Generic placeholder image

Endocrine, Metabolic & Immune Disorders - Drug Targets

Editor-in-Chief

ISSN (Print): 1871-5303
ISSN (Online): 2212-3873

Mini-Review Article

A Review of Structural Features, Biological Functions and Biotransformation Studies in Adipose Tissues and an Assessment of Progress and Implications

Author(s): Ting Chu and Mao Sheng Yang*

Volume 23, Issue 1, 2023

Published on: 07 October, 2022

Page: [12 - 20] Pages: 9

DOI: 10.2174/1871530322666220827145241

Price: $65

conference banner
Abstract

Roles for adipose tissues in energy metabolism, health maintenance and disease onset have been established. Evidence indicates that white, brown and beige fats are quite different in terms of their cellular origin and biological characteristics. These differences are significant in targeting adipocytes to study the pathogenesis and prevention strategies of related diseases. The biotransformations of white, brown and beige fat cells constitute an intriguing topic worthy of further study, and the molecular mechanisms underlying the biotransformations of white, brown and beige fat cells remain to be elucidated. Hence, we herein collected evidence from studies on adipose tissue or adipocytes, and we extracted the structural features, biologic functions, and biotransformations of adipose tissue/adipocytes. The present review aimed to summarize the latest research progress and propose novel research directions with respect to adipose tissue and adipocytes. We posit that this work will provide new insights and opportunities in the effective treatment strategies for obesity, diabetes and other lipid-related diseases. It will also contribute to our knowledge of the basic biologic underpinnings of adipocyte biology.

Keywords: White adipose tissue, brown adipose tissue, beige adipose tissue, structural features, biological function, biotransformations of fat cells.

Graphical Abstract
[1]
Girard, R.; Tremblay, S.; Noll, C.; St-Jean, S.; Jones, C.; Gélinas, Y.; Maloum-Rami, F.; Perreault, N.; Laplante, M.; Carpentier, A.C.; Boudreau, F. The transcription factor hepatocyte nuclear factor 4A acts in the intestine to promote white adipose tissue energy storage. Nat. Commun., 2022, 13(1), 224.
[http://dx.doi.org/10.1038/s41467-021-27934-w] [PMID: 35017517]
[2]
Li, L.; Li, B.; Li, M.; Speakman, J.R. Switching on the furnace: Regulation of heat production in brown adipose tissue. Mol. Aspects Med., 2019, 68, 60-73.
[http://dx.doi.org/10.1016/j.mam.2019.07.005] [PMID: 31325458]
[3]
Cheng, L.; Wang, J.; Dai, H.; Duan, Y.; An, Y.; Shi, L.; Lv, Y.; Li, H.; Wang, C.; Ma, Q.; Li, Y.; Li, P.; Du, H.; Zhao, B. Brown and beige adipose tissue: S novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte, 2021, 10(1), 48-65.
[http://dx.doi.org/10.1080/21623945.2020.1870060] [PMID: 33403891]
[4]
Roman, S.; Agil, A.; Peran, M.; Alvaro-Galue, E.; Ruiz-Ojeda, F.J.; Fernández-Vázquez, G.; Marchal, J.A. Brown adipose tissue and novel therapeutic approaches to treat metabolic disorders. Transl. Res., 2015, 165(4), 464-479.
[http://dx.doi.org/10.1016/j.trsl.2014.11.002] [PMID: 25433289]
[5]
Park, A.; Kim, W.K.; Bae, K.H. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J. Stem Cells, 2014, 6(1), 33-42.
[http://dx.doi.org/10.4252/wjsc.v6.i1.33] [PMID: 24567786]
[6]
Sanchez-Gurmaches, J.; Guertin, D.A. Adipocytes arise from multiple lineages that are heterogeneously and dynamically distributed. Nat. Commun., 2014, 5(1), 4099.
[http://dx.doi.org/10.1038/ncomms5099] [PMID: 24942009]
[7]
Rosen, E.D.; Spiegelman, B.M. What we talk about when we talk about fat. Cell, 2014, 156(1-2), 20-44.
[http://dx.doi.org/10.1016/j.cell.2013.12.012] [PMID: 24439368]
[8]
Cypess, A.M.; White, A.P.; Vernochet, C.; Schulz, T.J.; Xue, R.; Sass, C.A.; Huang, T.L.; Roberts-Toler, C.; Weiner, L.S.; Sze, C.; Chacko, A.T.; Deschamps, L.N.; Herder, L.M.; Truchan, N.; Glasgow, A.L.; Holman, A.R.; Gavrila, A.; Hasselgren, P.O.; Mori, M.A.; Molla, M.; Tseng, Y.H. Anatomical localization, gene expression profiling and functional characterization of adult human neck brown fat. Nat. Med., 2013, 19(5), 635-639.
[http://dx.doi.org/10.1038/nm.3112] [PMID: 23603815]
[9]
Billon, N.; Dani, C. Developmental origins of the adipocyte lineage: New insights from genetics and genomics studies. Stem Cell Rev., 2012, 8(1), 55-66.
[http://dx.doi.org/10.1007/s12015-011-9242-x] [PMID: 21365256]
[10]
Cinti, S. The adipose organ at a glance. Dis. Model. Mech., 2012, 5(5), 588-594.
[http://dx.doi.org/10.1242/dmm.009662] [PMID: 22915020]
[11]
Sanchez-Gurmaches, J.; Hung, C.M.; Sparks, C.A.; Tang, Y.; Li, H.; Guertin, D.A. PTEN loss in the Myf5 lineage redistributes body fat and reveals subsets of white adipocytes that arise from Myf5 precursors. Cell Metab., 2012, 16(3), 348-362.
[http://dx.doi.org/10.1016/j.cmet.2012.08.003] [PMID: 22940198]
[12]
Nahmgoong, H.; Jeon, Y.G.; Park, E.S.; Choi, Y.H.; Han, S.M.; Park, J.; Ji, Y.; Sohn, J.H.; Han, J.S.; Kim, Y.Y.; Hwang, I.; Lee, Y.K.; Huh, J.Y.; Choe, S.S.; Oh, T.J.; Choi, S.H.; Kim, J.K.; Kim, J.B. Distinct properties of adipose stem cell subpopulations determine fat depot-specific characteristics. Cell Metab., 2022, 34(3), 458-472.e6.
[http://dx.doi.org/10.1016/j.cmet.2021.11.014] [PMID: 35021043]
[13]
Ikeda, K.; Maretich, P.; Kajimura, S. The common and distinct features of brown and beige adipocytes. Trends Endocrinol. Metab., 2018, 29(3), 191-200.
[http://dx.doi.org/10.1016/j.tem.2018.01.001] [PMID: 29366777]
[14]
Ailhaud, G. Adipose tissue as a secretory organ: From adipogenesis to the metabolic syndrome. C. R. Biol., 2006, 329(8), 570-577.
[http://dx.doi.org/10.1016/j.crvi.2005.12.012] [PMID: 16860275]
[15]
Bowen, C.H.; Bonin, J.; Kogler, A.; Barba-Ostria, C.; Zhang, F. Engineering Escherichia coli for conversion of glucose to medium-chain ω-hydroxy fatty acids and αω-dicarboxylic acids. ACS Synth. Biol., 2016, 5(3), 200-206.
[http://dx.doi.org/10.1021/acssynbio.5b00201] [PMID: 26669968]
[16]
Li, X.; Easley, C.J. Microfluidic systems for studying dynamic function of adipocytes and adipose tissue. Anal. Bioanal. Chem., 2018, 410(3), 791-800.
[http://dx.doi.org/10.1007/s00216-017-0741-8] [PMID: 29214530]
[17]
Choe, S.S.; Huh, J.Y.; Hwang, I.J.; Kim, J.I.; Kim, J.B. Adipose tissue remodeling: Its role in energy metabolism and metabolic disorders. Front. Endocrinol. (Lausanne), 2016, 7, 30.
[http://dx.doi.org/10.3389/fendo.2016.00030] [PMID: 27148161]
[18]
Scheja, L.; Heeren, J. The endocrine function of adipose tissues in health and cardiometabolic disease. Nat. Rev. Endocrinol., 2019, 15(9), 507-524.
[http://dx.doi.org/10.1038/s41574-019-0230-6] [PMID: 31296970]
[19]
Goldrick, R.B.; Ashley, B.C.E.; Lloyd, M.L. Effects of prolonged incubation and cell concentration on lipogenesis from glucose in isolated human omental fat cells. J. Lipid Res., 1969, 10(3), 253-259.
[http://dx.doi.org/10.1016/S0022-2275(20)43080-9] [PMID: 5785000]
[20]
Meegalla, R.L.; Billheimer, J.T.; Cheng, D. Concerted elevation of acyl-coenzyme A: Diacylglycerol acyltransferase (DGAT) activity through independent stimulation of mRNA expression of DGAT1 and DGAT2 by carbohydrate and insulin. Biochem. Biophys. Res. Commun., 2002, 298(3), 317-323.
[http://dx.doi.org/10.1016/S0006-291X(02)02466-X] [PMID: 12413942]
[21]
Okere, I.C.; Chandler, M.P.; McElfresh, T.A.; Rennison, J.H.; Sharov, V.; Sabbah, H.N.; Tserng, K.Y.; Hoit, B.D.; Ernsberger, P.; Young, M.E.; Stanley, W.C. Differential effects of saturated and unsaturated fatty acid diets on cardiomyocyte apoptosis, adipose distribution, and serum leptin. Am. J. Physiol. Heart Circ. Physiol., 2006, 291(1), H38-H44.
[http://dx.doi.org/10.1152/ajpheart.01295.2005] [PMID: 16443671]
[22]
Chiang, P.K. Conversion of 3T3-L1 fibroblasts to fat cells by an inhibitor of methylation: Effect of 3-deazaadenosine. Science, 1981, 211(4487), 1164-1166.
[http://dx.doi.org/10.1126/science.7466386] [PMID: 7466386]
[23]
Wilson, E.J.; Hollenberg, M.D. Effects of oxytocin and vasopressin on the preadipocyte 3T3-F442A cell line. Biochem. Cell Biol., 1987, 65(3), 211-218.
[http://dx.doi.org/10.1139/o87-027] [PMID: 2437940]
[24]
Melnik, B.C.; Stremmel, W.; Weiskirchen, R.; John, S.M.; Schmitz, G. Exosome-derived MicroRNAs of human milk and their effects on infant health and development. Biomolecules, 2021, 11(6), 851.
[http://dx.doi.org/10.3390/biom11060851] [PMID: 34200323]
[25]
Symonds, M.E.; Pope, M.; Bloor, I.; Law, J.; Alagal, R.; Budge, H. Adipose tissue growth and development: The modulating role of ambient temperature. J. Endocrinol., 2021, 248(1), R19-R28.
[http://dx.doi.org/10.1530/JOE-20-0075] [PMID: 33232264]
[26]
Xi, W.; Chen, W.; Sun, W.; Li, X.; Suo, Z.; Jiang, G.; Gao, P.; Li, Q. Mitochondrial activity regulates the differentiation of skin-derived mesenchymal stem cells into brown adipocytes to contribute to hypertension. Stem Cell Res. Ther., 2021, 12(1), 167.
[http://dx.doi.org/10.1186/s13287-021-02169-0] [PMID: 33691786]
[27]
Coelho, M.; Oliveira, T.; Fernandes, R. State of the art paper biochemistry of adipose tissue: An endocrine organ. Arch. Med. Sci., 2013, 2(2), 191-200.
[http://dx.doi.org/10.5114/aoms.2013.33181] [PMID: 23671428]
[28]
Law, J.M.; Morris, D.E.; Robinson, L.; Randell, T.; Denvir, L.; Symonds, M.E.; Budge, H. Reduced brown adipose TISSUE‐ASSOCIATED skin temperature following cold stimulation in children and adolescents with type 1 diabetes. Pediatr. Diabetes, 2021, 22(3), 407-416.
[http://dx.doi.org/10.1111/pedi.13163] [PMID: 33252166]
[29]
Smith, R.E.; Horwitz, B.A. Brown fat and thermogenesis. Physiol. Rev., 1969, 49(2), 330-425.
[http://dx.doi.org/10.1152/physrev.1969.49.2.330] [PMID: 4888392]
[30]
Mallow, H.; Trindl, A.; Löffler, G. Production of angiotensin II receptors type one (AT1) and type two (AT2) during the differentiation of 3T3-L1 preadipocytes. Horm. Metab. Res., 2000, 32(11/12), 500-503.
[http://dx.doi.org/10.1055/s-2007-978676] [PMID: 11246815]
[31]
Cedikova, M.; Kripnerová, M.; Dvorakova, J.; Pitule, P.; Grundmanova, M.; Babuska, V.; Mullerova, D.; Kuncova, J. Mitochondria in white, brown, and beige adipocytes. Stem Cells Int., 2016, 2016, 6067349.
[http://dx.doi.org/10.1155/2016/6067349] [PMID: 27073398]
[32]
Sanchez-Gurmaches, J.; Guertin, D.A. Adipocyte lineages: Tracing back the origins of fat. Biochim. Biophys. Acta Mol. Basis Dis., 2014, 1842(3), 340-351.
[http://dx.doi.org/10.1016/j.bbadis.2013.05.027] [PMID: 23747579]
[33]
Ginter, E.; Simko, V. Brown fat tissue-a potential target to combat obesity. Bratisl. Med. J., 2012, 113(1), 52-56.
[http://dx.doi.org/10.4149/BLL_2012_013] [PMID: 22380505]
[34]
Cypess, A.M.; Lehman, S.; Williams, G.; Tal, I.; Rodman, D.; Goldfine, A.B.; Kuo, F.C.; Palmer, E.L.; Tseng, Y.H.; Doria, A.; Kolodny, G.M.; Kahn, C.R. Identification and importance of brown adipose tissue in adult humans. N. Engl. J. Med., 2009, 360(15), 1509-1517.
[http://dx.doi.org/10.1056/NEJMoa0810780] [PMID: 19357406]
[35]
Matsumoto, T.; Kiuchi, S.; Murase, T. Synergistic activation of thermogenic adipocytes by a combination of PPARγ activation, SMAD3 inhibition and adrenergic receptor activation ameliorates metabolic abnormalities in rodents. Diabetologia, 2019, 62(10), 1915-1927.
[http://dx.doi.org/10.1007/s00125-019-4938-6] [PMID: 31317231]
[36]
Khor, N.W.M.; Swarbrick, M.M.; Gunton, J.E. Inducible UCP1 silencing: A lentiviral RNA-interference approach to quantify the contribution of beige fat to energy homeostasis. PLoS One, 2019, 14(11), e0223987.
[http://dx.doi.org/10.1371/journal.pone.0223987] [PMID: 31751350]
[37]
Kawabe, Y.; Mori, J.; Morimoto, H.; Yamaguchi, M.; Miyagaki, S.; Ota, T.; Tsuma, Y.; Fukuhara, S.; Nakajima, H.; Oudit, G.Y.; Hosoi, H. ACE2 exerts anti-obesity effect via stimulating brown adipose tissue and induction of browning in white adipose tissue. Am. J. Physiol. Endocrinol. Metab., 2019, 317(6), E1140-E1149.
[http://dx.doi.org/10.1152/ajpendo.00311.2019] [PMID: 31638856]
[38]
Huwatibieke, B.; Yin, W.; Liu, L.; Jin, Y.; Xiang, X.; Han, J.; Zhang, W.; Li, Y. Mammalian target of rapamycin signaling pathway regulates mitochondrial quality control of brown adipocytes in mice. Front. Physiol., 2021, 12, 638352.
[http://dx.doi.org/10.3389/fphys.2021.638352] [PMID: 34335285]
[39]
Snyder, M.M.; Yue, F.; Zhang, L.; Shang, R.; Qiu, J.; Chen, J.; Kim, K.H.; Peng, Y.; Oprescu, S.N.; Donkin, S.S.; Bi, P.; Kuang, S. LETMD1 is required for mitochondrial structure and thermogenic function of brown adipocytes. FASEB J., 2021, 35(11), e21965.
[http://dx.doi.org/10.1096/fj.202100597R] [PMID: 34669999]
[40]
Rosenwald, M.; Wolfrum, C. The origin and definition of brite versus white and classical brown adipocytes. Adipocyte, 2014, 3(1), 4-9.
[http://dx.doi.org/10.4161/adip.26232] [PMID: 24575363]
[41]
Chabowska-Kita, A.; Kozak, L.P. The critical period for brown adipocyte development: Genetic and environmental influences. Obesity (Silver Spring), 2016, 24(2), 283-290.
[http://dx.doi.org/10.1002/oby.21376] [PMID: 26813522]
[42]
Sidossis, L.; Kajimura, S. Brown and beige fat in humans: Thermogenic adipocytes that control energy and glucose homeostasis. J. Clin. Invest., 2015, 125(2), 478-486.
[http://dx.doi.org/10.1172/JCI78362] [PMID: 25642708]
[43]
Villarroya, F.; Cereijo, R.; Villarroya, J.; Giralt, M. Brown adipose tissue as a secretory organ. Nat. Rev. Endocrinol., 2017, 13(1), 26-35.
[http://dx.doi.org/10.1038/nrendo.2016.136] [PMID: 27616452]
[44]
Villarroya, J.; Cereijo, R.; Gavaldà-Navarro, A.; Peyrou, M.; Giralt, M.; Villarroya, F. New insights into the secretory functions of brown adipose tissue. J. Endocrinol., 2019, 243(2), R19-R27.
[http://dx.doi.org/10.1530/JOE-19-0295] [PMID: 31419785]
[45]
Singh, R.; Xiang, Y.; Wang, Y.; Baikati, K.; Cuervo, A.M.; Luu, Y.K.; Tang, Y.; Pessin, J.E.; Schwartz, G.J.; Czaja, M.J. Autophagy regulates adipose mass and differentiation in mice. J. Clin. Invest., 2009, 119(11), 3329-3339.
[http://dx.doi.org/10.1172/JCI39228] [PMID: 19855132]
[46]
Ahfeldt, T.; Schinzel, R.T.; Lee, Y.K.; Hendrickson, D.; Kaplan, A.; Lum, D.H.; Camahort, R.; Xia, F.; Shay, J.; Rhee, E.P.; Clish, C.B.; Deo, R.C.; Shen, T.; Lau, F.H.; Cowley, A.; Mowrer, G.; Al-Siddiqi, H.; Nahrendorf, M.; Musunuru, K.; Gerszten, R.E.; Rinn, J.L.; Cowan, C.A. Programming human pluripotent stem cells into white and brown adipocytes. Nat. Cell Biol., 2012, 14(2), 209-219.
[http://dx.doi.org/10.1038/ncb2411] [PMID: 22246346]
[47]
McGlashon, J.M.; Gorecki, M.C.; Kozlowski, A.E.; Thirnbeck, C.K.; Markan, K.R.; Leslie, K.L.; Kotas, M.E.; Potthoff, M.J.; Richerson, G.B.; Gillum, M.P. Central serotonergic neurons activate and recruit thermogenic brown and beige fat and regulate glucose and lipid homeostasis. Cell Metab., 2015, 21(5), 692-705.
[http://dx.doi.org/10.1016/j.cmet.2015.04.008] [PMID: 25955206]
[48]
Saggerson, E.D.; McAllister, T.W.J.; Baht, H.S. Lipogenesis in rat brown adipocytes. Effects of insulin and noradrenaline, contributions from glucose and lactate as precursors and comparisons with white adipocytes. Biochem. J., 1988, 251(3), 701-709.
[http://dx.doi.org/10.1042/bj2510701] [PMID: 3137922]
[49]
Wang, L.; Liu, X.; Liu, S.; Niu, Y.; Fu, L. Sestrin2 ablation attenuates the exercise‐induced browning of white adipose tissue in C57BL/6J mice. Acta Physiol. (Oxf.), 2022, 234(3), e13785.
[http://dx.doi.org/10.1111/apha.13785] [PMID: 34995401]
[50]
Du, K.; Bai, X.; Yang, L.; Shi, Y.; Chen, L.; Wang, H.; Cai, M.; Wang, J.; Chen, S.; Jia, X.; Lai, S. De Novo reconstruction of transcriptome identified long non-coding RNA regulator of aging-related brown adipose tissue whitening in rabbits. Biology (Basel), 2021, 10(11), 1176.
[http://dx.doi.org/10.3390/biology10111176] [PMID: 34827171]
[51]
Petrovic, N.; Walden, T.B.; Shabalina, I.G.; Timmons, J.A.; Cannon, B.; Nedergaard, J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J. Biol. Chem., 2010, 285(10), 7153-7164.
[http://dx.doi.org/10.1074/jbc.M109.053942] [PMID: 20028987]
[52]
Wang, S.; Yang, X. Inter-organ regulation of adipose tissue browning. Cell. Mol. Life Sci., 2017, 74(10), 1765-1776.
[http://dx.doi.org/10.1007/s00018-016-2420-x] [PMID: 27866221]
[53]
Sharp, L.Z.; Shinoda, K.; Ohno, H.; Scheel, D.W.; Tomoda, E.; Ruiz, L.; Hu, H.; Wang, L.; Pavlova, Z.; Gilsanz, V.; Kajimura, S. Human BAT possesses molecular signatures that resemble beige/brite cells. PLoS One, 2012, 7(11), e49452.
[http://dx.doi.org/10.1371/journal.pone.0049452] [PMID: 23166672]
[54]
Fisher, M.; Kleiner, S.; Douris, N.; Fox, E.C.; Mepani, R.J.; Verdeguer, F.; Wu, J.; Kharitonenkov, A.; Flier, J.S.; Maratos-Flier, E.; Spiegelman, B.M. FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev., 2012, 26(3), 271-281.
[http://dx.doi.org/10.1101/gad.177857.111] [PMID: 22302939]
[55]
Ginter, E.; Simko, V. Recent data on obesity research: β-aminoisobutyric acid. Bratisl. Med. J., 2014, 115(8), 492-493.
[http://dx.doi.org/10.4149/BLL_2014_095] [PMID: 25246285]
[56]
Zhang, Y.; Li, R.; Meng, Y.; Li, S.; Donelan, W.; Zhao, Y.; Qi, L.; Zhang, M.; Wang, X.; Cui, T.; Yang, L.J.; Tang, D. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes, 2014, 63(2), 514-525.
[http://dx.doi.org/10.2337/db13-1106] [PMID: 24150604]
[57]
Aydin, S.; Kuloglu, T.; Aydin, S.; Kalayci, M.; Yilmaz, M.; Cakmak, T.; Albayrak, S.; Gungor, S.; Colakoglu, N. Ozercan, İ.H. A comprehensive immunohistochemical examination of the distribution of the fat-burning protein irisin in biological tissues. Peptides, 2014, 61, 130-136.
[http://dx.doi.org/10.1016/j.peptides.2014.09.014] [PMID: 25261800]
[58]
Zhou, Y.; Yang, J.; Huang, J.; Li, T.; Xu, D.; Zuo, B.; Hou, L.; Wu, W.; Zhang, L.; Xia, X.; Ma, Z.; Ren, Z.; Xiong, Y. The formation of brown adipose tissue induced by transgenic over-expression of PPARγ2. Biochem. Biophys. Res. Commun., 2014, 446(4), 959-964.
[http://dx.doi.org/10.1016/j.bbrc.2014.03.033] [PMID: 24642257]
[59]
Bartesaghi, S.; Hallen, S.; Huang, L.; Svensson, P.A.; Momo, R.A.; Wallin, S.; Carlsson, E.K.; Forslöw, A.; Seale, P.; Peng, X.R. Thermogenic activity of UCP1 in human white fat-derived beige adipocytes. Mol. Endocrinol., 2015, 29(1), 130-139.
[http://dx.doi.org/10.1210/me.2014-1295] [PMID: 25389910]
[60]
Okla, M.; Ha, J.H.; Temel, R.E.; Chung, S. BMP7 drives human adipogenic stem cells into metabolically active beige adipocytes. Lipids, 2015, 50(2), 111-120.
[http://dx.doi.org/10.1007/s11745-014-3981-9] [PMID: 25534037]
[61]
Zhu, Y.; Yang, R.; McLenithan, J.; Yu, D.; Wang, H.; Wang, Y.; Singh, D.; Olson, J.; Sztalryd, C.; Zhu, D.; Gong, D.W. Direct conversion of human myoblasts into brown-like adipocytes by engineered super-active PPARγ. Obesity (Silver Spring), 2015, 23(5), 1014-1021.
[http://dx.doi.org/10.1002/oby.21062] [PMID: 25919922]
[62]
Wang, S.; Wang, X.; Ye, Z.; Xu, C.; Zhang, M.; Ruan, B.; Wei, M.; Jiang, Y.; Zhang, Y.; Wang, L.; Lei, X.; Lu, Z. Curcumin promotes browning of white adipose tissue in a norepinephrine-dependent way. Biochem. Biophys. Res. Commun., 2015, 466(2), 247-253.
[http://dx.doi.org/10.1016/j.bbrc.2015.09.018] [PMID: 26362189]
[63]
Nie, B.; Nie, T.; Hui, X.; Gu, P.; Mao, L.; Li, K.; Yuan, R.; Zheng, J.; Wang, H.; Li, K.; Tang, S.; Zhang, Y.; Xu, T.; Xu, A.; Wu, D.; Ding, S. Brown adipogenic reprogramming induced by a small molecule. Cell Rep., 2017, 18(3), 624-635.
[http://dx.doi.org/10.1016/j.celrep.2016.12.062] [PMID: 28099842]
[64]
Huang, L.; Pan, D.; Chen, Q.; Zhu, L.J.; Ou, J.; Wabitsch, M.; Wang, Y.X. Transcription factor Hlx controls a systematic switch from white to brown fat through Prdm16-mediated co-activation. Nat. Commun., 2017, 8(1), 68.
[http://dx.doi.org/10.1038/s41467-017-00098-2] [PMID: 28701693]
[65]
Lonçar, D.; Afzelius, B.A.; Cannon, B. Epididymal white adipose tissue after cold stress in rats I. Nonmitochondrial changes. J. Ultrastruct. Mol. Struct. Res., 1988, 101(2-3), 109-122.
[http://dx.doi.org/10.1016/0889-1605(88)90001-8] [PMID: 3268608]
[66]
Himms-Hagen, J.; Melnyk, A.; Zingaretti, M.C.; Ceresi, E.; Barbatelli, G.; Cinti, S. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am. J. Physiol. Cell Physiol., 2000, 279(3), C670-C681.
[http://dx.doi.org/10.1152/ajpcell.2000.279.3.C670] [PMID: 10942717]
[67]
Maurizi, G.; Poloni, A.; Mattiucci, D.; Santi, S.; Maurizi, A.; Izzi, V.; Giuliani, A.; Mancini, S.; Zingaretti, M.C.; Perugini, J.; Severi, I.; Falconi, M.; Vivarelli, M.; Rippo, M.R.; Corvera, S.; Giordano, A.; Leoni, P.; Cinti, S. Human white adipocytes convert into “Rainbow” adipocytes in vitro. J. Cell. Physiol., 2017, 232(10), 2887-2899.
[http://dx.doi.org/10.1002/jcp.25743] [PMID: 27987321]
[68]
Hazra, S.; Henson, G.D.; Bramwell, R.C.; Donato, A.J.; Lesniewski, L.A. Impact of high-fat diet on vasoconstrictor reactivity of white and brown adipose tissue resistance arteries. Am. J. Physiol. Heart Circ. Physiol., 2019, 316(3), H485-H494.
[http://dx.doi.org/10.1152/ajpheart.00278.2018] [PMID: 30550353]
[69]
Lin, J.Z.; Farmer, S.R. Morphogenetics in brown, beige and white fat development. Adipocyte, 2016, 5(2), 130-135.
[http://dx.doi.org/10.1080/21623945.2016.1140708] [PMID: 27386157]
[70]
Salvatore, D.; Bartha, T.; Larsen, P.R. The guanosine monophosphate reductase gene is conserved in rats and its expression increases rapidly in brown adipose tissue during cold exposure. J. Biol. Chem., 1998, 273(47), 31092-31096.
[http://dx.doi.org/10.1074/jbc.273.47.31092] [PMID: 9813009]
[71]
Li, S.; Mi, L.; Yu, L.; Yu, Q.; Liu, T.; Wang, G.X.; Zhao, X.Y.; Wu, J.; Lin, J.D. Zbtb7b engages the long noncoding RNA Blnc1 to drive brown and beige fat development and thermogenesis. Proc. Natl. Acad. Sci. USA, 2017, 114(34), E7111-E7120.
[http://dx.doi.org/10.1073/pnas.1703494114] [PMID: 28784777]
[72]
Wu, L.; Zhang, L.; Li, B.; Jiang, H.; Duan, Y.; Xie, Z.; Shuai, L.; Li, J.; Li, J. AMP-Activated Protein Kinase (AMPK) regulates energy metabolism through modulating thermogenesis in adipose tissue. Front. Physiol., 2018, 9, 122.
[http://dx.doi.org/10.3389/fphys.2018.00122] [PMID: 29515462]
[73]
Gür, F.M.; Timurkaan, S.; Gençer Tarakçi, B.; Yalçin, M.H.; Özkan, Z.E.; Baygeldi, S.B.; Yilmaz, S.; Eröksüz, H. Identification of immunohistochemical localization of irisin in the dwarf hamster (Phodopus roborovskii) tissues. Anat. Histol. Embryol., 2018, 47(2), 174-179.
[http://dx.doi.org/10.1111/ahe.12345] [PMID: 29527793]
[74]
Lee, C.G.; Rhee, D.K.; Kim, B.O.; Um, S.H.; Pyo, S. Allicin induces beige-like adipocytes via KLF15 signal cascade. J. Nutr. Biochem., 2019, 64, 13-24.
[http://dx.doi.org/10.1016/j.jnutbio.2018.09.014] [PMID: 30423518]
[75]
Chan, P.C.; Liao, M.T.; Hsieh, P.S. The dualistic effect of COX-2-mediated signaling in obesity and insulin resistance. Int. J. Mol. Sci., 2019, 20(13), 3115.
[http://dx.doi.org/10.3390/ijms20133115] [PMID: 31247902]
[76]
Rhee, M.; Kim, J.W.; Lee, M.W.; Yoon, K.H.; Lee, S.H. Preadipocyte factor 1 regulates adipose tissue browning via TNF-α-converting enzyme-mediated cleavage. Metabolism, 2019, 101, 153977.
[http://dx.doi.org/10.1016/j.metabol.2019.153977] [PMID: 31655089]
[77]
Vidović, V.; Maksimović, N.; Novaković, I.; Damnjanović, T.; Jekić, B.; Vidović, S.; Majkić Singh, N.; Stamenković Radak, M.; Nikolić, D.; Marisavljević, D. Association of the brain-derived neurotrophic factor Val66Met polymorphism with body mass index, fasting glucose levels and lipid status in adolescents. Balkan J. Med. Genet., 2020, 23(1), 77-82.
[http://dx.doi.org/10.2478/bjmg-2020-0004] [PMID: 32953413]
[78]
Colson, C.; Batrow, P.L.; Gautier, N.; Rochet, N.; Ailhaud, G.; Peiretti, F.; Amri, E.Z. The Rosmarinus bioactive compound carnosic acid is a novel PPAR antagonist that inhibits the browning of white adipocytes. Cells, 2020, 9(11), 2433.
[http://dx.doi.org/10.3390/cells9112433] [PMID: 33171828]
[79]
Li, Y.; Wang, D.; Ping, X.; Zhang, Y.; Zhang, T.; Wang, L.; Jin, L.; Zhao, W.; Guo, M.; Shen, F.; Meng, M.; Chen, X.; Zheng, Y.; Wang, J.; Li, D.; Zhang, Q.; Hu, C.; Xu, L.; Ma, X. Local hyperthermia therapy induces browning of white fat and treats obesity. Cell, 2022, 185(6), 949-966.e19.
[http://dx.doi.org/10.1016/j.cell.2022.02.004] [PMID: 35247329]
[80]
Langin, D. Recruitment of brown fat and conversion of white into brown adipocytes: Strategies to fight the metabolic complications of obesity? Biochim. Biophys. Acta Mol. Cell Biol. Lipids, 2010, 1801(3), 372-376.
[http://dx.doi.org/10.1016/j.bbalip.2009.09.008] [PMID: 19782764]
[81]
Blumenfeld, N.R.; Kang, H.J.; Fenzl, A.; Song, Z.; Chung, J.J.; Singh, R.; Johnson, R.; Karakecili, A.; Feranil, J.B.; Rossen, N.S.; Zhang, V.; Jaggi, S.; McCarty, B.; Bessler, S.; Schwartz, G.J.; Grant, R.; Korner, J.; Kiefer, F.W.; Gillette, B.M.; Sia, S.K. A direct tissue-grafting approach to increasing endogenous brown fat. Sci. Rep., 2018, 8(1), 7957.
[http://dx.doi.org/10.1038/s41598-018-25866-y] [PMID: 29785004]
[82]
Savard, R.; Després, J.P.; Marcotte, M.; Bouchard, C. Endurance training and glucose conversion into triglycerides in human fat cells. J. Appl. Physiol., 1985, 58(1), 230-235.
[http://dx.doi.org/10.1152/jappl.1985.58.1.230] [PMID: 3881382]
[83]
Bagheri-Hosseinabadi, Z.; Seyedi, F.; Mollaei, H.R.; Moshrefi, M.; Seifalian, A. Combination of 5‐azaytidine and hanging drop culture convert fat cell into cardiac cell. Biotechnol. Appl. Biochem., 2021, 68(1), 92-101.
[http://dx.doi.org/10.1002/bab.1897] [PMID: 32028539]
[84]
Plikus, M.V.; Guerrero-Juarez, C.F.; Ito, M.; Li, Y.R.; Dedhia, P.H.; Zheng, Y.; Shao, M.; Gay, D.L.; Ramos, R.; Hsi, T.C.; Oh, J.W.; Wang, X.; Ramirez, A.; Konopelski, S.E.; Elzein, A.; Wang, A.; Supapannachart, R.J.; Lee, H.L.; Lim, C.H.; Nace, A.; Guo, A.; Treffeisen, E.; Andl, T.; Ramirez, R.N.; Murad, R.; Offermanns, S.; Metzger, D.; Chambon, P.; Widgerow, A.D.; Tuan, T.L.; Mortazavi, A.; Gupta, R.K.; Hamilton, B.A.; Millar, S.E.; Seale, P.; Pear, W.S.; Lazar, M.A.; Cotsarelis, G. Regeneration of fat cells from myofibroblasts during wound healing. Science, 2017, 355(6326), 748-752.
[http://dx.doi.org/10.1126/science.aai8792] [PMID: 28059714]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy