General Review Article

纳米技术系统与肺:肺药物应用的完美结合

卷 30, 期 6, 2023

发表于: 21 October, 2022

页: [725 - 743] 页: 19

弟呕挨: 10.2174/0929867329666220829092323

价格: $65

Open Access Journals Promotions 2
摘要

如今,肺部是受气候变化、吸烟、污染和遗传因素影响的最常见器官。常规药物治疗(口服或注射)选择性差;这会导致毒性问题和许多系统性副作用。此外,虽然肺给药是治疗肺部疾病的一种有趣的给药途径,但吸入治疗是复杂的,主要是由于肺部防御机制导致药物快速消除。使用纳米载体的肺部给药似乎是克服这些问题的最佳治疗策略。事实上,这些纳米系统可以减少药物治疗剂量和副作用,提高患者依从性,避免肺泡巨噬细胞清除,保护药物免受降解过程,并提供可控和靶向药物释放。因此,本文旨在分析有关纳米载体用于治疗主要肺部疾病(癌症、哮喘、感染)的科学文献。尤其是脂质体和聚合物

关键词: 肺给药,肺,脂质体,聚合物纳米颗粒,脂质纳米颗粒,肺部疾病。

[1]
Ball, M.; Hossain, M.; Padalia, D. Anatomy, Airway; StatPearls, 2022.
[2]
Hsia, C.C.; Hyde, D.M.; Weibel, E.R. Lung structure and the intrinsic challenges of gas exchange. Compr. Physiol., 2016, 6(2), 827-895.
[http://dx.doi.org/10.1002/cphy.c150028] [PMID: 27065169]
[3]
Icardo, J.M. Lungs and gas bladders: Morphological insights. Acta Histochem., 2018, 120(7), 605-612.
[http://dx.doi.org/10.1016/j.acthis.2018.08.006] [PMID: 30177383]
[4]
Banov, C. Clinical science, chapter 9. Anatomy and physiology of the lower and upper airway. J. Allergy Clin. Immunol., 1989, 84(6), 1044-1046.
[http://dx.doi.org/10.1016/0091-6749(89)90149-8] [PMID: 2600337]
[5]
Milavetz, G. Global surveillance, prevention and control of chronic respiratory diseases: A comprehensive approach. J. Pharm. Technol., 2008, 24(2), 122.
[http://dx.doi.org/10.1177/875512250802400215]
[6]
Durham, A.L.; Caramori, G.; Chung, K.F.; Adcock, I.M. Targeted anti-inflammatory therapeutics in asthma and chronic obstructive lung disease. Transl. Res., 2016, 167(1), 192-203.
[http://dx.doi.org/10.1016/j.trsl.2015.08.004] [PMID: 26334389]
[7]
Fujita, Y.; Takeshita, F.; Kuwano, K.; Ochiya, T. RNAi therapeutic platforms for lung diseases. Pharmaceuticals, 2013, 6(2), 223-250.
[http://dx.doi.org/10.3390/ph6020223] [PMID: 24275949]
[8]
Pramanik, S.; Mohanto, S.; Manne, R.; Rajendran, R.R.; Deepak, A.; Edapully, S.J.; Patil, T.; Katari, O. Nanoparticle based drug delivery system: The magic bullet for the treatment of chronic pulmonary diseases. Mol. Pharm., 2021, 18(10), 3671-3718.
[http://dx.doi.org/10.1021/acs.molpharmaceut.1c00491] [PMID: 34491754]
[9]
Ghadiri, M.; Young, P.; Traini, D. Strategies to enhance drug absorption via nasal and pulmonary routes. Pharmaceutics, 2019, 11(3), 113.
[http://dx.doi.org/10.3390/pharmaceutics11030113] [PMID: 30861990]
[10]
Weber, S.; Zimmer, A.; Pardeike, J. Solid Lipid Nanoparticles (SLN) and Nanostructured Lipid Carriers (NLC) for pulmonary application: A review of the state of the art. Eur. J. Pharm. Biopharm., 2014, 86(1), 7-22.
[http://dx.doi.org/10.1016/j.ejpb.2013.08.013] [PMID: 24007657]
[11]
Li, Z.; Qiao, W.; Wang, C.; Wang, H.; Ma, M.; Han, X.; Tang, J. DPPC coated lipid nanoparticles as an inhalable carrier for accumulation of resveratrol in the pulmonary vasculature, a new strategy for pulmonary arterial hypertension treatment. Drug Deliv., 2020, 27(1), 736-744.
[http://dx.doi.org/10.1080/10717544.2020.1760962] [PMID: 32397765]
[12]
Trapani, A.; Gioia, S.; Castellani, S.; Carbone, A.; Cavallaro, G.; Trapani, G.; Conese, M. Nanocarriers for respiratory diseases treatment: Recent advances and current challenges. Curr. Top. Med. Chem., 2014, 14(9), 1133-1147.
[http://dx.doi.org/10.2174/1568026614666140329225817] [PMID: 24678708]
[13]
Thomas, B.; Pugalenthi, A. Currently available inhaled therapies in asthma and advances in drug delivery and devices. Indian J. Pediatr., 2022, 89(4), 387-394.
[http://dx.doi.org/10.1007/s12098-021-03976-2] [PMID: 34989948]
[14]
Kurmi, B.D.; Kayat, J.; Gajbhiye, V.; Tekade, R.K.; Jain, N.K. Micro and nanocarrier mediated lung targeting. Expert Opin. Drug Deliv., 2010, 7(7), 781-794.
[http://dx.doi.org/10.1517/17425247.2010.492212] [PMID: 20560777]
[15]
Xu, H.; Ji, H.; Li, Z.; Qiao, W.; Wang, C.; Tang, J. In vivo pharmacokinetics and in vitro release of imatinib mesylate loaded liposomes for pulmonary delivery. Int. J. Nanomedicine, 2021, 16, 1221-1229.
[http://dx.doi.org/10.2147/IJN.S294626] [PMID: 33628019]
[16]
Hu, X.; Yang, F.; Liao, Y.; Li, L.; Zhao, G.; Zhang, L. Docetaxel-loaded cholesterol-PEG Co-Modified Poly (n-Butyl) cyanoacrylate nanoparticles for antitumor drug pulmonary delivery: Preparation, characterization, and in vivo evaluation. Int. J. Nanomed., 2020, 15, 5361-5376.
[http://dx.doi.org/10.2147/IJN.S249511] [PMID: 32801694]
[17]
Byron, P.R. Prediction of drug residence times in regions of the human respiratory tract following aerosol inhalation. J. Pharm. Sci., 1986, 75(5), 433-438.
[http://dx.doi.org/10.1002/jps.2600750502] [PMID: 3735078]
[18]
Abu Lila, A.S.; Ishida, T. Liposomal delivery systems: Design optimization and current applications. Biol. Pharm. Bull., 2017, 40(1), 1-10.
[http://dx.doi.org/10.1248/bpb.b16-00624] [PMID: 28049940]
[19]
Nguyen, T.X.; Huang, L.; Gauthier, M.; Yang, G.; Wang, Q. Recent advances in liposome surface modification for oral drug delivery. Nanomedicine (Lond.), 2016, 11(9), 1169-1185.
[http://dx.doi.org/10.2217/nnm.16.9] [PMID: 27074098]
[20]
Bangham, A.D.; Standish, M.M.; Watkins, J.C. Diffusion of univalent ions across the lamellae of swollen phospholipids. J. Mol. Biol., 1965, 13(1), 238-IN27.
[http://dx.doi.org/10.1016/S0022-2836(65)80093-6] [PMID: 5859039]
[21]
Kirby, C.J.; Gregoriadis, G. Encyclopaedia of Controlled Drug Delivery; Mathiowitz, E., Ed.; Wiley: New York, 1999, pp. 461-492.
[22]
Rudokas, M.; Najlah, M.; Alhnan, M.A.; Elhissi, A. Liposome delivery systems for inhalation: A critical review highlighting formulation issues and anticancer applications. Med. Princ. Pract., 2016, 25(S2), 60-72.
[http://dx.doi.org/10.1159/000445116] [PMID: 26938856]
[23]
Bassetti, M.; Vena, A.; Russo, A.; Peghin, M. Inhaled liposomal antimicrobial delivery in lung infections. Drugs, 2020, 80(13), 1309-1318.
[http://dx.doi.org/10.1007/s40265-020-01359-z] [PMID: 32691293]
[24]
Ehsan, Z.; Wetzel, J.D.; Clancy, J.P. Nebulized liposomal amikacin for the treatment of Pseudomonas aeruginosa infection in cystic fibrosis patients. Expert Opin. Investig. Drugs, 2014, 23(5), 743-749.
[http://dx.doi.org/10.1517/13543784.2014.895322] [PMID: 24597573]
[25]
Elhissi, A. Liposomes for pulmonary drug delivery: The role of for mulation and inhalation device design. Curr. Pharm. Des., 2017, 23(3), 362-372.
[http://dx.doi.org/10.2174/1381612823666161116114732] [PMID: 27848886]
[26]
Letsou, G.V.; Safi, H.J.; Reardon, M.J.; Ergenoglu, M.; Li, Z.; Klonaris, C.N.; Baldwin, J.C.; Gilbert, B.E.; Waldrep, J.C. Pharmacokinetics of liposomal aerosolized cyclosporine A for pulmonary immunosuppression. Ann. Thorac. Surg., 1999, 68(6), 2044-2048.
[http://dx.doi.org/10.1016/S0003-4975(99)01183-2] [PMID: 10616974]
[27]
Saari, M.; Vidgren, M.T.; Koskinen, M.O.; Turjanmaa, V.M.H.; Nieminen, M.M. Pulmonary distribution and clearance of two beclomethasone liposome formulations in healthy volunteers. Int. J. Pharm., 1999, 181(1), 1-9.
[http://dx.doi.org/10.1016/S0378-5173(98)00398-6] [PMID: 10370197]
[28]
Taylor, K.M.G.; Taylor, G.; Kellaway, I.W.; Stevens, J. The influence of liposomal encapsulation on sodium cromoglycate pharmacokinetics in man. Pharm. Res., 1989, 6(7), 633-636.
[http://dx.doi.org/10.1023/A:1015917918130] [PMID: 2508078]
[29]
Waters, V.; Ratjen, F. Inhaled liposomal amikacin. Expert Rev. Respir. Med., 2014, 8(4), 401-409.
[http://dx.doi.org/10.1586/17476348.2014.918507] [PMID: 24882271]
[30]
Jarai, B.M.; Kolewe, E.L.; Stillman, Z.S.; Raman, N.; Fromen, C.A. Polymeric Nanoparticles; Elsevier Inc, 2020.
[http://dx.doi.org/10.1016/B978-0-12-816662-8.00018-7]
[31]
Ungaro, F.; d’ Angelo, I.; Miro, A.; La Rotonda, M.I.; Quaglia, F. Engineered PLGA nano- and micro-carriers for pulmonary delivery: Challenges and promises. J. Pharm. Pharmacol., 2012, 64(9), 1217-1235.
[http://dx.doi.org/10.1111/j.2042-7158.2012.01486.x] [PMID: 22881435]
[32]
Bonaccorso, A.; Pellitteri, R.; Ruozi, B.; Puglia, C.; Santonocito, D.; Pignatello, R.; Musumeci, T. cCurcumin loaded polymeric vs. lipid nanoparticles: Antioxidant effect on normal and hypoxic olfactory ensheathing cells. Nanomaterials (Basel), 2021, 11(1), 159.
[http://dx.doi.org/10.3390/nano11010159] [PMID: 33435146]
[33]
Sinha, V.R.; Trehan, A. Biodegradable microspheres for protein delivery. J. Control. Release, 2003, 90(3), 261-280.
[http://dx.doi.org/10.1016/S0168-3659(03)00194-9] [PMID: 12880694]
[34]
Mundargi, R.C.; Babu, V.R.; Rangaswamy, V.; Patel, P.; Aminabhavi, T.M. Nano/micro technologies for delivering macromolecular therapeutics using poly(d,l-lactide-co-glycolide) and its derivatives. J. Control. Release, 2008, 125(3), 193-209.
[http://dx.doi.org/10.1016/j.jconrel.2007.09.013] [PMID: 18083265]
[35]
Lai, S.K.; Wang, Y.Y.; Hanes, J. Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev., 2009, 61(2), 158-171.
[http://dx.doi.org/10.1016/j.addr.2008.11.002] [PMID: 19133304]
[36]
Mura, S.; Hillaireau, H.; Nicolas, J.; Kerdine, R.S.; Le Droumaguet, B.; Deloménie, C.; Nicolas, V.; Pallardy, M.; Tsapis, N.; Fattal, E. Biodegradable nanoparticles meet the bronchial airway barrier: How surface properties affect their interaction with mucus and epithelial cells. Biomacromolecules, 2011, 12(11), 4136-4143.
[http://dx.doi.org/10.1021/bm201226x] [PMID: 21981120]
[37]
Santonocito, D.; Puglia, C. Applications of lipid based nanocarriers for parenteral drug delivery. Curr. Med. Chem., 2022, 29(24), 4152-4169.
[PMID: 34983336]
[38]
Puglia, C.; Santonocito, D. Cosmeceuticals: Nanotechnology based strategies for the delivery of phytocompounds. Curr. Pharm. Des., 2019, 25(21), 2314-2322.
[http://dx.doi.org/10.2174/1381612825666190709211101] [PMID: 31584366]
[39]
Santonocito, D.; Raciti, G.; Campisi, A.; Sposito, G.; Panico, A.; Siciliano, E.A.; Sarpietro, M.G.; Damiani, E.; Puglia, C. Astaxanthin-loaded stealth lipid nanoparticles (ast-ssln) as potential carriers for the treatment of alzheimer’s disease: Formulation development and optimization. Nanomaterials (Basel), 2021, 11(2), 391.
[http://dx.doi.org/10.3390/nano11020391] [PMID: 33546352]
[40]
Puglia, C.; Pignatello, R.; Fuochi, V.; Furneri, P.M.; Lauro, M.R.; Santonocito, D.; Cortesi, R.; Esposito, E. Lipid nanoparticles and active natural compounds: A perfect combination for pharmaceutical applications. Curr. Med. Chem., 2019, 26(24), 4681-4696.
[http://dx.doi.org/10.2174/0929867326666190614123835] [PMID: 31203795]
[41]
Puglia, C.; Santonocito, D.; Romeo, G.; Intagliata, S.; Romano, G.L.; Strettoi, E.; Novelli, E.; Ostacolo, C.; Campiglia, P.; Sommella, E.M.; Pignatello, R.; Bucolo, C. Lipid nanoparticles traverse non corneal path to reach the posterior eye segment: In vivo evidence. Molecules, 2021, 26(15), 4673.
[http://dx.doi.org/10.3390/molecules26154673] [PMID: 34361825]
[42]
Santonocito, D.; Vivero, L.M.; Lauro, M.R.; Torrisi, C.; Castelli, F.; Sarpietro, M.G.; Puglia, C. Design of Nanotechnological Carriers for Ocular Delivery of Mangiferin: Preformulation Study. Molecules, 2022, 27(4), 1328.
[http://dx.doi.org/10.3390/molecules27041328] [PMID: 35209120]
[43]
Corrias, F.; Lai, F. New methods for lipid nanoparticles preparation. Recent Pat. Drug Deliv. Formul., 2011, 5(3), 201-213.
[http://dx.doi.org/10.2174/187221111797200597] [PMID: 21834772]
[44]
Puglia, C.; Santonocito, D.; Ostacolo, C.; Maria Sommella, E.; Campiglia, P.; Carbone, C.; Drago, F.; Pignatello, R.; Bucolo, C. Ocular formulation based on palmitoylethanolamide-loaded nanostructured lipid carriers: Technological and pharmacological profile. Nanomaterials (Basel), 2020, 10(2), 287.
[http://dx.doi.org/10.3390/nano10020287] [PMID: 32046269]
[45]
El-Salamouni, N.S.; Farid, R.M.; El-Kamel, A.H.; El-Gamal, S.S. Effect of sterilization on the physical stability of brimonidine-loaded solid lipid nanoparticles and nanostructured lipid carriers. Int. J. Pharm., 2015, 496(2), 976-983.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.043] [PMID: 26498372]
[46]
Nayak, A.P.; Tiyaboonchai, W.; Patankar, S.; Madhusudhan, B.; Souto, E.B. Curcuminoids-loaded lipid nanoparticles: Novel approach towards malaria treatment. Colloids Surf. B Biointerfaces, 2010, 81(1), 263-273.
[http://dx.doi.org/10.1016/j.colsurfb.2010.07.020] [PMID: 20688493]
[47]
Heiati, H.; Tawashi, R.; Phillips, N.C. Drug retention and stability of solid lipid nanoparticles containing azidothymidine palmitate after autoclaving, storage and lyophilization. J. Microencapsul., 1998, 15(2), 173-184.
[http://dx.doi.org/10.3109/02652049809006847] [PMID: 9532523]
[48]
Lowry, R.H.; Wood, A.M.; Higenbottam, T.W. Effects of pH and osmolarity on aerosol-induced cough in normal volunteers. Clin. Sci. (Lond.), 1988, 74(4), 373-376.
[http://dx.doi.org/10.1042/cs0740373] [PMID: 3356109]
[49]
Müller, R.H. "Zeta potential and particle charge in laboratory practice"; Wissenschaftliche Verlagsgesellschaft mbH, Stuttgart, 1996.
[50]
Capstick, T.G.D.; Clifton, I.J. Inhaler technique and training in people with chronic obstructive pulmonary disease and asthma. Expert Rev. Respir. Med., 2012, 6(1), 91-103.
[http://dx.doi.org/10.1586/ers.11.89] [PMID: 22283582]
[51]
Yu, J.; Chien, Y.W. Pulmonary drug delivery: Physiologic and mechanistic aspects. Crit. Rev. Ther. Drug Carrier Syst., 1997, 14(4), 59.
[http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.v14.i4.20] [PMID: 9450176]
[52]
Usmani, O.S. Improved lung deposition: New inhaler devices. In: Overcoming Steroid Insensitivity in Respiratory Disease, 1st ed.; Ian, M. Adcock; Chung, Kian Fan, Eds.; John Wiley & Sons, Ltd., 2008; pp. 263-81.
[http://dx.doi.org/10.1002/9780470985731.ch14]
[53]
Mims, J.W. Asthma: Definitions and pathophysiology. Int. Forum Allergy Rhinol., 2015, 5(S1), S2-S6.
[http://dx.doi.org/10.1002/alr.21609] [PMID: 26335832]
[54]
Corrigan, C.J. Calcilytics: A non-steroidal replacement for inhaled steroid and SABA/LABA therapy of human asthma? Expert Rev. Respir. Med., 2020, 14(8), 807-816.
[http://dx.doi.org/10.1080/17476348.2020.1756779] [PMID: 32306788]
[55]
Li, Q.; Zhan, S.; Liu, Q.; Su, H.; Dai, X.; Wang, H.; Beng, H.; Tan, W. Preparation of a sustained-release nebulized aerosol of r-terbutaline hydrochloride liposome and Evaluation of its anti-asthmatic effects via pulmonary delivery in guinea pigs. AAPS PharmSciTech, 2018, 19(1), 232-241.
[http://dx.doi.org/10.1208/s12249-017-0816-z] [PMID: 28681333]
[56]
Chakraborty, S.; Ehsan, I.; Mukherjee, B.; Mondal, L.; Roy, S.; Saha, K.D.; Paul, B.; Debnath, M.C.; Bera, T. Therapeutic potential of andrographolide-loaded nanoparticles on a murine asthma model. Nanomedicine, 2019, 20, 102006.
[http://dx.doi.org/10.1016/j.nano.2019.04.009] [PMID: 31059793]
[57]
Jin, H.; Li, J.; Zhang, M.; Luo, R.; Lu, P.; Zhang, W.; Zhang, J.; Pi, J.; Zheng, W.; Mai, Z.; Ding, X.; Liu, X.; Ouyang, S.; Huang, G. Berberine-loaded biomimetic nanoparticles attenuate inflammation of experimental allergic asthma via enhancing IL-12 expression. Front. Pharmacol., 2021, 12, 724525.
[http://dx.doi.org/10.3389/fphar.2021.724525] [PMID: 34858170]
[58]
Esmaeili, M.; Aghajani, M.; Abbasalipourkabir, R.; Amani, A. Budesonide-loaded solid lipid nanoparticles for pulmonary delivery: Preparation, optimization, and aerodynamic behavior. Artif. Cells Nanomed. Biotechnol., 2016, 44(8), 1964-1971.
[http://dx.doi.org/10.3109/21691401.2015.1129614] [PMID: 26758698]
[59]
Patil-Gadhe, A.; Kyadarkunte, A.; Patole, M.; Pokharkar, V. Montelukast-loaded nanostructured lipid carriers: Part II Pulmonary drug delivery and in vitro–in vivo aerosol performance. Eur. J. Pharm. Biopharm., 2014, 88(1), 169-177.
[http://dx.doi.org/10.1016/j.ejpb.2014.07.007] [PMID: 25078860]
[60]
Corti, A.; Pastorino, F.; Curnis, F.; Arap, W.; Ponzoni, M.; Pasqualini, R. Targeted drug delivery and penetration into solid tumors. Med. Res. Rev., 2012, 32(5), 1078-1091.
[http://dx.doi.org/10.1002/med.20238] [PMID: 21287572]
[61]
Nurgali, K.; Jagoe, R.T.; Abalo, R. Editorial: Adverse effects of cancer chemotherapy: Anything new to improve tolerance and reduce sequelae? Front. Pharmacol., 2018, 9, 245.
[http://dx.doi.org/10.3389/fphar.2018.00245] [PMID: 29623040]
[62]
Zhao, C.Y.; Cheng, R.; Yang, Z.; Tian, Z.M. Nanotechnology for cancer therapy based on chemotherapy. Molecules, 2018, 23(4), 826.
[http://dx.doi.org/10.3390/molecules23040826] [PMID: 29617302]
[63]
Gonciar, D.; Mocan, T.; Matea, C.T.; Zdrehus, C.; Mosteanu, O.; Mocan, L.; Pop, T. Nanotechnology in metastatic cancer treatment: Current achievements and future research trends. J. Cancer, 2019, 10(6), 1358-1369.
[http://dx.doi.org/10.7150/jca.28394] [PMID: 31031845]
[64]
Zhu, X.; Kong, Y.; Liu, Q.; Lu, Y.; Xing, H.; Lu, X.; Yang, Y.; Xu, J.; Li, N.; Zhao, D.; Chen, X.; Lu, Y. Inhalable dry powder prepared from folic acid-conjugated docetaxel liposomes alters pharmacodynamic and pharmacokinetic properties relevant to lung cancer chemotherapy. Pulm. Pharmacol. Ther., 2019, 55, 50-61.
[http://dx.doi.org/10.1016/j.pupt.2019.02.001] [PMID: 30738974]
[65]
Bakhtiary, Z.; Barar, J.; Aghanejad, A.; Saei, A.A.; Nemati, E.; Ezzati Nazhad Dolatabadi, J.; Omidi, Y. Microparticles containing erlotinib-loaded solid lipid nanoparticles for treatment of non-small cell lung cancer. Drug Dev. Ind. Pharm., 2017, 43(8), 1244-1253.
[http://dx.doi.org/10.1080/03639045.2017.1310223] [PMID: 28323493]
[66]
Xu, J.; Lu, X.; Zhu, X.; Yang, Y.; Liu, Q.; Zhao, D.; Lu, Y.; Wen, J.; Chen, X.; Li, N. Formulation and characterization of spray-dried powders containing vincristine-liposomes for pulmonary delivery and its pharmacokinetic evaluation from in vitro and in vivo. J. Pharm. Sci., 2019, 108(10), 3348-3358.
[http://dx.doi.org/10.1016/j.xphs.2019.05.009] [PMID: 31103789]
[67]
Adel, I.M.; ElMeligy, M.F.; Abdelrahim, M.E.A.; Maged, A.; Abdelkhalek, A.A.; Abdelmoteleb, A.M.M.; Elkasabgy, N.A. Design and characterization of spray-dried proliposomes for the pulmonary delivery of curcumin. Int. J. Nanomedicine, 2021, 16, 2667-2687.
[http://dx.doi.org/10.2147/IJN.S306831] [PMID: 33854314]
[68]
Frasca, G.; Cardile, V.; Puglia, C.; Bonina, C.; Bonina, F. Gelatin tannate reduces the proinflammatory effects of lipopolysaccharide in human intestinal epithelial cells. Clin. Exp. Gastroenterol., 2012, 5, 61-67.
[PMID: 22629114]
[69]
Zhang, G.; Xie, F.; Sun, Y.; Yu, X.; Xiao, Z.; Fang, R.; Li, J.; Li, Q.; Du, L.; Jin, Y. Inhalable jojoba oil dry nanoemulsion powders for the treatment of lipopolysaccharide- or H2O2-induced acute lung injury. Pharmaceutics, 2021, 13(4), 486.
[http://dx.doi.org/10.3390/pharmaceutics13040486] [PMID: 33918471]
[70]
Abdelwahed, W.; Degobert, G.; Stainmesse, S.; Fessi, H. Freeze-drying of nanoparticles: Formulation, process and storage considerations. Adv. Drug Deliv. Rev., 2006, 58(15), 1688-1713.
[http://dx.doi.org/10.1016/j.addr.2006.09.017] [PMID: 17118485]
[71]
Crowe, L.M.; Crowe, J.H. Stabilization of dry liposomes by carbohydrates. Dev. Biol. Stand., 1992, 74, 285-294.
[PMID: 1592177]
[72]
Crowe, L.M.; Womersley, C.; Crowe, J.H.; Reid, D.; Appel, L.; Rudolph, A. Prevention of fusion and leakage in freeze-dried liposomes by carbohydrates. Biochim. Biophys. Acta Biomembr., 1986, 861, 131-140.
[http://dx.doi.org/10.1016/0005-2736(86)90411-6]
[73]
Doebbler, G.F. Cryoprotective compounds. Cryobiology, 1966, 3(1), 2-11.
[http://dx.doi.org/10.1016/S0011-2240(66)80144-X] [PMID: 5338645]
[74]
Bensouda, Y.; Cavé, G.; Seiller, M.; Puisieux, F. Freeze-drying of emulsions influence of congealing on granulometry research of a cryoprotective agent. Pharm. Acta Helv., 1989, 64(2), 40-44.
[PMID: 2717649]
[75]
Madden, T.D.; Bally, M.B.; Hope, M.J.; Cullis, P.R.; Schieren, H.P.; Janoff, A.S. Protection of large unilamellar vesicles by trehalose during dehydration: Retention of vesicle contents. Biochim. Biophys. Acta Biomembr., 1985, 817(1), 67-74.
[http://dx.doi.org/10.1016/0005-2736(85)90069-0] [PMID: 4005259]
[76]
Strauss, G.; Schurtenberger, P.; Hauser, H. The interaction of saccharides with lipid bilayer vesicles: Stabilization during freeze-thawing and freeze-drying. Biochim. Biophys. Acta Biomembr., 1986, 858(1), 169-180.
[http://dx.doi.org/10.1016/0005-2736(86)90303-2] [PMID: 3011090]
[77]
Ausborn, M.; Nuhn, P.; Schreier, H. Stabilization of liposomes by freeze–thaw and lyophilization techniques: Problems and opportunities. Eur. J. Pharm. Biopharm., 1992, 38, 133-139.
[78]
Hauser, H.; Strauss, G. Stabilization of small, unilamellar phospholipid vesicles by sucrose during freezing and dehydration. Adv. Exp. Med. Biol., 1988, 238, 71-80.
[http://dx.doi.org/10.1007/978-1-4684-7908-9_7] [PMID: 3250248]
[79]
Vemuri, S.; Yu, C.D.; Degroot, J.S.; Wangsatornthnakun, V.; Venkataram, S. Effect of sugars on freeze-thaw and lyophilization of liposomes. Drug Dev. Ind. Pharm., 1991, 17(3), 327-348.
[http://dx.doi.org/10.3109/03639049109043831]
[80]
Strauss, G. Freezing and thawing of liposomes suspensions. In: Liposome Technology, Preparation of Liposomes; Gregoriadis, G., Ed.; CRC Press, 1984; 1, pp. 197-219.
[81]
Shulkin, P.M.; Seltzer, S.E.; Davis, M.A.; Adams, D.F. Lyophilized liposomes: A new method for long term vesicular storage. J. Microencapsul., 1984, 1(1), 73-80.
[http://dx.doi.org/10.3109/02652048409031539] [PMID: 6336517]
[82]
Schwarz, C.; Mehnert, W. Freeze-drying of drug-free and drug-loaded solid lipid nanoparticles (SLN). Int. J. Pharm., 1997, 157(2), 171-179.
[http://dx.doi.org/10.1016/S0378-5173(97)00222-6] [PMID: 10477814]
[83]
Mehnert, W.; Mäder, K. Solid lipid nanoparticles Production, characterization and applications. Adv. Drug Deliv. Rev., 2001, 47(2-3), 165-196.
[http://dx.doi.org/10.1016/S0169-409X(01)00105-3] [PMID: 11311991]
[84]
Abdelwahed, W. Lyophilization of solid lipid nanoparticles for brain targeting. Int. J. Pharm. Pharm. Sci., 2015, 7(10), 381-385.
[85]
Pikal, M.J.; Shah, S. The collapse temperature in freeze drying: Dependence on measurement methodology and rate of water removal from the glassy phase. Int. J. Pharm., 1990, 62(2-3), 165-186.
[http://dx.doi.org/10.1016/0378-5173(90)90231-R]
[86]
Chishti, N.; Jagwani, S.; Dhamecha, D.; Jalalpure, S.; Dehghan, M.H. Preparation, optimization, and in vivo evaluation of nanoparticle-based formulation for pulmonary delivery of anticancer drug. Medicina (Kaunas), 2019, 55(6), 294.
[http://dx.doi.org/10.3390/medicina55060294] [PMID: 31226865]
[87]
Shukla, S.K.; Kulkarni, N.S.; Farrales, P.; Kanabar, D.D.; Parvathaneni, V.; Kunda, N.K.; Muth, A.; Gupta, V. Sorafenib loaded inhalable polymeric nanocarriers against non-small cell lung cancer. Pharm. Res., 2020, 37(3), 67.
[http://dx.doi.org/10.1007/s11095-020-02790-3] [PMID: 32166411]
[88]
Patel, P.; Raval, M.; Manvar, A.; Airao, V.; Bhatt, V.; Shah, P. Lung cancer targeting efficiency of silibinin loaded poly caprolactone /pluronic F68 inhalable nanoparticles: in vitro and in vivo study. PLoS One, 2022, 17(5), e0267257.
[http://dx.doi.org/10.1371/journal.pone.0267257] [PMID: 35560136]
[89]
Patel, P.; Raval, M.; Airao, V.; Bhatt, V.; Shah, P. Silibinin loaded inhalable solid lipid nanoparticles for lung targeting. J. Microencapsul., 2022, 39(1), 1-24.
[http://dx.doi.org/10.1080/02652048.2021.2002448] [PMID: 34825627]
[90]
Osama, H.; Sayed, O.M.; Hussein, R.R.S.; Abdelrahim, M.; A Elberry, A. Design, optimization, characterization, and in vivo evaluation of sterosomes as a carrier of metformin for treatment of lung cancer. J. Liposome Res., 2020, 30(2), 150-162.
[http://dx.doi.org/10.1080/08982104.2019.1610434] [PMID: 31039656]
[91]
Zhang, M.; Li, M.; Du, L.; Zeng, J.; Yao, T.; Jin, Y. Paclitaxel-in-liposome-in-bacteria for inhalation treatment of primary lung cancer. Int. J. Pharm., 2020, 578, 119177.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119177] [PMID: 32105724]
[92]
Xu, Y.; Liu, H.; Song, L. Novel drug delivery systems targeting oxidative stress in chronic obstructive pulmonary disease: A review. J. Nanobiotechnol., 2020, 18(1), 145.
[http://dx.doi.org/10.1186/s12951-020-00703-5] [PMID: 33076918]
[93]
Decramer, M.; Janssens, W.; Miravitlles, M. Chronic obstructive pulmonary disease. Lancet, 2012, 379(9823), 1341-1351.
[http://dx.doi.org/10.1016/S0140-6736(11)60968-9] [PMID: 22314182]
[94]
Carvalho, T.C.; Peters, J.I.; Williams, R.O. III Influence of particle size on regional lung deposition – What evidence is there? Int. J. Pharm., 2011, 406(1-2), 1-10.
[http://dx.doi.org/10.1016/j.ijpharm.2010.12.040] [PMID: 21232585]
[95]
Burhan, E.; Ruesen, C.; Ruslami, R.; Ginanjar, A.; Mangunnegoro, H.; Ascobat, P.; Donders, R.; van Crevel, R.; Aarnoutse, R. Isoniazid, rifampin, and pyrazinamide plasma concentrations in relation to treatment response in Indonesian pulmonary tuberculosis patients. Antimicrob. Agents Chemother., 2013, 57(8), 3614-3619.
[http://dx.doi.org/10.1128/AAC.02468-12] [PMID: 23689725]
[96]
Kinnula, V.L. Focus on antioxidant enzymes and antioxidant strategies in smoking related airway diseases. Thorax, 2005, 60(8), 693-700.
[http://dx.doi.org/10.1136/thx.2004.037473] [PMID: 16061713]
[97]
Van Klinken, B.J.W.; Dekker, J.; Büller, H.A.; Einerhand, A.W.C. Mucin gene structure and expression: Protection vs. adhesion. Am. J. Physiol., 1995, 269(5 Pt 1), G613-G627.
[PMID: 7491952]
[98]
Barnes, P.J. How corticosteroids control inflammation: Quintiles Prize Lecture 2005. Br. J. Pharmacol., 2006, 148(3), 245-254.
[http://dx.doi.org/10.1038/sj.bjp.0706736] [PMID: 16604091]
[99]
Umland, S.P.; Schleimer, R.P.; Johnston, S.L. Review of the molecular and cellular mechanisms of action of glucocorticoids for use in asthma. Pulm. Pharmacol. Ther., 2002, 15(1), 35-50.
[http://dx.doi.org/10.1006/pupt.2001.0312] [PMID: 11969362]
[100]
Oakley, R.H.; Jewell, C.M.; Yudt, M.R.; Bofetiado, D.M.; Cidlowski, J.A. The dominant negative activity of the human glucocorticoid receptor beta isoform. Specificity and mechanisms of action. J. Biol. Chem., 1999, 274(39), 27857-27866.
[http://dx.doi.org/10.1074/jbc.274.39.27857] [PMID: 10488132]
[101]
Hanna, V.S.; Hafez, E.A.A. Synopsis of arachidonic acid metabolism: A review. J. Adv. Res., 2018, 11, 23-32.
[http://dx.doi.org/10.1016/j.jare.2018.03.005] [PMID: 30034873]
[102]
Manca, M.L.; Ferraro, M.; Pace, E.; Di Vincenzo, S.; Valenti, D.; Fernàndez-Busquets, X.; Peptu, C.A.; Manconi, M. Loading of beclomethasone in liposomes and hyalurosomes improved with mucin as effective approach to counteract the oxidative stress generated by cigarette smoke extract. Nanomaterials (Basel), 2021, 11(4), 850.
[http://dx.doi.org/10.3390/nano11040850] [PMID: 33810420]
[103]
De Leo, V.; Ruscigno, S.; Trapani, A.; Di Gioia, S.; Milano, F.; Mandracchia, D.; Comparelli, R.; Castellani, S.; Agostiano, A.; Trapani, G.; Catucci, L.; Conese, M. Preparation of drug loaded small unilamellar liposomes and evaluation of their potential for the treatment of chronic respiratory diseases. Int. J. Pharm., 2018, 545(1-2), 378-388.
[http://dx.doi.org/10.1016/j.ijpharm.2018.04.030] [PMID: 29678545]
[104]
Carvalho, F.O.; Silva, É.R.; Nunes, P.S.; Felipe, F.A.; Ramos, K.P.P.; Ferreira, L.A.S.; Lima, V.N.B.; Shanmugam, S.; Oliveira, A.S.; Guterres, S.S.; Camargo, E.A.; Cravalho Olivera, T.V.; de Albuquerque Júnior, R.L.C.; de Lucca Junior, W.; Quintans-Júnior, L.J.; Araújo, A.A.S. Effects of the solid lipid nanoparticle of carvacrol on rodents with lung injury from smoke inhalation. Naunyn Schmiedebergs Arch. Pharmacol., 2020, 393(3), 445-455.
[http://dx.doi.org/10.1007/s00210-019-01731-1] [PMID: 31655855]
[105]
Ritter, D.; Knebel, J.; Niehof, M.; Loinaz, I.; Marradi, M.; Gracia, R.; Welscher, Y.; Nostrum, C.F.; Falciani, C.; Pini, A.; Strandh, M.; Hansen, T. In vitro inhalation cytotoxicity testing of therapeutic nanosystems for pulmonary infection. Toxicol. In Vitro, 2020, 63, 104714.
[http://dx.doi.org/10.1016/j.tiv.2019.104714] [PMID: 31706036]
[106]
Günday Türeli, N.; Torge, A.; Juntke, J.; Schwarz, B.C.; Schneider-Daum, N.; Türeli, A.E.; Lehr, C.M.; Schneider, M. Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur. J. Pharm. Biopharm., 2017, 117, 363-371.
[http://dx.doi.org/10.1016/j.ejpb.2017.04.032] [PMID: 28476373]
[107]
Gupta, P.V.; Nirwane, A.M.; Nagarsenker, M.S. Inhalable levofloxacin liposomes complemented with lysozyme for treatment of pulmonary infection in rats: Effective antimicrobial and antibiofilm strategy. AAPS PharmSciTech, 2018, 19(3), 1454-1467.
[http://dx.doi.org/10.1208/s12249-017-0945-4] [PMID: 29464594]
[108]
Yu, S.; Wang, S.; Zou, P.; Chai, G.; Lin, Y.W.; Velkov, T.; Li, J.; Pan, W.; Zhou, Q.T. Inhalable liposomal powder formulations for co-delivery of synergistic ciprofloxacin and colistin against multi-drug resistant gram-negative lung infections. Int. J. Pharm., 2020, 575, 118915.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118915] [PMID: 31816354]
[109]
Farhangi, M.; Mahboubi, A.; Kobarfard, F.; Vatanara, A.; Mortazavi, S.A. Optimization of a dry powder inhaler of ciprofloxacin-loaded polymeric nanomicelles by spray drying process. Pharm. Dev. Technol., 2019, 24(5), 584-592.
[http://dx.doi.org/10.1080/10837450.2018.1545237] [PMID: 30431373]
[110]
Falciani, C.; Zevolini, F.; Brunetti, J.; Riolo, G.; Gracia, R.; Marradi, M.; Loinaz, I.; Ziemann, C.; Cossío, U.; Llop, J.; Bracci, L.; Pini, A. Antimicrobial peptide-loaded nanoparticles as inhalation therapy for Pseudomonas aeruginosa infections. Int. J. Nanomedicine, 2020, 15, 1117-1128.
[http://dx.doi.org/10.2147/IJN.S218966] [PMID: 32110011]
[111]
Pini, A.; Giuliani, A.; Falciani, C.; Fabbrini, M.; Pileri, S.; Lelli, B.; Bracci, L. Characterization of the branched antimicrobial peptide M6 by analyzing its mechanism of action and in vivo toxicity. J. Pept. Sci., 2007, 13(6), 393-399.
[http://dx.doi.org/10.1002/psc.858] [PMID: 17486663]
[112]
Falciani, C.; Lozzi, L.; Pollini, S.; Luca, V.; Carnicelli, V.; Brunetti, J.; Lelli, B.; Bindi, S.; Scali, S.; Di Giulio, A.; Rossolini, G.M.; Mangoni, M.L.; Bracci, L.; Pini, A. Isomerization of an antimicrobial peptide broadens antimicrobial spectrum to gram-positive bacterial pathogens. PLoS One, 2012, 7(10), e46259.
[http://dx.doi.org/10.1371/journal.pone.0046259] [PMID: 23056272]
[113]
Suárez, I.; Fünger, S.M.; Kröger, S.; Rademacher, J.; Fätkenheuer, G.; Rybniker, J. The diagnosis and treatment of tuberculosis. Dtsch. Arztebl. Int., 2019, 116(43), 729-735.
[PMID: 31755407]
[114]
Dheda, K.; Barry, C.E., III; Maartens, G. Tuberculosis. Lancet, 2016, 387(10024), 1211-1226.
[http://dx.doi.org/10.1016/S0140-6736(15)00151-8] [PMID: 26377143]
[115]
Drain, P.K.; Bajema, K.L.; Dowdy, D.; Dheda, K.; Naidoo, K.; Schumacher, S.G.; Ma, S.; Meermeier, E.; Lewinsohn, D.M.; Sherman, D.R. Incipient and subclinical tuberculosis: A clinical review of early stages and progression of infection. Clin. Microbiol. Rev., 2018, 31(4), e00021-18.
[http://dx.doi.org/10.1128/CMR.00021-18] [PMID: 30021818]
[116]
Omar, S.M.; Maziad, N.A.; El-Tantawy, N.M. Pulmonary delivery of isoniazid in nanogel loaded chitosan hybrid microparticles for inhalation. J. Aerosol Med. Pulm. Drug Deliv., 2019, 32(2), 78-87.
[http://dx.doi.org/10.1089/jamp.2018.1460] [PMID: 30526251]
[117]
Ma, C.; Wu, M.; Ye, W.; Huang, Z.; Ma, X.; Wang, W.; Wang, W.; Huang, Y.; Pan, X.; Wu, C. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: Macrophage-targeting and pH-sensitive properties. Drug Deliv. Transl. Res., 2021, 11(3), 1218-1235.
[http://dx.doi.org/10.1007/s13346-020-00849-7] [PMID: 32946043]
[118]
Shah, S.R.; Prajapati, H.R.; Sheth, D.B.; Gondaliya, E.M.; Vyas, A.J.; Soniwala, M.M.; Chavda, J.R. Pharmacokinetics and in vivo distribution of optimized PLGA nanoparticles for pulmonary delivery of levofloxacin. J. Pharm. Pharmacol., 2020, 72(8), 1026-1037.
[http://dx.doi.org/10.1111/jphp.13275] [PMID: 32337714]
[119]
Shah, S.; Ghetiya, R.; Soniwala, M.; Chavda, J. Development and optimization of inhalable levofloxacin nanoparticles for the treatment of tuberculosis. Curr. Drug Deliv., 2021, 18(6), 779-793.
[http://dx.doi.org/10.2174/1567201817999201103194626] [PMID: 33155907]
[120]
Esposito, E.; Drechsler, M.; Mariani, P.; Panico, A.M.; Cardile, V.; Crascì, L.; Carducci, F.; Graziano, A.C.E.; Cortesi, R.; Puglia, C. Nanostructured lipid dispersions for topical administration of crocin, a potent antioxidant from saffron (Crocus sativus L.). Mater. Sci. Eng. C, 2017, 71, 669-677.
[http://dx.doi.org/10.1016/j.msec.2016.10.045] [PMID: 27987758]
[121]
Nair, S.S.; Pharande, R.R.; Bannalikar, A.S.; Mukne, A.P. In vitro anti-mycobacterial activity of acetone extract of Glycyrrhiza glabra. J. Pharm. Pharmacogn. Res., 2015, 3(4), 80-86.
[122]
Cao, J.; Chen, X.; Liang, J.; Yu, X.Q.; Xu, A.L.; Chan, E.; Wei, D.; Huang, M.; Wen, J.Y.; Yu, X.Y.; Li, X.T.; Sheu, F.S.; Zhou, S.F. Role of P-glycoprotein in the intestinal absorption of glabridin, an active flavonoid from the root of Glycyrrhiza glabra. Drug Metab. Dispos., 2007, 35(4), 539-553.
[http://dx.doi.org/10.1124/dmd.106.010801] [PMID: 17220245]
[123]
Gao, S.; Hu, M. Bioavailability challenges associated with development of anti-cancer phenolics. Mini Rev. Med. Chem., 2010, 10(6), 550-567.
[http://dx.doi.org/10.2174/138955710791384081] [PMID: 20370701]
[124]
Mignet, N.; Seguin, J.; Chabot, G. Bioavailability of polyphenol liposomes: A challenge ahead. Pharmaceutics, 2013, 5(4), 457-471.
[http://dx.doi.org/10.3390/pharmaceutics5030457] [PMID: 24300518]
[125]
Viswanathan, V.; Pharande, R.; Bannalikar, A.; Gupta, P.; Gupta, U.; Mukne, A. Inhalable liposomes of Glycyrrhiza glabra extract for use in tuberculosis: Formulation, in vitro characterization, in vivo lung deposition, and in vivo pharmacodynamic studies. Drug Dev. Ind. Pharm., 2019, 45(1), 11-20.
[http://dx.doi.org/10.1080/03639045.2018.1513025] [PMID: 30122088]
[126]
Klimova, B.; Kuca, K.; Novotny, M.; Maresova, P. Cystic fibrosis revisited – a review study. Med. Chem., 2017, 13(2), 102-109.
[http://dx.doi.org/10.2174/1573406412666160608113235] [PMID: 27292156]
[127]
Radlović, N. Cystic fibrosis. Srp. Arh. Celok. Lek., 2012, 140(3-4), 244-249.
[http://dx.doi.org/10.2298/SARH1204244R] [PMID: 22650116]
[128]
Garbuzenko, O.B.; Kbah, N.; Kuzmov, A.; Pogrebnyak, N.; Pozharov, V.; Minko, T. Inhalation treatment of cystic fibrosis with lumacaftor and ivacaftor co-delivered by nanostructured lipid carriers. J. Control. Release, 2019, 296, 225-231.
[http://dx.doi.org/10.1016/j.jconrel.2019.01.025] [PMID: 30677435]
[129]
Bilton, D.; Fajac, I.; Pressler, T.; Clancy, J.P.; Sands, D.; Minic, P.; Cipolli, M.; Galeva, I.; Solé, A.; Quittner, A.L.; Jumadilova, Z.; Ciesielska, M.; Konstan, M.W. Long-term amikacin liposome inhalation suspension in cystic fibrosis patients with chronic P. aeruginosa infection. J. Cyst. Fibros., 2021, 20(6), 1010-1017.
[http://dx.doi.org/10.1016/j.jcf.2021.05.013] [PMID: 34144923]
[130]
Wang, Z.; Meenach, S.A. Synthesis and characterization of nanocomposite microparticles (nCmP) for the treatment of cystic fibrosis-related infections. Pharm. Res., 2016, 33(8), 1862-1872.
[http://dx.doi.org/10.1007/s11095-016-1921-5] [PMID: 27091030]
[131]
Thorn, C.R.; Carvalho, C.S.; Horstmann, J.C.; Lehr, C.M.; Prestidge, C.A.; Thomas, N. Tobramycin liquid crystal nanoparticles eradicate cystic fibrosis-related Pseudomonas aeruginosa biofilms. Small, 2021, 17(24), 2100531.
[http://dx.doi.org/10.1002/smll.202100531] [PMID: 33978317]
[132]
Glass, D.S.; Grossfeld, D.; Renna, H.A.; Agarwala, P.; Spiegler, P.; Kasselman, L.J.; Glass, A.D.; DeLeon, J.; Reiss, A.B. Idiopathic pulmonary fibrosis: Molecular mechanisms and potential treatment approaches. Respir. Investig., 2020, 58(5), 320-335.
[http://dx.doi.org/10.1016/j.resinv.2020.04.002] [PMID: 32487481]
[133]
Richeldi, L.; Collard, H.R.; Jones, M.G. Idiopathic pulmonary fibrosis. Lancet, 2017, 389(10082), 1941-1952.
[http://dx.doi.org/10.1016/S0140-6736(17)30866-8] [PMID: 28365056]
[134]
Xaubet, A.; Ancochea, J.; Molina, M.M. Idiopathic pulmonary fibrosis. Med. Clin. (Barc.), 2017, 148(4), 170-175.
[http://dx.doi.org/10.1016/j.medcli.2016.11.004] [PMID: 27998476]
[135]
Kotta, S.; Aldawsari, H.M.; Badr, S.M.; Binmahfouz, L.S.; Bakhaidar, R.B.; Sreeharsha, N.; Nair, A.B.; Ramnarayanan, C. Aerosol delivery of surfactant liposomes for management of pulmonary fibrosis: An approach supporting pulmonary mechanics. Pharmaceutics, 2021, 13(11), 1851.
[http://dx.doi.org/10.3390/pharmaceutics13111851] [PMID: 34834265]
[136]
Ivanova, V.; Garbuzenko, O.B.; Reuhl, K.R.; Reimer, D.C.; Pozharov, V.P.; Minko, T. Inhalation treatment of pulmonary fibrosis by liposomal prostaglandin E2. Eur. J. Pharm. Biopharm., 2013, 84(2), 335-344.
[http://dx.doi.org/10.1016/j.ejpb.2012.11.023] [PMID: 23228437]
[137]
Garbuzenko, O.B.; Ivanova, V.; Kholodovych, V.; Reimer, D.C.; Reuhl, K.R.; Yurkow, E.; Adler, D.; Minko, T. Combinatorial treatment of idiopathic pulmonary fibrosis using nanoparticles with prostaglandin E and siRNA(s). Nanomedicine, 2017, 13(6), 1983-1992.
[http://dx.doi.org/10.1016/j.nano.2017.04.005] [PMID: 28434932]
[138]
Liparulo, A.; Esposito, R.; Santonocito, D.; Muñoz-ramírez, A.; Spaziano, G.; Bruno, F.; Xiao, J.; Puglia, C.; Filosa, R.; Berrino, L.; D'agostino, B. Formulation and characterization of solid lipid nanoparticles loading rf22-c, a potent and selective 5-LO inhibitor, in a monocrotaline-induced model of pulmonary hypertension. Front. Pharmacol., 2020, 11, 83.
[139]
Berghausen, E.; ten Freyhaus, H.; Rosenkranz, S. Targeting of platelet-derived growth factor signaling in pulmonary arterial hypertension. Handb. Exp. Pharmacol., 2013, 218, 381-408.
[http://dx.doi.org/10.1007/978-3-662-45805-1_16] [PMID: 24092349]
[140]
Perros, F.; Montani, D.; Dorfmüller, P.; Durand-Gasselin, I.; Tcherakian, C.; Le Pavec, J.; Mazmanian, M.; Fadel, E.; Mussot, S.; Mercier, O.; Hervé, P.; Emilie, D.; Eddahibi, S.; Simonneau, G.; Souza, R.; Humbert, M. Platelet-derived growth factor expression and function in idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med., 2008, 178(1), 81-88.
[http://dx.doi.org/10.1164/rccm.200707-1037OC] [PMID: 18420966]
[141]
Schermuly, R.T.; Dony, E.; Ghofrani, H.A.; Pullamsetti, S.; Savai, R.; Roth, M.; Sydykov, A.; Lai, Y.J.; Weissmann, N.; Seeger, W.; Grimminger, F. Reversal of experimental pulmonary hypertension by PDGF inhibition. J. Clin. Invest., 2005, 115(10), 2811-2821.
[http://dx.doi.org/10.1172/JCI24838] [PMID: 16200212]
[142]
Hoeper, M.M.; Barst, R.J.; Bourge, R.C.; Feldman, J.; Frost, A.E.; Galié, N.; Gómez-Sánchez, M.A.; Grimminger, F.; Grünig, E.; Hassoun, P.M.; Morrell, N.W.; Peacock, A.J.; Satoh, T.; Simonneau, G.; Tapson, V.F.; Torres, F.; Lawrence, D.; Quinn, D.A.; Ghofrani, H.A. Imatinib mesylate as add-on therapy for pulmonary arterial hypertension: Results of the randomized IMPRES study. Circulation, 2013, 127(10), 1128-1138.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.112.000765] [PMID: 23403476]
[143]
Russo, G.; Pennisi, M.; Fichera, E.; Motta, S.; Raciti, G.; Viceconti, M.; Pappalardo, F. In silico trial to test COVID-19 candidate vaccines: A case study with UISS platform. BMC Bioinformatics, 2020, 21(S17)(Suppl. 17), 527.
[http://dx.doi.org/10.1186/s12859-020-03872-0] [PMID: 33308153]
[144]
Noor, R. Developmental status of the potential vaccines for the mitigation of the COVID-19 pandemic and a focus on the effectiveness of the Pfizer-BioNTech and Moderna mRNA Vaccines. Curr. Clin. Microbiol. Rep., 2021, 8(3), 178-185.
[http://dx.doi.org/10.1007/s40588-021-00162-y] [PMID: 33686365]
[145]
Mulligan, M.J.; Lyke, K.E.; Kitchin, N.; Absalon, J.; Gurtman, A.; Lockhart, S.; Neuzil, K.; Raabe, V.; Bailey, R.; Swanson, K.A.; Li, P.; Koury, K.; Kalina, W.; Cooper, D.; Fontes-Garfias, C.; Shi, P.Y.; Türeci, Ö.; Tompkins, K.R.; Walsh, E.E.; Frenck, R.; Falsey, A.R.; Dormitzer, P.R.; Gruber, W.C.; Şahin, U.; Jansen, K.U. Phase I/II study of COVID-19 RNA vaccine BNT162b1 in adults. Nature, 2020, 586(7830), 589-593.
[http://dx.doi.org/10.1038/s41586-020-2639-4] [PMID: 32785213]
[146]
Witika, B.A.; Makoni, P.A.; Mweetwa, L.L.; Ntemi, P.V.; Chikukwa, M.T.R.; Matafwali, S.K.; Mwila, C.; Mudenda, S.; Katandula, J.; Walker, R.B. Nano-biomimetic drug delivery vehicles: Potential approaches for COVID-19 treatment. Molecules, 2020, 25(24), 5952.
[http://dx.doi.org/10.3390/molecules25245952] [PMID: 33339110]
[147]
Schrezenmeier, E.; Dörner, T. Mechanisms of action of hydroxychloroquine and chloroquine: Implications for rheumatology. Nat. Rev. Rheumatol., 2020, 16(3), 155-166.
[http://dx.doi.org/10.1038/s41584-020-0372-x] [PMID: 32034323]
[148]
Tai, T.T.; Wu, T.J.; Wu, H.D.; Tsai, Y.C.; Wang, H.T.; Wang, A.M.; Shih, S.F.; Chen, Y.C. A strategy to treat COVID-19 disease with targeted delivery of inhalable liposomal hydroxychloroquine: A preclinical pharmacokinetic study. Clin. Transl. Sci., 2021, 14(1), 132-136.
[http://dx.doi.org/10.1111/cts.12923] [PMID: 33135382]
[149]
Vartak, R.; Patil, S.M.; Saraswat, A.; Patki, M.; Kunda, N.K.; Patel, K. Aerosolized nanoliposomal carrier of remdesivir: An effective alternative for COVID-19 treatment in vitro. Nanomedicine (Lond.), 2021, 16(14), 1187-1202.
[http://dx.doi.org/10.2217/nnm-2020-0475] [PMID: 33982600]
[150]
Tulbah, A.S.; Lee, W.H. Physicochemical characteristics and in vitro toxicity/Anti-SARS-CoV-2 activity of favipiravir solid lipid nanoparticles (SLNs). Pharmaceuticals, 2021, 14(10), 1059.
[http://dx.doi.org/10.3390/ph14101059] [PMID: 34681283]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy