaka, Y. Modulation of TNF-α-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-α production and facilitates viral entry. Proc. Natl. Acad. Sci., 2008, 105(22), 7809-7814.
[http://dx.doi.org/10.1073/pnas.0711241105] [PMID: 18490652]
[39]
Derzi, M.; Shoieb, A.M.; Ripp, S.L.; Finch, G.L.; Lorello, L.G.; O’Neil, S.P.; Radi, Z.; Syed, J.; Thompson, M.S.; Leach, M.W. Comparative nonclinical assessments of the biosimilar PF-06410293 and originator adalimumab. Regul. Toxicol. Pharmacol., 2020, 112, 104587.
[http://dx.doi.org/10.1016/j.yrtph.2020.104587] [PMID: 32006671]
[40]
Mease, P.J. Adalimumab in the treatment of arthritis. Ther. Clin. Risk Manag., 2007, 3(1), 133-148.
[http://dx.doi.org/10.2147/tcrm.2007.3.1.133] [PMID: 18360621]
[41]
Zhang, Q.; Honko, A.; Zhou, J.; Gong, H.; Downs, S.N.; Vasquez, J.H.; Fang, R.H.; Gao, W.; Griffiths, A.; Zhang, L. Cellular nanosponges inhibit SARS-CoV-2 infectivity. Nano Lett., 2020, 20(7), 5570-5574.
[http://dx.doi.org/10.1021/acs.nanolett.0c02278] [PMID: 32551679]
[42]
Refaat, H.; Mady, F.M.; Sarhan, H.A.; Rateb, H.S.; Alaaeldin, E. Optimization and evaluation of propolis liposomes as a promising therapeutic approach for COVID-19. Int. J. Pharm., 2021, 592, 120028.
[http://dx.doi.org/10.1016/j.ijpharm.2020.120028] [PMID: 33166584]
[43]
Tai, T.T.; Wu, T.J.; Wu, H.D.; Tsai, Y.C.; Wang, H.T.; Wang, A.M.; Shih, S.F.; Chen, Y.C. A strategy to treat COVID‐19 disease with targeted delivery of inhalable liposomal hydroxychloroquine: A preclinical pharmacokinetic study. Clin. Transl. Sci., 2021, 14(1), 132-136.
[http://dx.doi.org/10.1111/cts.12923] [PMID: 33135382]
[44]
Bedford, J.G.; Infusini, G.; Dagley, L.F.; Villalon-Letelier, F.; Zheng, M.Z.M.; Bennett-Wood, V.; Reading, P.C.; Wakim, L.M. Airway exosomes released during influenza virus infection serve as a key component of the antiviral innate immune response. Front. Immunol., 2020, 11, 887.
[http://dx.doi.org/10.3389/fimmu.2020.00887] [PMID: 32477358]
[45]
Popowski, K.D.; Dinh, P.U.C.; George, A.; Lutz, H.; Cheng, K. Exosome therapeutics for COVID‐19 and respiratory viruses VIEW, 2021, 2(3), 20200186.
[http://dx.doi.org/10.1002/VIW.20200186] [PMID: 34766162]
[46]
Chahar, H.S.; Corsello, T.; Kudlicki, A.S.; Komaravelli, N.; Casola, A. Respiratory syncytial virus infection changes cargo composition of exosome released from airway epithelial cells. Sci. Rep., 2018, 8(1), 387.
[http://dx.doi.org/10.1038/s41598-017-18672-5] [PMID: 29321591]
[47]
Elrashdy, F.; Aljaddawi, A.A.; Redwan, E.M.; Uversky, V.N. On the potential role of exosomes in the COVID-19 reinfection/reactivation opportunity. J. Biomol. Struct. Dyn., 2021, 39(15), 5831-5842.
[PMID: 32643586]
[48]
Kulshreshtha, A.; Singh, S.; Ahmad, M.; Khanna, K.; Ahmad, T.; Agrawal, A.; Ghosh, B. Simvastatin mediates inhibition of exosome synthesis, localization and secretion via multicomponent interventions. Sci. Rep., 2019, 9(1), 16373.
[http://dx.doi.org/10.1038/s41598-019-52765-7] [PMID: 31704996]
[49]
Tsai, S.J.; Guo, C.; Atai, N.A.; Gould, S.J. Exosome-mediated mRNA delivery for SARS-CoV-2 vaccination. bioRxiv, 2020, 371419.
[50]
Gajbhiye, V.; Palanirajan, V.K.; Tekade, R.K.; Jain, N.K. Dendrimers as therapeutic agents: A systematic review. J. Pharm. Pharmacol., 2010, 61(8), 989-1003.
[http://dx.doi.org/10.1211/jpp.61.08.0002] [PMID: 19703342]
[51]
Kandeel, M.; Al-Taher, A.; Park, B.K.; Kwon, H.J.; Al-Nazawi, M. A pilot study of the antiviral activity of anionic and cationic polyamidoamine dendrimers against the Middle East respiratory syndrome coronavirus. J. Med. Virol., 2020, 92(9), 1665-1670.
[http://dx.doi.org/10.1002/jmv.25928] [PMID: 32330296]
[52]
Paull, J.R.; Castellarnau, A.; Luscombe, C.A.; Fairley, J.K.; Heery, G.P. Astodrimer sodium, dendrimer antiviral, inhibits replication of SARS-CoV-2 in vitro. Biorxiv, 2020.
[53]
Khaitov, M.; Nikonova, A.; Shilovskiy, I.; Kozhikhova, K.; Kofiadi, I.; Vishnyakova, L.; Nikolskii, A.; Gattinger, P.; Kovchina, V.; Barvinskaia, E.; Yumashev, K.; Smirnov, V.; Maerle, A.; Kozlov, I.; Shatilov, A.; Timofeeva, A.; Andreev, S.; Koloskova, O.; Kuznetsova, N.; Vasina, D.; Nikiforova, M.; Rybalkin, S.; Sergeev, I.; Trofimov, D.; Martynov, A.; Berzin, I.; Gushchin, V.; Kovalchuk, A.; Borisevich, S.; Valenta, R.; Khaitov, R.; Skvortsova, V. Silencing of SARS‐CoV‐2 with modified siRNA‐peptide dendrimer formulation. Allergy, 2021, 76(9), 2840-2854.
[http://dx.doi.org/10.1111/all.14850] [PMID: 33837568]
[54]
Hendricks, G.L.; Velazquez, L.; Pham, S.; Qaisar, N.; Delaney, J.C.; Viswanathan, K.; Albers, L.; Comolli, J.C.; Shriver, Z.; Knipe, D.M.; Kurt-Jones, E.A.; Fygenson, D.K.; Trevejo, J.M.; Wang, J.P.; Finberg, R.W. Heparin octasaccharide decoy liposomes inhibit replication of multiple viruses. Antiviral Res., 2015, 116, 34-44.
[http://dx.doi.org/10.1016/j.antiviral.2015.01.008] [PMID: 25637710]
[55]
Hendricks, G.L.; Weirich, K.L.; Viswanathan, K.; Li, J.; Shriver, Z.H.; Ashour, J.; Ploegh, H.L.; Kurt-Jones, E.A.; Fygenson, D.K.; Finberg, R.W.; Comolli, J.C.; Wang, J.P. Sialylneolacto-N-tetraose c (LSTc)-bearing liposomal decoys capture Influenza A virus. J. Biol. Chem., 2013, 288(12), 8061-8073.
[http://dx.doi.org/10.1074/jbc.M112.437202] [PMID: 23362274]
[56]
Nie, C.; Ma, L.; Luo, H.; Bao, J.; Cheng, C. Spiky nanostructures for virus inhibition and infection prevention. Smart Mater. Med., 2020, 1, 48-53.
[http://dx.doi.org/10.1016/j.smaim.2020.07.004]
[57]
Rao, L.; Xia, S.; Xu, W.; Tian, R.; Yu, G.; Gu, C.; Pan, P.; Meng, Q.F.; Cai, X.; Qu, D.; Lu, L.; Xie, Y.; Jiang, S.; Chen, X. Decoy nanoparticles protect against COVID-19 by concurrently adsorbing viruses and inflammatory cytokines. Proc. Natl. Acad. Sci., 2020, 117(44), 27141-27147.
[http://dx.doi.org/10.1073/pnas.2014352117] [PMID: 33024017]
[58]
Li, J.; Wu, D.; Yu, Y.; Li, T.; Li, K.; Xiao, M.M.; Li, Y.; Zhang, Z.Y.; Zhang, G.J. Rapid and unamplified identification of COVID-19 with morpholino-modified graphene field-effect transistor nanosensor. Biosens. Bioelectron., 2021, 183, 113206.
[http://dx.doi.org/10.1016/j.bios.2021.113206] [PMID: 33823464]
[59]
Hryniewicz, B.M.; Volpe, J.; Bach-Toledo, L.; Kurpel, K.C.; Deller, A.E.; Soares, A.L.; Nardin, J.M.; Marchesi, L.F.; Simas, F.F.; Oliveira, C.C.; Huergo, L.; Souto, D.E.P.; Vidotti, M. Development of polypyrrole (nano)structures decorated with gold nanoparticles toward immunosensing for COVID-19 serological diagnosis. Mater. Today Chem., 2022, 24, 100817.
[http://dx.doi.org/10.1016/j.mtchem.2022.100817] [PMID: 35155879]
[60]
Ning, B.; Huang, Z.; Youngquist, B.M.; Scott, J.W.; Niu, A.; Bojanowski, C.M.; Zwezdaryk, K.J.; Saba, N.S.; Fan, J.; Yin, X.M.; Cao, J.; Lyon, C.J.; Li, C.; Roy, C.J.; Hu, T.Y. Liposome-mediated detection of SARS-CoV-2 RNA-positive extracellular vesicles in plasma. Nat. Nanotechnol., 2021, 16(9), 1039-1044.
[http://dx.doi.org/10.1038/s41565-021-00939-8] [PMID: 34294909]
[61]
Arber Raviv, S.; Alyan, M.; Egorov, E.; Zano, A.; Harush, M.Y.; Pieters, C.; Korach-Rechtman, H.; Saadya, A.; Kaneti, G.; Nudelman, I.; Farkash, S.; Flikshtain, O.D.; Mekies, L.N.; Koren, L.; Gal, Y.; Dor, E.; Shainsky, J.; Shklover, J.; Adir, Y.; Schroeder, A. Lung targeted liposomes for treating ARDS. J. Control. Release, 2022, 346, 421-433.
[http://dx.doi.org/10.1016/j.jconrel.2022.03.028] [PMID: 35358610]
[62]
Sekimukai, H.; Iwata-Yoshikawa, N.; Fukushi, S.; Tani, H.; Kataoka, M.; Suzuki, T.; Hasegawa, H.; Niikura, K.; Arai, K.; Nagata, N. Gold nanoparticle‐adjuvanted S protein induces a strong antigen‐specific IgG response against severe acute respiratory syndrome‐related coronavirus infection, but fails to induce protective antibodies and limit eosinophilic infiltration in lungs. Microbiol. Immunol., 2020, 64(1), 33-51.
[http://dx.doi.org/10.1111/1348-0421.12754] [PMID: 31692019]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy