Review Article

沙坦的药理机制、构效关系及合成研究进展

卷 30, 期 20, 2023

发表于: 21 October, 2022

页: [2247 - 2266] 页: 20

弟呕挨: 10.2174/0929867329666220829101436

价格: $65

Open Access Journals Promotions 2
摘要

沙坦是一类新型的抗高血压药物,作为血管紧张素II受体阻滞剂,在治疗高血压和相关病理方面具有许多优势。本文综述了1995年至今沙坦类药物的临床治疗、副作用和潜在治疗效果。还描述了与咪唑衍生物,苯并咪唑衍生物和其他化合物的血管紧张素1型受体的合成,结构活性和分子对接。具有明确的构效关系和丰富的药理作用,一些类型的新型血管紧张素1型受体拮抗剂正在逐步涌现,用于进一步的研究。

关键词: 沙坦,AT1受体阻滞剂,肾素-血管紧张素系统,构效关系,与AT1受体对接,合成。

[1]
Rao, G.W.; Guo, Y.M.; Hu, W.X. Synthesis, structure analysis, and antitumor evaluation of 3,6-dimethyl-1,2,4,5-tetrazine-1,4-dicarboxamide derivatives. ChemMedChem, 2012, 7(6), 973-976.
[http://dx.doi.org/10.1002/cmdc.201200109] [PMID: 22539490]
[2]
Rao, G.W.; Wang, C.; Wang, J.; Zhao, Z.G.; Hu, W.X. Synthesis, structure analysis, antitumor evaluation and 3D-QSAR studies of 3,6-disubstituted-dihydro-1,2,4,5-tetrazine derivatives. Bioorg. Med. Chem. Lett., 2013, 23(23), 6474-6480.
[http://dx.doi.org/10.1016/j.bmcl.2013.09.036] [PMID: 24120541]
[3]
Rao, G.W.; Xu, G.J.; Wang, J.; Jiang, X.L.; Li, H.B. Synthesis, antitumor evaluation and docking study of novel 4-anilinoquinazoline derivatives as potential epidermal growth factor receptor (EGFR) inhibitors. ChemMedChem, 2013, 8(6), 928-933.
[http://dx.doi.org/10.1002/cmdc.201300120] [PMID: 23640754]
[4]
Jin, H.; Dan, H.G.; Rao, G.W. Research progress in quinazoline derivatives as multi-target tyrosine kinase inhibitors. Heterocycl. Commun., 2018, 24(1), 1-10.
[http://dx.doi.org/10.1515/hc-2017-0066]
[5]
Wu, Y.C.; Ren, X.Y.; Rao, G.W. Research progress of diphenyl urea derivatives as anticancer agents and synthetic methodologies. Mini Rev. Org. Chem., 2019, 16(7), 617-630.
[http://dx.doi.org/10.2174/1570193X15666181029130418]
[6]
Jain, A.; Chaturvedi, S.C. QSAR modeling of some substituted benzimidazole as angotensin II AT1 receptor antagonist. Med. Chem. Res., 2010, 19(2), 177-185.
[http://dx.doi.org/10.1007/s00044-009-9182-z]
[7]
Mavromoustakos, T.; Moutevelis-Minakakis, P.; Kokotos, C.G.; Kontogianni, P.; Politi, A.; Zoumpoulakis, P.; Findlay, J.; Cox, A.; Balmforth, A.; Zoga, A.; Iliodromitis, E. Synthesis, binding studies and in vivo biological evaluation of novel non-peptide antihypertensive analogues. Bioorg. Med. Chem., 2006, 14(13), 4353-4360.
[http://dx.doi.org/10.1016/j.bmc.2006.02.044] [PMID: 16546395]
[8]
Jani, N.V.; Ziogas, J.; Angus, J.A.; Schiesser, C.H.; Macdougall, P.E.; Grange, R.L.; Wright, C.E. Dual action molecules: Bioassays of combined novel antioxidants and angiotensin II receptor antagonists. Eur. J. Pharmacol., 2012, 695(1-3), 96-103.
[http://dx.doi.org/10.1016/j.ejphar.2012.08.003] [PMID: 22975712]
[9]
Aksoydan, B.; Kantarcioglu, I.; Erol, I.; Salmas, R.E.; Durdagi, S. Structure-based design of hERG-neutral antihypertensive oxazalone and imidazolone derivatives. J. Mol. Graph. Model., 2017, 77, 240-249.
[PMID: 28957753]
[10]
Mavromoustakos, T.; Zervou, M.; Zoumpoulakis, P.; Kyrikou, I.; Benetis, N.; Polevaya, L.; Roumelioti, P.; Giatas, N.; Zoga, A.; Minakakis, P.; Kolocouris, A.; Vlahakos, D.; Grdadolnik, S.G.; Matsoukas, J. Conformation and bioactivity. Design and discovery of novel antihypertensive drugs. Curr. Top. Med. Chem., 2004, 4(4), 385-401.
[http://dx.doi.org/10.2174/1568026043451302] [PMID: 14965308]
[11]
Rapposelli, S.; Cuboni, S.; Digiacomo, M.; Lucacchini, A.; Minutolo, F.; Letizia Trincavelli, M.; Balsamo, A. Synthesis and affinity evaluation for AT1 receptor of phenylsalicylaldoximederivatives structurally related to sartans. Heterocycles, 2008, 75(6), 1467-1477.
[http://dx.doi.org/10.3987/COM-07-11309]
[12]
Breschi, M.C.; Calderone, V.; Digiacomo, M.; Macchia, M.; Martelli, A.; Martinotti, E.; Minutolo, F.; Rapposelli, S.; Rossello, A.; Testai, L.; Balsamo, A. New NO-releasing pharmacodynamic hybrids of losartan and its active metabolite: Design, synthesis, and biopharmacological properties. J. Med. Chem., 2006, 49(8), 2628-2639.
[http://dx.doi.org/10.1021/jm0600186] [PMID: 16610806]
[13]
Takizawa, S.; Dan, T.; Uesugi, T.; Nagata, E.; Takagi, S.; van Ypersele de Strihou, C.; Miyata, T. A sartan derivative with a very low angiotensin II receptor affinity ameliorates ischemic cerebral damage. J. Cereb. Blood Flow Metab., 2009, 29(10), 1665-1672.
[http://dx.doi.org/10.1038/jcbfm.2009.82] [PMID: 19536069]
[14]
Izuhara, Y.; Sada, T.; Yanagisawa, H.; Koike, H.; Ohtomo, S.; Dan, T.; Ito, S.; Nangaku, M.; van Ypersele de Strihou, C.; Miyata, T. A novel Sartan derivative with very low angiotensin II type 1 receptor affinity protects the kidney in type 2 diabetic rats. Arterioscler. Thromb. Vasc. Biol., 2008, 28(10), 1767-1773.
[http://dx.doi.org/10.1161/ATVBAHA.108.172841] [PMID: 18658044]
[15]
Ridgway, H.; Moore, G.J.; Mavromoustakos, T.; Tsiodras, S.; Ligielli, I.; Kelaidonis, K.; Chasapis, C.T.; Gadanec, L.K.; Zulli, A.; Apostolopoulos, V.; Petty, R.; Karakasiliotis, I.; Gorgoulis, V.G.; Matsoukas, J.M. Discovery of a new generation of angiotensin receptor blocking drugs: Receptor mechanisms and in silico binding to enzymes relevant to SARS-CoV-2. Comput. Struct. Biotechnol. J., 2022, 20, 2091-2111.
[http://dx.doi.org/10.1016/j.csbj.2022.04.010] [PMID: 35432786]
[16]
García, G.; Serrano, I.; Sánchez-Alonso, P.; Rodríguez-Puyol, M.; Alajarín, R.; Griera, M.; Vaquero, J.J.; Rodríguez-Puyol, D.; Álvarez-Builla, J.; Díez-Marqués, M.L. New losartan-hydrocaffeic acid hybrids as antihypertensive-antioxidant dual drugs: Ester, amide and amine linkers. Eur. J. Med. Chem., 2012, 50, 90-101.
[http://dx.doi.org/10.1016/j.ejmech.2012.01.043] [PMID: 22336384]
[17]
Islas, M.S.; Luengo, A.; Franca, C.A.; Merino, M.G.; Calleros, L.; Rodriguez-Puyol, M.; Lezama, L.; Ferrer, E.G.; Williams, P.A.M. Experimental and DFT characterization, antioxidant and anticancer activities of a Cu(II)–irbesartan complex: Structure–antihypertensive activity relationships in Cu(II)–sartan complexes. J. Biol. Inorg. Chem., 2016, 21(7), 851-863.
[http://dx.doi.org/10.1007/s00775-016-1384-5] [PMID: 27507083]
[18]
Janić, M.; Lunder, M.; Šabovič, M. A low-dose combination of fluvastatin and valsartan: a new “drug” and a new approach for decreasing the arterial age. BioMed Res. Int., 2015, 2015, 1-6.
[http://dx.doi.org/10.1155/2015/235709] [PMID: 25821790]
[19]
Tsiailanis, A.D.; Renziehausen, A.; Kiriakidi, S.; Vrettos, E.I.; Markopoulos, G.S.; Sayyad, N.; Hirmiz, B.; Aguilar, M.I.; Del Borgo, M.P.; Kolettas, E.; Widdop, R.E.; Mavromoustakos, T.; Crook, T.; Syed, N.; Tzakos, A.G. Enhancement of glioblastoma multiforme therapy through a novel Quercetin-Losartan hybrid. Free Radic. Biol. Med., 2020, 160, 391-402.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.08.007] [PMID: 32822744]
[20]
Regoli, D.; Plante, G.E.; Gobeil, F., Jr Impact of kinins in the treatment of cardiovascular diseases. Pharmacol. Ther., 2012, 135(1), 94-111.
[http://dx.doi.org/10.1016/j.pharmthera.2012.04.002] [PMID: 22537664]
[21]
Ranayhossaini, D.; Pagano, P.J. TrACEing angiotensin II type 1 to right ventricular hypertrophy: Are the “sartans” a viable course to treating pulmonary arterial hypertension? Am. J. Respir. Crit. Care Med., 2012, 186(8), 705-707.
[http://dx.doi.org/10.1164/rccm.201208-1480ED] [PMID: 23071186]
[22]
Inoue, T.; Node, K. Telmisartan as a metabolic sartan for targeting vascular failure. Expert Opin. Pharmacother., 2008, 9(8), 1397-1406.
[http://dx.doi.org/10.1517/14656566.9.8.1397] [PMID: 18473713]
[23]
Marquart-Elbaz, C.; Grosshans, E.; Alt, M.; Lipsker, D. Sartans, angiotensin II receptor antagonists, can induce psoriasis. Br. J. Dermatol., 2002, 147(3), 617-618.
[http://dx.doi.org/10.1046/j.1365-2133.2002.48848.x] [PMID: 12207619]
[24]
Roskiewicz, F.; Andriamanana, I.; Gras-Champel, V.; Andrejak, M.; Massy, Z.A. Iatrogenic angioedema: The role of angiotensin converting enzyme inhibitor and angiotensin II receptor blockers. Nephrol. Ther., 2007, 3(3), 89-95.
[http://dx.doi.org/10.1016/j.nephro.2007.03.003] [PMID: 17540310]
[25]
Tsepkentzi, E.; Sarafidis, K.; Sotiriadis, A.; Chatzistamatiou, K.; Drossou-Agakidou, V. Neonatal acute kidney injury following Valsartan exposure in utero: Report of two cases. Hippokratia, 2016, 20(1), 73-75.
[PMID: 27895448]
[26]
Alwan, S.; Polifka, J.E.; Friedman, J.M. Angiotensin II receptor antagonist treatment during pregnancy. Birth Defects Res. A Clin. Mol. Teratol., 2005, 73(2), 123-130.
[http://dx.doi.org/10.1002/bdra.20102] [PMID: 15669052]
[27]
Mączewski, M.; Mączewska, J.; Duda, M. Hypercholesterolaemia exacerbates ventricular remodelling after myocardial infarction in the rat: Role of angiotensin II type 1 receptors. Br. J. Pharmacol., 2008, 154(8), 1640-1648.
[http://dx.doi.org/10.1038/bjp.2008.218] [PMID: 18536757]
[28]
Sato, K.; Yamashita, T.; Kurata, T.; Fukui, Y.; Hishikawa, N.; Deguchi, K.; Abe, K. Telmisartan ameliorates inflammatory responses in SHR-SR after tMCAO. J. Stroke Cerebrovasc. Dis., 2014, 23(10), 2511-2519.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.02.019] [PMID: 25245484]
[29]
Kono, S.; Kurata, T.; Sato, K.; Omote, Y.; Hishikawa, N.; Yamashita, T.; Deguchi, K.; Abe, K. Neurovascular protection by telmisartan via reducing neuroinflammation in stroke-resistant spontaneously hypertensive rat brain after ischemic stroke. J. Stroke Cerebrovasc. Dis., 2015, 24(3), 537-547.
[http://dx.doi.org/10.1016/j.jstrokecerebrovasdis.2014.09.037] [PMID: 25534368]
[30]
Villapol, S.; Saavedra, J.M. Neuroprotective effects of angiotensin receptor blockers. Am. J. Hypertens., 2015, 28(3), 289-299.
[http://dx.doi.org/10.1093/ajh/hpu197] [PMID: 25362113]
[31]
Villapol, S.; Balarezo, M.G.; Affram, K.; Saavedra, J.M.; Symes, A.J. Neurorestoration after traumatic brain injury through angiotensin II receptor blockage. Brain, 2015, 138(11), 3299-3315.
[http://dx.doi.org/10.1093/brain/awv172] [PMID: 26115674]
[32]
Kellici, T.; Ntountaniotis, D.; Kritsi, E.; Zervou, M.; Zoumpoulakis, P.; Potamitis, C.; Durdagi, S.; Salmas, R.; Ergun, G.; Gokdemir, E.; Halabalaki, M.; Gerothanassis, I.; Liapakis, G.; Tzakos, A.; Mavromoustakos, T. Leveraging NMR and X-ray data of the free ligands to build better drugs targeting angiotensin II type 1 G-protein coupled receptor. Curr. Med. Chem., 2015, 23(1), 36-59.
[http://dx.doi.org/10.2174/0929867323666151117122116] [PMID: 26572611]
[33]
Lin, X.; Li, X.; Lin, X. A review on applications of computational methods in drug screening and design. Molecules, 2020, 25(6), 1375.
[http://dx.doi.org/10.3390/molecules25061375] [PMID: 32197324]
[34]
Kotthoff, I.; Kundrotas, P.J.; Vakser, I.A. Dockground scoring benchmarks for protein docking. Proteins, 2022, 90(6), 1259-1266.
[http://dx.doi.org/10.1002/prot.26306] [PMID: 35072956]
[35]
Sulimov, V.B.; Kutov, D.C.; Taschilova, A.S.; Ilin, I.S.; Tyrtyshnikov, E.E.; Sulimov, A.V. Docking paradigm in drug design. Curr. Top. Med. Chem., 2021, 21(6), 507-546.
[http://dx.doi.org/10.2174/1568026620666201207095626] [PMID: 33292135]
[36]
Carini, D.J.; Duncia, J.V.; Aldrich, P.E.; Chiu, A.T.; Johnson, A.L.; Pierce, M.E.; Price, W.A.; Santella, J.B., III; Wells, G.J.; Wexler, R.R. Nonpeptide angiotensin II receptor antagonists: The discovery of a series of N-(biphenylylmethyl)imidazoles as potent, orally active antihypertensives. J. Med. Chem., 1991, 34(8), 2525-2547.
[http://dx.doi.org/10.1021/jm00112a031] [PMID: 1875348]
[37]
Qing, S.U.; Zhou, L. Molecular design of non-peptide angiotensin II receptor blockers based on quantitative structure-activity relationship. Zhongguo Xin Yao Zazhi, 2006, 7, 537.
[38]
Lamanna, C.; Catalano, A.; Carocci, A.; Di Mola, A.; Franchini, C.; Tortorella, V.; Vanderheyden, P.M.L.; Sinicropi, M.S.; Watson, K.A.; Sciabola, S. AT1 receptor ligands: Virtual-screening-based design with TOPP descriptors, synthesis, and biological evaluation of pyrrolidine derivatives. ChemMedChem, 2007, 2(9), 1298-1310.
[http://dx.doi.org/10.1002/cmdc.200700082] [PMID: 17628868]
[39]
Smajić, M.; Nikolić, K.; Vujić, Z.; Ahmetović, L.; Kuntić, V. 3D-QSAR studies and pharmacophore identification of AT1 receptor antagonists. Med. Chem. Res., 2016, 25(1), 51-61.
[http://dx.doi.org/10.1007/s00044-015-1470-1]
[40]
Miura, S.I.; Nakao, N.; Hanzawa, H.; Matsuo, Y.; Saku, K.; Karnik, S.S. Reassessment of the unique mode of binding between angiotensin II type 1 receptor and their blockers. PLoS One, 2013, 8(11), e79914.
[http://dx.doi.org/10.1371/journal.pone.0079914] [PMID: 24260317]
[41]
Yanagisawa, H.; Amemiya, Y.; Kanazaki, T.; Shimoji, Y.; Fujimoto, K.; Kitahara, Y.; Sada, T.; Mizuno, M.; Ikeda, M.; Miyamoto, S.; Furukawa, Y.; Koike, H. Nonpeptide angiotensin II receptor antagonists: Synthesis, biological activities, and structure-activity relationships of imidazole-5-carboxylic acids bearing alkyl, alkenyl, and hydroxyalkyl substituents at the 4-position and their related compounds. J. Med. Chem., 1996, 39(1), 323-338.
[http://dx.doi.org/10.1021/jm950450f] [PMID: 8568823]
[42]
Zupancic, S.; Pecavar, A.; Vrbinc, M. Process for the preparation of olmesartan medoxomil. US Patent US20120184750A1, 2011.
[43]
Madasu, S.B.; Vekariya, N.A.; Koteswaramma, C.; Islam, A.; Sanasi, P.D.; Korupolu, R.B. An efficient, commercially viable, and safe process for preparation of losartan potassium, an angiotensin II receptor antagonist. Org. Process Res. Dev., 2012, 16(12), 2025-2030.
[http://dx.doi.org/10.1021/op300179u]
[44]
Seki, M.; Nagahama, M. Synthesis of angiotensin II receptor blockers by means of a catalytic system for C-H activation. J. Org. Chem., 2011, 76(24), 10198-10206.
[http://dx.doi.org/10.1021/jo202041e] [PMID: 22035509]
[45]
Larsen, R.D.; King, A.O.; Chen, C.Y.; Corley, E.G.; Foster, B.S.; Roberts, F.E.; Yang, C.; Lieberman, D.R.; Reamer, R.A.; Tschaen, D.M.; Verhoeven, T.R.; Reider, P.J.; Lo, Y.S.; Rossano, L.T.; Brookes, A.S.; Meloni, D.; Moore, J.R.; Arnett, J.F. Efficient synthesis of losartan, A nonpeptide angiotensin II receptor antagonist. J. Org. Chem., 1994, 59(21), 6391-6394.
[http://dx.doi.org/10.1021/jo00100a048]
[46]
Wu, F.H.S. Prepaeation method of Losartan metabolite EXP-3174. CN102190652A, 2011.
[47]
Ramakrishnan, A.K. A process to manufacture pure anhydrous eprosartan mesylate. IN Patent 2009CH02087 A, 2011.
[48]
Gokhale, N.G.C. Process for the preparation of eprosartan. WO Patent WO/2011/004384, 2011.
[49]
Miura, S.; Okabe, A.; Matsuo, Y.; Karnik, S.S.; Saku, K. Unique binding behavior of the recently approved angiotensin II receptor blocker azilsartan compared with that of candesartan. Hypertens. Res., 2013, 36(2), 134-139.
[http://dx.doi.org/10.1038/hr.2012.147] [PMID: 23034464]
[50]
Vyas, V.K.; Ghate, M.; Patel, K.; Qureshi, G.; Shah, S. Homology modeling, binding site identification and docking study of human angiotensin II type I (Ang II-AT1) receptor. Biomed. Pharmacother., 2015, 74, 42-48.
[http://dx.doi.org/10.1016/j.biopha.2015.07.008] [PMID: 26349961]
[51]
Ries, U.J.; Mihm, G.; Narr, B.; Hasselbach, K.M.; Wittneben, H.; Entzeroth, M.; van Meel, J.C.A.; Wienen, W.; Hauel, N.H. 6-Substituted benzimidazoles as new nonpeptide angiotensin II receptor antagonists: Synthesis, biological activity, and structure-activity relationships. J. Med. Chem., 1993, 36(25), 4040-4051.
[http://dx.doi.org/10.1021/jm00077a007] [PMID: 8258826]
[52]
Prasad, K.S.; Nayak, N.; Pillai, R.R.; Armaković, S.; Armaković, S.J. Novel synthetic approach, spectroscopic characterization and theoretical studies on global and local reactive properties of a bibenzimidazolyl derivative. J. Mol. Struct., 2017, 1147, 121-128.
[http://dx.doi.org/10.1016/j.molstruc.2017.06.073]
[53]
Kubo, K.; Kohara, Y.; Yoshimura, Y.; Inada, Y.; Shibouta, Y.; Furukawa, Y.; Kato, T.; Nishikawa, K.; Naka, T. Nonpeptide angiotensin II receptor antagonists. Synthesis and biological activity of potential prodrugs of benzimidazole-7-carboxylic acids. J. Med. Chem., 1993, 36(16), 2343-2349.
[http://dx.doi.org/10.1021/jm00068a011] [PMID: 8360879]
[54]
Porcs-Makkay, M.; Mezei, T.; Simig, G. New practical synthesis of the key intermediate of candesartan. Org. Process Res. Dev., 2007, 11(3), 490-493.
[http://dx.doi.org/10.1021/op700041z]
[55]
Rádl, S.; Černý, J.; Stach, J.; Gablíková, Z. Improved process for azilsartan medoxomil: A new angiotensin receptor blocker. Org. Process Res. Dev., 2013, 17(1), 77-86.
[http://dx.doi.org/10.1021/op3002867]
[56]
Kohara, Y.; Imamiya, E.; Kubo, K.; Wada, T.; Inada, Y.; Naka, T. A new class of angiotensin II receptor antagonists with a novel acidic bioisostere. Bioorg. Med. Chem. Lett., 1995, 5(17), 1903-1908.
[http://dx.doi.org/10.1016/0960-894X(95)00319-O]
[57]
Miura, S.; Kiya, Y.; Kanazawa, T.; Imaizumi, S.; Fujino, M.; Matsuo, Y.; Karnik, S.S.; Saku, K. Differential bonding interactions of inverse agonists of angiotensin II type 1 receptor in stabilizing the inactive state. Mol. Endocrinol., 2008, 22(1), 139-146.
[http://dx.doi.org/10.1210/me.2007-0312] [PMID: 17901125]
[58]
Ellingboe, J.W.; Antane, M.; Nguyen, T.T.; Collini, M.D.; Antane, S.; Bender, R.; Hartupee, D.; White, V.; McCallum, J.; Park, C.H. Pyrido[2,3-d]pyrimidine angiotensin II antagonists. J. Med. Chem., 1994, 37(4), 542-550.
[http://dx.doi.org/10.1021/jm00030a013] [PMID: 8120871]
[59]
Wang, D.F. Process for preparation of tasosartan. CN Patent CN101712682A, 2010.
[60]
Goossen, L.J.; Melzer, B. Synthesis of valsartan via decarboxylative biaryl coupling. J. Org. Chem., 2007, 72(19), 7473-7476.
[http://dx.doi.org/10.1021/jo701391q] [PMID: 17715979]
[61]
Reddy, B.S.; Sinha, B.K.; Mukkanti, K.; Dandala, R. New and improved manufacturing process for valsartan. Org. Process Res. Dev., 2009, 13(6), 1185-1189.
[http://dx.doi.org/10.1021/op9000912]
[62]
Ghosh, S.; Kumar, A.S.; Mehta, G.N. A short and efficient synthesis of valsartan via a Negishi reaction. Beilstein J. Org. Chem., 2010, 6, 27-27.
[http://dx.doi.org/10.3762/bjoc.6.27] [PMID: 20502651]
[63]
Wang, J.J.J. Synthesis of Irbesartan. CN Patent CN102875534A, 2013.
[64]
Bernhart, C.B. N-substituted heterocyclic derivatives, their preparation and the pharmaceutical compositions in which they are present. US Patent 5270317, 1993.
[65]
Estrada, G.O.D.; Flores, M.C.; da Silva, J.F.M.; de Souza, R.O.M.A.; e Miranda, L.S.M. 4′-Methylbiphenyl-2-carbonitrile synthesis by continuous flow Suzuki–Miyaura reaction. Tetrahedron Lett., 2012, 53(32), 4166-4168.
[http://dx.doi.org/10.1016/j.tetlet.2012.05.145]
[66]
Chen, L.; Ren, P.; Carrow, B.P. Tri(1-adamantyl)phosphine: Expanding the boundary of electron-releasing character available to organophosphorus compounds. J. Am. Chem. Soc., 2016, 138(20), 6392-6395.
[http://dx.doi.org/10.1021/jacs.6b03215] [PMID: 27164163]
[67]
Carrow, B.; Chen, L. Tri(1-adamantyl)phosphine: Exceptional catalytic effects enabled by the synergy of chemical stability, donicity, and polarizability. Synlett, 2017, 28(3), 280-288.
[http://dx.doi.org/10.1055/s-0036-1588128]
[68]
Geng, L.; Li, Y.; Qi, Z.; Fan, H.; Zhou, Z.; Chen, R.; Wang, Y.; Huang, J. Highly efficient palladium catalysts supported on nitrogen contained polymers for Suzuki-Miyaura reaction. Catal. Commun., 2016, 82, 24-28.
[http://dx.doi.org/10.1016/j.catcom.2016.04.011]
[69]
Liu, C.; Liu, C.; Li, X.M.; Gao, Z.M.; Jin, Z.L. Oxygen-promoted Pd/C-catalyzed Suzuki–Miyaura reaction of potassium aryltrifluoroborates. Chin. Chem. Lett., 2016, 27(5), 631-634.
[http://dx.doi.org/10.1016/j.cclet.2015.12.022]
[70]
Antonacci, G.; Ahlburg, A.; Fristrup, P.; Norrby, P.O.; Madsen, R. Manganese-catalyzed cross-coupling of aryl halides and grignard reagents by a radical mechanism. Eur. J. Org. Chem., 2017, 2017(32), 4758-4764.
[http://dx.doi.org/10.1002/ejoc.201700981]
[71]
Amatore, M.; Gosmini, C. Efficient cobalt-catalyzed formation of unsymmetrical biaryl compounds and its application in the synthesis of a sartan intermediate. Angew. Chem. Int. Ed., 2008, 47(11), 2089-2092.
[http://dx.doi.org/10.1002/anie.200704402] [PMID: 18260083]
[72]
Rathi, A.K.; Gawande, M.B.; Pechousek, J.; Tucek, J.; Aparicio, C.; Petr, M.; Tomanec, O.; Krikavova, R.; Travnicek, Z.; Varma, R.S.; Zboril, R. Maghemite decorated with ultra-small palladium nanoparticles (γ-Fe2O3–Pd): applications in the Heck–Mizoroki olefination, Suzuki reaction and allylic oxidation of alkenes. Green Chem., 2016, 18(8), 2363-2373.
[http://dx.doi.org/10.1039/C5GC02264A]
[73]
Ismail, M.A.H.; Barker, S.; Abou El Ella, D.A.; Abouzid, K.A.M.; Toubar, R.A.; Todd, M.H. Design and synthesis of new tetrazolyl- and carboxy-biphenylylmethyl-quinazolin-4-one derivatives as angiotensin II AT1 receptor antagonists. J. Med. Chem., 2006, 49(5), 1526-1535.
[http://dx.doi.org/10.1021/jm050232e] [PMID: 16509571]
[74]
Dubey, A.V.; Kumar, A.V. A biomimetic magnetically recoverable palladium nanocatalyst for the Suzuki cross-coupling reaction. RSC Advances, 2016, 6(52), 46864-46870.
[http://dx.doi.org/10.1039/C6RA03395D]
[75]
Patel, N.D.; Rivalti, D.; Buono, F.G.; Chatterjee, A.; Qu, B.; Braith, S.; Desrosiers, J.N.; Rodriguez, S.; Sieber, J.D.; Haddad, N.; Fandrick, K.R.; Lee, H.; Yee, N.K.; Busacca, C.A.; Senanayake, C.H. Effective BI-DIME ligand for suzuki-miyaura cross-coupling reactions in water with 500 ppm palladium loading and triton X. Asian J. Org. Chem., 2017, 6(9), 1285-1291.
[http://dx.doi.org/10.1002/ajoc.201700137]
[76]
Nallasivam, J.L.; Fernandes, R.A. Development of Unimolecular Tetrakis(piperidin-4-ol) as a Ligand for suzuki-miyaura cross-coupling reactions: Synthesis of incrustoporin and preclamol. Eur. J. Org. Chem., 2015, 2015(16), 3558-3567.
[http://dx.doi.org/10.1002/ejoc.201500353]
[77]
Chakravarty, P.K.G. Imidazole derivatives bearing acidic functional groups as angiotensin II antagonists. EP Patent 0505098A1, 1992.
[78]
Agelis, G.; Resvani, A.; Durdagi, S.; Spyridaki, K.; Tůmová, T.; Slaninová, J.; Giannopoulos, P.; Vlahakos, D.; Liapakis, G.; Mavromoustakos, T.; Matsoukas, J. The discovery of new potent non-peptide angiotensin II AT1 receptor blockers: A concise synthesis, molecular docking studies and biological evaluation of N-substituted 5-butylimidazole derivatives. Eur. J. Med. Chem., 2012, 55, 358-374.
[http://dx.doi.org/10.1016/j.ejmech.2012.07.040] [PMID: 22889560]
[79]
Rapposelli, S.; Cuboni, S.; Digiacomo, M.; Lapucci, A.; Trincavelli, M.L.; Tuccinardi, T.; Balsamo, A. Synthesis and AT1 affinity evaluation of benzamidophenyl analogs of known AT1 receptor ligands with similar aromatic skeleton. ARKIVOC, 2008, 2008(2), 268-286.
[http://dx.doi.org/10.3998/ark.5550190.0009.229]
[80]
Moutevelis-Minakakis, P.; Gianni, M.; Stougiannou, H.; Zoumpoulakis, P.; Zoga, A.; Vlahakos, A.D.; Iliodromitis, E.; Mavromoustakos, T. Design and synthesis of novel antihypertensive drugs. Bioorg. Med. Chem. Lett., 2003, 13(10), 1737-1740.
[http://dx.doi.org/10.1016/S0960-894X(03)00251-8] [PMID: 12729654]
[81]
Vauquelin, G.; Packeu, A. Ligands, their receptors and … plasma membranes. Mol. Cell. Endocrinol., 2009, 311(1-2), 1-10.
[http://dx.doi.org/10.1016/j.mce.2009.07.022] [PMID: 19647036]
[82]
Kiriakidi, S.; Chatzigiannis, C.; Papaemmanouil, C.; Tzakos, A. G.; Mavromoustakos, T. Exploring the role of the membrane bilayer in the recognition of candesartan by its GPCR AT1 receptor. Biochim. Biophys. Acta Biomembr., 2022, 1862(3), 183142.
[http://dx.doi.org/10.1016/j.bbamem.2019.183142] [PMID: 31830465]
[83]
Chontzopoulou, E.; Tzakos, A.G.; Mavromoustakos, T. On the rational drug design for hypertension through NMR spectroscopy. Molecules, 2020, 26(1), 12.
[http://dx.doi.org/10.3390/molecules26010012] [PMID: 33375119]
[84]
Zervou, M.; Cournia, Z.; Potamitis, C.; Patargias, G.; Durdagi, S.; Grdadolnik, S.G.; Mavromoustakos, T. Insights into the molecular basis of action of the AT1 antagonist losartan using a combined NMR spectroscopy and computational approach. Biochim. Biophys. Acta Biomembr., 2014, 1838(3), 1031-1046.
[http://dx.doi.org/10.1016/j.bbamem.2013.12.012] [PMID: 24374319]
[85]
Ridgway, H.; Chasapis, C.T.; Kelaidonis, K.; Ligielli, I.; Moore, G.J.; Gadanec, L.K.; Zulli, A.; Apostolopoulos, V.; Mavromoustakos, T.; Matsoukas, J.M. Understanding the driving forces that trigger mutations in SARS-CoV-2: Mutational energetics and the role of arginine blockers in COVID-19 therapy. Viruses, 2022, 14(5), 1029.
[http://dx.doi.org/10.3390/v14051029] [PMID: 35632769]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy