Review Article

基于碳纳米材料的癌症治疗药物递送系统的现状与展望

卷 30, 期 24, 2023

页: [2710 - 2733] 页: 24

弟呕挨: 10.2174/0929867329666220821195353

价格: $65

Open Access Journals Promotions 2
摘要

纳米科学与肿瘤学的深入交集源于纳米材料与基本生物分子具有相似维度的事实。靶向特定位点或旨在在特定位置控制释放的药物递送系统 (DDS) 已在纳米尺度上进行了广泛研究,并且是迄今为止纳米颗粒应用领域最先进的技术。因此,这导致改进和开发方便的给药途径、更低的毒性、更少的副作用和延长的药物生命周期。碳纳米材料(CNM)具有良好的尺寸和独特的荧光特性,被认为是以受控方式将治疗药物输送或递送至特定目标的理想候选材料。基于它们的 DDS 的开发构成了高效和通用疗法中一个有趣的话题,以实现更好的治疗结果并减少恶性肿瘤的副作用。在这篇综述中,全面总结了 CNM 在 DDS 中的前沿进展。此外,重点放在了 CNM 的应用,包括富勒烯、石墨烯、碳纳米管(CNT)、碳点(CD)和纳米金刚石(ND)在药物输送中的应用。此外,我们对基于 CNM 的 DDS 用于癌症治疗的未来方向和可预见的挑战给出了一些见解,我们希望这些与抗癌治疗相关的 DDS 中的启发将为设计新药以进一步治疗肿瘤提供前景。

关键词: 碳纳米材料,药物输送,癌症治疗,纳米科学,碳点,纳米钻石。

[1]
Lai, C.; Lin, S.; Huang, X.; Jin, Y. Synthesis and properties of carbon quantum dots and their research progress in cancer treatment. Dyes Pigm., 2021, 196, 109766.
[http://dx.doi.org/10.1016/j.dyepig.2021.109766]
[2]
Javed, I.; Cui, X.; Wang, X.; Mortimer, M.; Andrikopoulos, N.; Li, Y.; Davis, T.P.; Zhao, Y.; Ke, P.C.; Chen, C. Implications of the human gut-brain and gut-cancer axes for future nanomedicine. ACS Nano, 2020, 14(11), 14391-14416.
[http://dx.doi.org/10.1021/acsnano.0c07258] [PMID: 33138351]
[3]
Kowalik, M.; Masternak, J.; Barszcz, B. Recent research trends on bismuth compounds in cancer chemo- and radiotherapy. Curr. Med. Chem., 2019, 26(4), 729-759.
[http://dx.doi.org/10.2174/0929867324666171003113540] [PMID: 28971764]
[4]
Wu, P.; Zhang, B.; Ocansey, D.K.W.; Xu, W.; Qian, H. Extracellular vesicles: A bright star of nanomedicine. Biomaterials, 2021, 269, 120467.
[http://dx.doi.org/10.1016/j.biomaterials.2020.120467] [PMID: 33189359]
[5]
Ch Aturvedi, N.K.; Katoch, S.S.; Chemistry, E. Evaluation and comparison of fenton-like oxidation with Fenton’s oxidation for hazardous methoxyanilines in aqueous solution. J. Ind. Eng. Chem., 2020, 92, 101-108.
[http://dx.doi.org/10.1016/j.jiec.2020.08.028]
[6]
Victorino, V.J.; Pizzatti, L.; Michelletti, P.; Panis, C. Oxidative stress, redox signaling and cancer chemoresistance: Putting together the pieces of the puzzle. Curr. Med. Chem., 2014, 21(28), 3211-3226.
[http://dx.doi.org/10.2174/0929867321666140601164647] [PMID: 24934351]
[7]
Tang, M.; Rich, J.N.; Chen, S. Biomaterials and 3d bioprinting strategies to model glioblastoma and the blood-brain barrier. Adv. Mater., 2021, 33(5), e2004776.
[http://dx.doi.org/10.1002/adma.202004776] [PMID: 33326131]
[8]
Kiyozumi, Y.; Takamori, H.; Horino, K.; Ikuta, Y.; Baba, H. A case of neuroma of the bile duct, which looks like cancer of the bile duct. J. Ind. Eng. Chem., 2012, 29(14), 159-172.
[9]
Vázquez-González, M.; Willner, I. Aptamer-functionalized micro- and nanocarriers for controlled release. ACS Appl. Mater. Interfaces, 2021, 13(8), 9520-9541.
[http://dx.doi.org/10.1021/acsami.0c17121] [PMID: 33395247]
[10]
Davydenko, M.O.; Radchenko, E.O.; Yashchuk, V.M.; Dmitruk, I.M.; Prylutskyy, Y.I.; Matishevska, O.P.; Golub, A.A. Sensibilization of fullerene C60 immobilized at silica nanoparticles for cancer photodynamic therapy. J. Mol. Liq., 2006, 127(1-3), 145-147.
[http://dx.doi.org/10.1016/j.molliq.2006.03.046]
[11]
Scharff, P.; Ritter, U.; Matyshevska, O.P.; Prylutska, S.V.; Grynyuk, I.I.; Golub, A.A.; Prylutskyy, Y.I.; Burlaka, A.P. Therapeutic reactive oxygen generation. Tumori, 2008, 94(2), 278-283.
[http://dx.doi.org/10.1177/030089160809400221] [PMID: 18564617]
[12]
Prylutska, S.V.; Grynyuk, I.I.; Palyvoda, K.O.; Matyshevska, O.P. Photoinduced cytotoxic effect of fullerenes C60 on transformed T-lymphocytes. Exp. Oncol., 2010, 32(1), 29-32.
[PMID: 20332760]
[13]
Grebinyk, A.; Prylutska, S.; Chepurna, O.; Grebinyk, S.; Prylutskyy, Y.; Ritter, U.; Ohulchanskyy, T.Y.; Matyshevska, O.; Dandekar, T.; Frohme, M. Synergy of chemo- and photodynamic therapies with C60 fullerene-doxorubicin nanocomplex. Nanomaterials (Basel), 2019, 9(11), 1540-1549.
[http://dx.doi.org/10.3390/nano9111540] [PMID: 31671590]
[14]
Dai, L.; Si, C. Recent advances on cellulose-based nano- drug delivery systems: Design of prodrugs and nanoparticles. Curr. Med. Chem., 2019, 26(14), 2410-2429.
[http://dx.doi.org/10.2174/0929867324666170711131353] [PMID: 28699504]
[15]
Moradi Kashkooli, F.; Soltani, M.; Souri, M. Controlled anti-cancer drug release through advanced nano-drug delivery systems: Static and dynamic targeting strategies. J. Control. Release, 2020, 327, 316-349.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.012] [PMID: 32800878]
[16]
Fernandes, S.; Cassani, M.; Pagliari, S.; Filipensky, P.; Cavalieri, F.; Forte, G. Tumor in 3D: in vitro complex cellular models to improve nanodrugs cancer therapy. Curr. Med. Chem., 2020, 27(42), 7234-7255.
[http://dx.doi.org/10.2174/0929867327666200625151134] [PMID: 32586245]
[17]
Lin, J.; Li, C.; Guo, Y.; Zou, J.; Wu, P.; Liao, Y.; Zhang, B.; Le, J.; Zhao, R.; Shao, J.W. Carrier-free nanodrugs for in vivo NIR bioimaging and chemo-photothermal synergistic therapy. J. Mater. Chem. B Mater. Biol. Med., 2019, 7(44), 6914-6923.
[http://dx.doi.org/10.1039/C9TB00687G] [PMID: 31482166]
[18]
Charbe, N.B.; Amnerkar, N.D.; Ramesh, B.; Tambuwala, M.M.; Bakshi, H.A.; Aljabali, A.A.A.; Khadse, S.C.; Satheeshkumar, R.; Satija, S.; Metha, M.; Chellappan, D.K.; Shrivastava, G.; Gupta, G.; Negi, P.; Dua, K.; Zacconi, F.C. Small interfering RNA for cancer treatment: Overcoming hurdles in delivery. Acta Pharm. Sin. B, 2020, 10(11), 2075-2109.
[http://dx.doi.org/10.1016/j.apsb.2020.10.005] [PMID: 33304780]
[19]
Serrano-Aroca, Á.; Takayama, K.; Tuñón-Molina, A.; Seyran, M.; Hassan, S.S.; Pal Choudhury, P.; Uversky, V.N.; Lundstrom, K.; Adadi, P.; Palù, G.; Aljabali, A.A.A.; Chauhan, G.; Kandimalla, R.; Tambuwala, M.M.; Lal, A.; Abd El-Aziz, T.M.; Sherchan, S.; Barh, D.; Redwan, E.M.; Bazan, N.G.; Mishra, Y.K.; Uhal, B.D.; Brufsky, A. Carbon-based nanomaterials: Promising antiviral agents to combat COVID-19 in the microbial-resistant era. ACS Nano, 2021, 15(5), 8069-8086.
[http://dx.doi.org/10.1021/acsnano.1c00629] [PMID: 33826850]
[20]
Perevedentseva, E.; Lin, Y.C.; Cheng, C.L. A review of recent advances in nanodiamond-mediated drug delivery in cancer. Expert Opin. Drug Deliv., 2021, 18(3), 369-382.
[http://dx.doi.org/10.1080/17425247.2021.1832988] [PMID: 33047984]
[21]
Gong, N.; Ma, X.; Ye, X.; Zhou, Q.; Chen, X.; Tan, X.; Yao, S.; Huo, S.; Zhang, T.; Chen, S.; Teng, X.; Hu, X.; Yu, J.; Gan, Y.; Jiang, H.; Li, J.; Liang, X.J. Carbon-dot- supported atomically dispersed gold as a mitochondrial oxidative stress amplifier for cancer treatment. Nat. Nanotechnol., 2019, 14(4), 379-387.
[http://dx.doi.org/10.1038/s41565-019-0373-6] [PMID: 30778211]
[22]
Jia, Q.; Ge, J.; Liu, W.; Zheng, X.; Chen, S.; Wen, Y.; Zhang, H.; Wang, P. A magnetofluorescent carbon dot assembly as an acidic H2O2-driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater., 2018, 30(13), e1706090.
[http://dx.doi.org/10.1002/adma.201706090] [PMID: 29436031]
[23]
Golub, A.; Matyshevska, O.; Prylutska, S.; Sysoyev, V.; Ped, L.; Kudrenko, V.; Radchenko, E.; Prylutskyy, Y.; Scharff, P.; Braun, T. Fullerenes immobilized at silica surface: Topology, structure and bioactivity. J. Mol. Liq., 2003, 105(2-3), 141-147.
[http://dx.doi.org/10.1016/S0167-7322(03)00044-8]
[24]
Matzui, L.; Vovchenko, L.; Prylutskyy, Y.; Korotash, I.; Matzui, V.; Eklund, P.; Ritter, U.; Scharff, P. Electromagnetic losses in carbon-epoxy composites. Mater. Sci. Eng. C-. BIOS, 2007, 27(5-8), 1007-1009.
[25]
Radchenko, T.M.; Tatarenko, V.A.; Prylutskyy, Yu.I.; Szroeder, P.; Radchenko, T.M.; Biniak, S. On adatomic-configuration-mediated correlation between electrotransport and electrochemical properties of graphene. Carbon, 2016, 101, 37-48.
[http://dx.doi.org/10.1016/j.carbon.2016.01.067]
[26]
Shrivastava, M.; Ramgopal Rao, V. A roadmap for disruptive applications and heterogeneous integration using two-dimensional materials: State-of-the-art and technological challenges. Nano Lett., 2021, 21(15), 6359-6381.
[http://dx.doi.org/10.1021/acs.nanolett.1c00729] [PMID: 34342450]
[27]
Yaghoubi, A.; Ramazani, A. Anticancer DOX delivery system based on CNTs: Functionalization, targeting and novel technologies. J. Control. Release, 2020, 327, 198-224.
[http://dx.doi.org/10.1016/j.jconrel.2020.08.001] [PMID: 32763433]
[28]
Wu, S.; Helal-Neto, E.; Matos, A.P.D.S.; Jafari, A.; Kozempel, J.; Silva, Y.J.A.; Serrano-Larrea, C.; Alves Junior, S.; Ricci-Junior, E.; Alexis, F.; Santos-Oliveira, R. Radioactive polymeric nanoparticles for biomedical application. Drug Deliv., 2020, 27(1), 1544-1561.
[http://dx.doi.org/10.1080/10717544.2020.1837296] [PMID: 33118416]
[29]
Zhang, Y.; Zhang, Y.; Wu, J.; Liu, J.; Kang, Y.; Hu, C.; Feng, X.; Liu, W.; Luo, H.; Chen, A.; Chen, L.; Shao, L. Effects of carbon-based nanomaterials on vascular endothelia under physiological and pathological conditions: Interactions, mechanisms and potential therapeutic applications. J. Control. Release, 2021, 330, 945-962.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.067] [PMID: 33157190]
[30]
Hassanpour, S.; Behnam, B.; Baradaran, B.; Hashemzaei, M.; Oroojalian, F.; Mokhtarzadeh, A.; de la Guardia, M. Carbon based nanomaterials for the detection of narrow therapeutic index pharmaceuticals. Talanta, 2021, 221, 121610-121623.
[http://dx.doi.org/10.1016/j.talanta.2020.121610] [PMID: 33076140]
[31]
Lee, H.; Seok Lee, J.; Moor, K.J.; Kim, H.I.; Kim, S.R.; Gim, G.; Lee, J.; Kim, H.H.; Fahmy, T.M.; Kim, J.H.; Lee, C. Hand-ground fullerene-nanodiamond composite for photosensitized water treatment and photodynamic cancer therapy. J. Colloid Interface Sci., 2021, 587, 101-109.
[http://dx.doi.org/10.1016/j.jcis.2020.12.020] [PMID: 33360882]
[32]
Tang, Q.; Maji, S.; Jiang, B.; Sun, J.; Zhao, W.; Hill, J.P.; Ariga, K.; Fuchs, H.; Ji, Q.; Shrestha, L.K. Manipulating the structural transformation of fullerene microtubes to fullerene microhorns having microscopic recognition properties. ACS Nano, 2019, 13(12), 14005-14012.
[http://dx.doi.org/10.1021/acsnano.9b05938] [PMID: 31794176]
[33]
Di giosia, M.; Soldà, A.; Seeger, M.; Cantelli, A.; Arnesano, F.; Nardella, M.; Mangini, V.; Valle, F.; Montalti, M.; Zerbetto, F.; Rapino, S.; Calvaresi, M.; Ntziachristos, V. A Bio-conjugated fullerene as a subcellular‐targeted and multifaceted phototheranostic agent. Adv. Funct. Mater., 2021, 31, 2101527-2101534.
[34]
Mu, Q.; Wang, H.; Zhang, M. Nanoparticles for imaging and treatment of metastatic breast cancer. Expert Opin. Drug Deliv., 2017, 14(1), 123-136.
[http://dx.doi.org/10.1080/17425247.2016.1208650] [PMID: 27401941]
[35]
Ye, R.; Tour, J.M. Graphene at fifteen. ACS Nano, 2019, 13(10), 10872-10878.
[http://dx.doi.org/10.1021/acsnano.9b06778] [PMID: 31525904]
[36]
Feng, L.; Li, K.; Shi, X.; Gao, M.; Liu, J.; Liu, Z. Smart pH-responsive nanocarriers based on nano-graphene oxide for combined chemo- and photothermal therapy overcoming drug resistance. Adv. Healthc. Mater., 2014, 3(8), 1261-1271.
[http://dx.doi.org/10.1002/adhm.201300549] [PMID: 24652715]
[37]
Wang, H.; Wang, H.; Wang, Y.; Su, X.; Wang, C.; Zhang, M.; Jian, M.; Xia, K.; Liang, X.; Lu, H.; Li, S.; Zhang, Y. Laser writing of janus graphene/kevlar textile for intelligent protective clothing. ACS Nano, 2020, 14(3), 3219-3226.
[http://dx.doi.org/10.1021/acsnano.9b08638] [PMID: 32083839]
[38]
Stanford, M.G.; Li, J.T.; Chen, Y.; McHugh, E.A.; Liopo, A.; Xiao, H.; Tour, J.M. Self-sterilizing laser-induced graphene bacterial air filter. ACS Nano, 2019, 13(10), 11912-11920.
[http://dx.doi.org/10.1021/acsnano.9b05983] [PMID: 31560513]
[39]
Kuo, W.S.; Shen, X.C.; Chang, C.Y.; Kao, H.F.; Lin, S.H.; Wang, J.Y.; Wu, P.C. Multiplexed graphene quantum dots with excitation-wavelength-independent photoluminescence, as two-photon probes, and in ultraviolet-near infrared bioimaging. ACS Nano, 2020, 14(9), 11502-11509.
[http://dx.doi.org/10.1021/acsnano.0c03915] [PMID: 32790323]
[40]
Jia, X.; Xu, W.; Ye, Z.; Wang, Y.; Dong, Q.; Wang, E.; Li, D.; Wang, J. Functionalized graphene@gold nanostar/lipid for pancreatic cancer gene and photothermal synergistic therapy under photoacoustic/photothermal imaging dual- modal guidance. Small, 2020, 16(39), e2003707.
[http://dx.doi.org/10.1002/smll.202003707] [PMID: 32851808]
[41]
Sahu, A.; Choi, W.I.; Lee, J.H.; Tae, G. Graphene oxide mediated delivery of methylene blue for combined photodynamic and photothermal therapy. Biomaterials, 2013, 34(26), 6239-6248.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.066] [PMID: 23706688]
[42]
Battigelli, A.; Ménard-Moyon, C.; Da Ros, T.; Prato, M.; Bianco, A. Endowing carbon nanotubes with biological and biomedical properties by chemical modifications. Adv. Drug Deliv. Rev., 2013, 65(15), 1899-1920.
[http://dx.doi.org/10.1016/j.addr.2013.07.006] [PMID: 23856410]
[43]
Caoduro, C.; Hervouet, E.; Girard-Thernier, C.; Gharbi, T.; Boulahdour, H.; Delage-Mourroux, R.; Pudlo, M. Carbon nanotubes as gene carriers: Focus on internalization pathways related to functionalization and properties. Acta Biomater., 2017, 49, 36-44.
[http://dx.doi.org/10.1016/j.actbio.2016.11.013] [PMID: 27826000]
[44]
Bao, L.; Cui, X.; Wang, X.; Wu, J.; Guo, M.; Yan, N.; Chen, C. Carbon nanotubes promote the development of intestinal organoids through regulating extracellular matrix viscoelasticity and intracellular energy metabolism. ACS Nano, 2021, 15(10), 15858-15873.
[http://dx.doi.org/10.1021/acsnano.1c03707] [PMID: 34622660]
[45]
Wang, Q.; Huang, X.; Long, Y.; Wang, X.; Zhang, H.; Zhu, R.; Liang, L.; Teng, P.; Zheng, H. Hollow luminescent carbon dots for drug delivery. Carbon, 2013, 59, 192-199.
[http://dx.doi.org/10.1016/j.carbon.2013.03.009]
[46]
Shao, Y.; Zhu, C.; Fu, Z.; Lin, K.; Wang, Y.; Chang, Y.; Han, L.; Yu, H.; Tian, F. Green synthesis of multifunctional fluorescent carbon dots from mulberry leaves (Morus alba L.) residues for simultaneous intracellular imaging and drug delivery. J. Nanopart. Res., 2020, 22(8), 229-238.
[http://dx.doi.org/10.1007/s11051-020-04917-4]
[47]
Shahshahanipour, M.; Rezaei, B.; Ensafi, A.A.; Etemadifar, Z. An ancient plant for the synthesis of a novel carbon dot and its applications as an antibacterial agent and probe for sensing of an anti-cancer drug. Mater. Sci. Eng. C, 2019, 98, 826-833.
[http://dx.doi.org/10.1016/j.msec.2019.01.041] [PMID: 30813088]
[48]
Kiciński, W.; Dyjak, S. Transition metal impurities in carbon-based materials: Pitfalls, artifacts and deleterious effects. Carbon, 2020, 168, 748-845.
[http://dx.doi.org/10.1016/j.carbon.2020.06.004]
[49]
Chow, E.K.; Zhang, X.Q.; Chen, M.; Lam, R.; Robinson, E.; Huang, H.; Schaffer, D.; Osawa, E.; Goga, A.; Ho, D. Nanodiamond therapeutic delivery agents mediate enhanced chemoresistant tumor treatment. Sci. Transl. Med., 2011, 3(73), 73ra21.
[http://dx.doi.org/10.1126/scitranslmed.3001713] [PMID: 21389265]
[50]
Zhang, Z.; Shu, M.; Jiang, Y.; Xu, J. Fullerene modified CsPbBr3 perovskite nanocrystals for efficient charge separation and photocatalytic CO2 reduction. Chem. Eng. J., 2021, 414, 128889.
[http://dx.doi.org/10.1016/j.cej.2021.128889]
[51]
Qin, Y.; Chang, Y.; Zhu, X.; Gu, X.; Guo, L.; Zhang, Y.; Wang, Q.; Zhang, J.; Zhang, X.; Liu, X.; Lu, K.; Zhou, E.; Wei, Z.; Sun, X. 18.4% efficiency achieved by the cathode interface engineering in non-fullerene polymer solar cells. Nano Today, 2021, 41, 101289-101297.
[http://dx.doi.org/10.1016/j.nantod.2021.101289]
[52]
Qasemnazhand, M.; Khoeini, F.; Marsusi, F. Photoluminescence in a glucose-coated sila-fullerane and its nanomedicine applications. Res. Square, 2021. Available from: https://www.researchsquare.com/article/ rs-152222/v1
[53]
Sood, P.; Kim, K.C.; Jang, S.S. Electrochemical properties of boron-doped fullerene derivatives for lithium-ion battery applications. ChemPhysChem, 2018, 19(6), 753-758.
[http://dx.doi.org/10.1002/cphc.201701171] [PMID: 29216411]
[54]
Webb, D.T.; Nagorzanski, M.R.; Powers, M.M.; Cwiertny, D.M.; Hladik, M.L.; LeFevre, G.H. Differences in neonicotinoid and metabolite sorption to activated carbon are driven by alterations to the insecticidal pharmacophore. Environ. Sci. Technol., 2020, 54(22), 14694-14705.
[http://dx.doi.org/10.1021/acs.est.0c04187] [PMID: 33119293]
[55]
Chen, T.T.; Li, W.L.; Chen, W.J.; Yu, X.H.; Dong, X.R.; Li, J.; Wang, L.S. Spherical trihedral metallo-borospherenes. Nat. Commun., 2020, 11(1), 2766-2773.
[http://dx.doi.org/10.1038/s41467-020-16532-x] [PMID: 32488008]
[56]
Guan, R.; Chen, M.; Jin, F.; Yang, S. Strain release of fused pentagons in fullerene cages by chemical functionalization. Angew. Chem. Int. Ed. Engl., 2020, 59(3), 1048-1073.
[http://dx.doi.org/10.1002/anie.201901678] [PMID: 30884036]
[57]
Yamada, M.; Akasaka, T.; Nagase, S. Salvaging reactive fullerenes from soot by exohedral derivatization. Angew. Chem. Int. Ed. Engl., 2018, 57(41), 13394-13405.
[http://dx.doi.org/10.1002/anie.201713145] [PMID: 29665229]
[58]
Zhan, S.Z.; Zhang, G.H.; Li, J.H.; Liu, J.L.; Zhu, S.H.; Lu, W.; Zheng, J.; Ng, S.W.; Li, D. Exohedral cuprofullerene: Sequentially expanding metal olefin up to a C60@Cu24 rhombicuboctahedron. J. Am. Chem. Soc., 2020, 142(13), 5943-5947.
[http://dx.doi.org/10.1021/jacs.0c00090] [PMID: 32187495]
[59]
Borowik, A.; Prylutskyy, Y.; Kawelski, Ł.; Kyzyma, O.; Bulavin, L.; Ivankov, O.; Cherepanov, V.; Wyrzykowski, D.; Kaźmierkiewicz, R.; Gołuński, G.; Woziwodzka, A.; Evstigneev, M.; Ritter, U.; Piosik, J.; Piosik, J. Does C60 fullerene act as a transporter of small aromatic molecules? Colloids Surf. B Biointerfaces, 2018, 164, 134-143.
[http://dx.doi.org/10.1016/j.colsurfb.2018.01.026] [PMID: 29413590]
[60]
Skivka, L.M.; Prylutska, S.V.; Rudyk, M.P.; Khranovska, N.M.; Opeida, I.V.; Hurmach, V.V.; Prylutskyy, Y.I.; Sukhodub, L.F.; Ritter, U. C60 fullerene and its nanocomplexes with anticancer drugs modulate circulating phagocyte functions and dramatically increase ROS generation in transformed monocytes. Cancer Nanotechnol., 2018, 9(1), 8-29.
[http://dx.doi.org/10.1186/s12645-017-0034-0] [PMID: 30416604]
[61]
Bilobrov, V.; Sokolova, V.; Prylutska, S.; Panchuk, R.; Litsis, O.; Osetskyi, V.; Evstigneev, M.; Prylutskyy, Y.; Epple, M.; Ritter, U.; Rohr, J. A novel nanoconjugate of Landomycin A with C60 fullerene for cancer targeted therapy: In vitro studies. Cell. Mol. Bioeng., 2018, 12(1), 41-51.
[http://dx.doi.org/10.1007/s12195-018-0548-5] [PMID: 31719898]
[62]
Grebinyk, A.; Prylutska, S.; Grebinyk, S.; Prylutskyy, Y.; Ritter, U.; Matyshevska, O.; Dandekar, T.; Frohme, M. Correction to: Complexation with C60 fullerene increases doxorubicin efficiency against leukemic cells in vitro. Nanoscale Res. Lett., 2019, 14(1), 91.
[http://dx.doi.org/10.1186/s11671-019-2917-y] [PMID: 30868449]
[63]
Prylutska, S.; Grynyuk, I.; Skaterna, T.; Horak, I.; Grebinyk, A.; Drobot, L.; Matyshevska, O.; Senenko, A.; Prylutskyy, Y.; Naumovets, A.; Ritter, U.; Frohme, M. Toxicity of C60 fullerene-cisplatin nanocomplex against Lewis lung carcinoma cells. Arch. Toxicol., 2019, 93(5), 1213-1226.
[http://dx.doi.org/10.1007/s00204-019-02441-6] [PMID: 30989314]
[64]
Grebinyk, A.; Prylutska, S.; Buchelnikov, A.; Tverdokhleb, N.; Grebinyk, S.; Evstigneev, M.; Matyshevska, O.; Cherepanov, V.; Prylutskyy, Y.; Yashchuk, V.; Naumovets, A.; Ritter, U.; Dandekar, T.; Frohme, M. C60 fullerene as an effective nanoplatform of alkaloid berberine delivery into leukemic cells. Pharmaceutics, 2019, 11(11), 586.
[http://dx.doi.org/10.3390/pharmaceutics11110586] [PMID: 31717305]
[65]
Hurmach, Y.; Rudyk, M.; Prylutska, S.; Hurmach, V.; Prylutskyy, Y.I.; Ritter, U.; Scharff, P.; Skivka, L. C60 fullerene governs doxorubicin effect on metabolic profile of rat microglial cells in vitro. Mol. Pharm., 2020, 17(9), 3622-3632.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00691] [PMID: 32673486]
[66]
Grebinyk, A.; Prylutska, S.; Grebinyk, S.; Evstigneev, M.; Krysiuk, I.; Skaterna, T.; Horak, I.; Sun, Y.; Drobot, L.; Matyshevska, O. Antitumor efficiency of the natural alkaloid berberine complexed with C60 fullerene in Lewis lung carcinoma in vitro and in vivo. Cancer Nanotechnol., 2021, 12(1), 1-18.
[http://dx.doi.org/10.1186/s12645-021-00096-6] [PMID: 33456622]
[67]
Cheng, Y.H.; Liao, J.H.; Zhao, Y.J.; Yang, X.B. An extended cluster expansion for ground states of heterofullerenes. Sci. Rep., 2017, 7(1), 16211-16219.
[http://dx.doi.org/10.1038/s41598-017-16469-0] [PMID: 29176732]
[68]
Wang, S.; Chang, Q.; Zhang, G.; Li, F.; Wang, X.; Yang, S.; Troyanov, S.I. Structural studies of giant empty and endohedral fullerenes. Front Chem., 2020, 8, 607712-607732.
[http://dx.doi.org/10.3389/fchem.2020.607712] [PMID: 33344423]
[69]
Alipour, E.; Alimohammady, F.; Yumashev, A.; Maseleno, A.; Fullerene, C. Fullerene C60 containing porphyrin-like metal center as drug delivery system for ibuprofen drug. J. Mol. Model., 2019, 26(1), 7-14.
[http://dx.doi.org/10.1007/s00894-019-4267-1] [PMID: 31834504]
[70]
Li, Y.; Sheng, Z.; Zhu, C.; Yin, W.; Chu, C. Silica based click-dibenzo-18-crown-6-ether high performance liquid chromatography stationary phase and its application in separation of fullerenes. Talanta, 2018, 178, 195-201.
[http://dx.doi.org/10.1016/j.talanta.2017.07.037] [PMID: 29136812]
[71]
Hamblin, M.R. Fullerenes as photosensitizers in photodynamic therapy: Pros and cons. Photochem. Photobiol. Sci., 2018, 17(11), 1515-1533.
[http://dx.doi.org/10.1039/C8PP00195B] [PMID: 30043032]
[72]
Bartkowski, M.; Giordani, S. Supramolecular chemistry of carbon nano-onions. Nanoscale, 2020, 12(17), 9352-9358.
[http://dx.doi.org/10.1039/D0NR01713B] [PMID: 32329483]
[73]
Shi, J.; Wang, B.; Wang, L.; Lu, T.; Fu, Y.; Zhang, H.; Zhang, Z. Fullerene (C60)-based tumor-targeting nanoparticles with “off-on” state for enhanced treatment of cancer. J. Control. Release, 2016, 235, 245-258.
[http://dx.doi.org/10.1016/j.jconrel.2016.06.010] [PMID: 27276066]
[74]
Zakharian, T.Y.; Seryshev, A.; Sitharaman, B.; Gilbert, B.E.; Knight, V.; Wilson, L.J. A fullerene-paclitaxel chemotherapeutic: Synthesis, characterization, and study of biological activity in tissue culture. J. Am. Chem. Soc., 2005, 127(36), 12508-12509.
[http://dx.doi.org/10.1021/ja0546525] [PMID: 16144396]
[75]
Jiang, J.L.; Zhang, W.Z.; Ni, W.X.; Shao, J.W. Insight on structure-property relationships of carrageenan from marine red algal: A review. Carbohydr. Polym., 2021, 257, 117642.
[http://dx.doi.org/10.1016/j.carbpol.2021.117642] [PMID: 33541666]
[76]
Sato, S.; Takei, T.; Matsushita, Y.; Yasuda, T.; Kojima, T.; Kawano, M.; Ohnuma, M.; Tashiro, K. Coassembly-directed fabrication of an exfoliated form of alternating multilayers composed of a self-assembled organoplatinum(ii) complex-fullerene dyad. Inorg. Chem., 2015, 54(24), 11581-11583.
[http://dx.doi.org/10.1021/acs.inorgchem.5b01183] [PMID: 26245539]
[77]
Chakraborty, P.; Nag, A.; Chakraborty, A.; Pradeep, T. Approaching materials with atomic precision using supramolecular cluster assemblies. Acc. Chem. Res., 2019, 52(1), 2-11.
[http://dx.doi.org/10.1021/acs.accounts.8b00369] [PMID: 30507167]
[78]
Ramos-Soriano, J.; Reina, J.J.; Illescas, B.M.; de la Cruz, N.; Rodríguez-Pérez, L.; Lasala, F.; Rojo, J.; Delgado, R.; Martín, N. Synthesis of highly efficient multivalent disaccharide/[60]fullerene nanoballs for emergent viruses. J. Am. Chem. Soc., 2019, 141(38), 15403-15412.
[http://dx.doi.org/10.1021/jacs.9b08003] [PMID: 31469952]
[79]
Li, T.; Dorn, H.C. Biomedical applications of metal-encapsulated fullerene nanoparticles. Small, 2017, 13(8), 1603152-1603164.
[http://dx.doi.org/10.1002/smll.201603152] [PMID: 28026111]
[80]
Liu, J.H.; Cao, L.; Luo, P.G.; Yang, S.T.; Lu, F.; Wang, H.; Meziani, M.J.; Haque, S.A.; Liu, Y.; Lacher, S.; Sun, Y.P. Fullerene-conjugated doxorubicin in cells. ACS Appl. Mater. Interfaces, 2010, 2(5), 1384-1389.
[http://dx.doi.org/10.1021/am100037y] [PMID: 20420365]
[81]
Zhang, J.; Chen, Z.; Kong, J.; Liang, Y.; Chen, K.; Chang, Y.; Yuan, H.; Wang, Y.; Liang, H.; Li, J.; Mao, M.; Li, J.; Xing, G. Fullerenol nanoparticles eradicate helicobacter pylori via ph-responsive peroxidase activity. ACS Appl. Mater. Interfaces, 2020, 12, 29013-29023.
[http://dx.doi.org/10.1021/acsami.0c05509] [PMID: 32486636]
[82]
Xu, B.; Yuan, L.; Hu, Y.; Xu, Z.; Qin, J.J.; Cheng, X.D. Synthesis, characterization, cellular uptake, and in vitro anticancer activity of fullerenol-doxorubicin conjugates. Front. Pharmacol., 2021, 11, 598155-598164.
[http://dx.doi.org/10.3389/fphar.2020.598155] [PMID: 33568999]
[83]
Williams, T.; Walsh, C.; Murray, K.; Subir, M. Interactions of emerging contaminants with model colloidal microplastics, C60 fullerene, and natural organic matter - effect of surface functional group and adsorbate properties. Environ. Sci. Process. Impacts, 2020, 22(5), 1190-1200.
[http://dx.doi.org/10.1039/D0EM00026D] [PMID: 32250376]
[84]
Qiao, Y.; Gou, G.; Wu, F.; Jian, J.; Li, X.; Hirtz, T.; Zhao, Y.; Zhi, Y.; Wang, F.; Tian, H.; Yang, Y.; Ren, T.L. Graphene-based thermoacoustic sound source. ACS Nano, 2020, 14(4), 3779-3804.
[http://dx.doi.org/10.1021/acsnano.9b10020] [PMID: 32186849]
[85]
Mauro, N.; Scialabba, C.; Agnello, S.; Cavallaro, G.; Giammona, G. Folic acid-functionalized graphene oxide nanosheets via plasma etching as a platform to combine NIR anticancer phototherapy and targeted drug delivery. Mater. Sci. Eng. C, 2020, 107, 110201-110214.
[http://dx.doi.org/10.1016/j.msec.2019.110201] [PMID: 31761243]
[86]
Feng, L.; Zhang, S.; Liu, Z. Graphene based gene transfection. Nanoscale, 2011, 3(3), 1252-1257.
[http://dx.doi.org/10.1039/c0nr00680g] [PMID: 21270989]
[87]
Tian, B.; Wang, C.; Zhang, S.; Feng, L.; Liu, Z. Photothermally enhanced photodynamic therapy delivered by nano- graphene oxide. ACS Nano, 2011, 5(9), 7000-7009.
[http://dx.doi.org/10.1021/nn201560b] [PMID: 21815655]
[88]
Huang, P.; Xu, C.; Lin, J.; Wang, C.; Wang, X.; Zhang, C.; Zhou, X.; Guo, S.; Cui, D. Folic Acid-conjugated graphene oxide loaded with photosensitizers for targeting photodynamic therapy. Theranostics, 2011, 1, 240-250.
[http://dx.doi.org/10.7150/thno/v01p0240] [PMID: 21562631]
[89]
Siril, P.F.; Türk, M. Synthesis of metal nanostructures using supercritical carbon dioxide: A green and upscalable process. Small, 2020, 16(49), e2001972.
[http://dx.doi.org/10.1002/smll.202001972] [PMID: 33164289]
[90]
Yadav, N.; Tyagi, M.; Wadhwa, S.; Mathur, A.; Narang, J. Few biomedical applications of carbon nanotubes. Methods Enzymol., 2020, 630, 347-363.
[http://dx.doi.org/10.1016/bs.mie.2019.11.005] [PMID: 31931993]
[91]
Lekshmi, G.; Sana, S.S.; Nguyen, V.H.; Nguyen, T.H.C.; Nguyen, C.C.; Le, Q.V.; Peng, W. Recent progress in carbon nanotube polymer composites in tissue engineering and regeneration. Int. J. Mol. Sci., 2020, 21(17), 6440-6454.
[http://dx.doi.org/10.3390/ijms21176440] [PMID: 32899409]
[92]
Prylutska, S.V.; Grynyuk, I.I.; Matyshevska, O.P.; Nanostructures, V.M. Estimation of multi-walled carbon nanotubes toxicity in vitro. Phys. E Low Dimens., 2008, 40(7), 2565-2569.
[http://dx.doi.org/10.1016/j.physe.2007.07.017]
[93]
Shapoval, L.M.; Prylutska, S.V.; Kotsyuruba, A.V.; Werkstofftechnik, O. Single-walled carbon nanotubes modulate cardiovascular control in rats. Materialwiss. Werkstoff- tech., 2016, 47(2-3), 208-215.
[http://dx.doi.org/10.1002/mawe.201600484]
[94]
Stanford, M.G.; Bets, K.V.; Luong, D.X.; Advincula, P.A.; Chen, W.; Li, J.T.; Wang, Z.; McHugh, E.A.; Algozeeb, W.A.; Yakobson, B.I.; Tour, J.M. Flash graphene morphologies. ACS Nano, 2020, 14(10), 13691-13699.
[http://dx.doi.org/10.1021/acsnano.0c05900] [PMID: 32909736]
[95]
Wani, T.U.; Mohi-Ud-Din, R.; Wani, T.A.; Mir, R.H.; Itoo, A.M.; Sheikh, F.A.; Khan, N.A.; Pottoo, F.H. Green synthesis, spectroscopic characterization and biomedical applications of carbon nanotubes. Curr. Pharm. Biotechnol., 2021, 22(6), 793-807.
[http://dx.doi.org/10.2174/1389201021999201110205615] [PMID: 33176640]
[96]
Li, M.; Xu, Z.; Zhang, L.; Cui, M.; Zhu, M.; Guo, Y.; Sun, R.; Han, J.; Song, E.; He, Y.; Su, Y. Targeted noninvasive treatment of choroidal neovascularization by hybrid cell-membrane-cloaked biomimetic nanoparticles. ACS Nano, 2021, 15(6), 9808-9819.
[http://dx.doi.org/10.1021/acsnano.1c00680] [PMID: 34037377]
[97]
Barani, M.; Mukhtar, M.; Rahdar, A.; Sargazi, G.; Thysiadou, A.; Kyzas, G.Z. Progress in the application of nanoparticles and graphene as drug carriers and on the diagnosis of brain infections. Molecules, 2021, 26(1), 186-204.
[http://dx.doi.org/10.3390/molecules26010186] [PMID: 33401658]
[98]
Ma, C.; Clark, S.; Liu, Z.; Liang, L.; Firdaus, Y.; Tao, R.; Han, A.; Liu, X.; Li, L.J.; Anthopoulos, T.D.; Hersam, M.C.; Wu, T. Solution-processed mixed-dimensional hybrid perovskite/carbon nanotube electronics. ACS Nano, 2020, 14(4), 3969-3979.
[http://dx.doi.org/10.1021/acsnano.9b07888] [PMID: 32119769]
[99]
Tondro, G.H.; Behzadpour, N.; Keykhaee, Z.; Akbari, N.; Sattarahmady, N. Carbon@polypyrrole nanotubes as a photosensitizer in laser phototherapy of Pseudomonas aeruginosa. Colloids Surf. B Biointerfaces, 2019, 180, 481-486.
[http://dx.doi.org/10.1016/j.colsurfb.2019.05.020] [PMID: 31102852]
[100]
Prylutska, S.; Bilyy, R.; Shkandina, T.; Rotko, D.; Bychko, A.; Cherepanov, V.; Stoika, R.; Rybalchenko, V.; Prylutskyy, Y.; Tsierkezos, N.; Ritter, U. Comparative study of membranotropic action of single- and multi-walled carbon nanotubes. J. Biosci. Bioeng., 2013, 115(6), 674-679.
[http://dx.doi.org/10.1016/j.jbiosc.2012.12.016] [PMID: 23428334]
[101]
Bychko, A.; Rybalchenko, V.; Prylutska, S.; Epple, M.; Scharff, P. Interaction of C60 fullerene complexed to doxorubicin with model bilipid membranes and its uptake by HeLa cells. Mater. Sci. Eng. C-Mater., 2016, 59, 398-403.
[102]
Prylutska, S.; Bilyy, R.; Schkandina, T.; Bychko, A.; Cherepanov, V.; Andreichenko, K.; Stoika, R.; Rybalchenko, V.; Prylutskyy, Y.; Scharff, P.; Ritter, U. Effect of iron-doped multi-walled carbon nanotubes on lipid model and cellular plasma membranes. Mater. Sci. Eng. C, 2012, 32(6), 1486-1489.
[http://dx.doi.org/10.1016/j.msec.2012.04.029] [PMID: 24364949]
[103]
Dong, P.X.; Song, X.; Wu, J.; Cui, S.; Wang, G.; Zhang, L.; Sun, H. The Fate of SWCNTs in mouse peritoneal macrophages: Exocytosis, biodegradation, and sustainable retention. Front. Bioeng. Biotechnol., 2020, 8, 211-222.
[http://dx.doi.org/10.3389/fbioe.2020.00211] [PMID: 32266238]
[104]
Hong, H.; Yang, K.; Zhang, Y.; Engle, J.W.; Feng, L.; Yang, Y.; Nayak, T.R.; Goel, S.; Bean, J.; Theuer, C.P.; Barnhart, T.E.; Liu, Z.; Cai, W. In vivo targeting and imaging of tumor vasculature with radiolabeled, antibody-conjugated nanographene. ACS Nano, 2012, 6(3), 2361-2370
[105]
Scholl, F.A.; Morais, P.V.; Gabriel, R.C.; Schöning, M.J.; Siqueira, J.R., Jr; Caseli, L. Jr.; Caseli, L. Carbon nanotubes arranged as smart interfaces in lipid langmuir-blodgett films enhancing the enzymatic properties of penicillinase for biosensing applications. ACS Appl. Mater. Interfaces, 2017, 9(36), 31054-31066.
[http://dx.doi.org/10.1021/acsami.7b08095] [PMID: 28816431]
[106]
Costa, P.M.; Bourgognon, M.; Wang, J.T.; Al-Jamal, K.T. Functionalised carbon nanotubes: From intracellular uptake and cell-related toxicity to systemic brain delivery. J. Control. Release, 2016, 241, 200-219.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.033] [PMID: 27693751]
[107]
Velioğlu, S.; Karahan, H.E.; Goh, K.; Bae, T.H.; Chen, Y.; Chew, J.W. Metallicity-dependent ultrafast water transport in carbon nanotubes. Small, 2020, 16(25), e1907575.
[http://dx.doi.org/10.1002/smll.201907575] [PMID: 32432833]
[108]
Comparetti, E.J.; Romagnoli, G.G.; Gorgulho, C.M.; Pedrosa, V.A.; Kaneno, R. Anti-PSMA monoclonal antibody increases the toxicity of paclitaxel carried by carbon nanotubes. Mater. Sci. Eng. C, 2020, 116, 111254-111339.
[http://dx.doi.org/10.1016/j.msec.2020.111254] [PMID: 32806261]
[109]
Patel, D.K.; Kim, H.B.; Dutta, S.D.; Ganguly, K.; Lim, K.T. Carbon nanotubes-based nanomaterials and their agricultural and biotechnological applications. Materials (Basel), 2020, 13(7), 1679-1709.
[http://dx.doi.org/10.3390/ma13071679] [PMID: 32260227]
[110]
Karimi, M.; Solati, N.; Ghasemi, A.; Estiar, M.A.; Hashemkhani, M.; Kiani, P.; Mohamed, E.; Saeidi, A.; Taheri, M.; Avci, P.; Aref, A.R.; Amiri, M.; Baniasadi, F.; Hamblin, M.R. Carbon nanotubes part II: A remarkable carrier for drug and gene delivery. Expert Opin. Drug Deliv., 2015, 12(7), 1089-1105.
[http://dx.doi.org/10.1517/17425247.2015.1004309] [PMID: 25613837]
[111]
Kang, B.; Chang, S.; Dai, Y.; Yu, D.; Chen, D. Cell response to carbon nanotubes: Size-dependent intracellular uptake mechanism and subcellular fate. Small, 2010, 6(21), 2362-2366.
[http://dx.doi.org/10.1002/smll.201001260] [PMID: 20878638]
[112]
Yan, D.; Bruns, T.M.; Wu, Y.; Zimmerman, L.L.; Stephan, C.; Cameron, A.P.; Yoon, E.; Seymour, J.P. Ultracompliant carbon nanotube direct bladder device. Adv. Healthc. Mater., 2019, 8(20), e1900477.
[http://dx.doi.org/10.1002/adhm.201900477] [PMID: 31556241]
[113]
Kim, J.H.; Jobbágy, E.G.; Richter, D.D.; Trumbore, S.E.; Jackson, R.B. Agricultural acceleration of soil carbonate weathering. Glob. Change Biol., 2020, 26(10), 5988-6002.
[http://dx.doi.org/10.1111/gcb.15207] [PMID: 32511819]
[114]
Liu, Y.; Jiang, L.; Fan, X.; Liu, P.; Xu, S.; Luo, X. Intracellular fluorometric determination of microRNA-21 by using a switch-on nanoprobe composed of carbon nanotubes and gold nanoclusters. Mikrochim. Acta, 2019, 186(7), 447-452.
[http://dx.doi.org/10.1007/s00604-019-3573-8] [PMID: 31197573]
[115]
Risoluti, R.; Gullifa, G.; Carcassi, E.; Masotti, A.; Materazzi, S. TGA/Chemometrics addressing innovative preparation strategies for functionalized carbon nanotubes. J. Pharm. Anal., 2020, 10(4), 351-355.
[http://dx.doi.org/10.1016/j.jpha.2020.02.009] [PMID: 32923009]
[116]
Pantarotto, D.; Singh, R.; McCarthy, D.; Erhardt, M.; Briand, J.P.; Prato, M.; Kostarelos, K.; Bianco, A. Functionalized carbon nanotubes for plasmid DNA gene delivery. Angew. Chem. Int. Ed., 2004, 43(39), 5242-5246.
[http://dx.doi.org/10.1002/anie.200460437] [PMID: 15455428]
[117]
Singh, R.; Pantarotto, D.; McCarthy, D.; Chaloin, O.; Hoebeke, J.; Partidos, C.D.; Briand, J.P.; Prato, M.; Bianco, A.; Kostarelos, K. Binding and condensation of plasmid DNA onto functionalized carbon nanotubes: Toward the construction of nanotube-based gene delivery vectors. J. Am. Chem. Soc., 2005, 127(12), 4388-4396.
[http://dx.doi.org/10.1021/ja0441561] [PMID: 15783221]
[118]
Gao, L.; Nie, L.; Wang, T.; Qin, Y.; Guo, Z.; Yang, D.; Yan, X. Carbon nanotube delivery of the GFP gene into mammalian cells. ChemBioChem, 2006, 7(2), 239-242.
[http://dx.doi.org/10.1002/cbic.200500227] [PMID: 16370018]
[119]
Liu, Y.; Wu, D.C.; Zhang, W.D.; Jiang, X.; He, C.B.; Chung, T.S.; Goh, S.H.; Leong, K.W. Polyethylenimine- grafted multiwalled carbon nanotubes for secure noncovalent immobilization and efficient delivery of DNA. Angew. Chem. Int. Ed., 2005, 44(30), 4782-4785.
[http://dx.doi.org/10.1002/anie.200500042] [PMID: 15995988]
[120]
Mello, C.C.; Conte, D., Jr. Revealing the world of RNA interference. Nature, 2004, 431(7006), 338-342.
[http://dx.doi.org/10.1038/nature02872] [PMID: 15372040]
[121]
Chen, L.; Bai, M.; Du, R.; Wang, H.; Deng, Y.; Xiao, A.; Gan, X. The non-viral vectors and main methods of loading siRNA onto the titanium implants and their application. J. Biomater. Sci. Polym. Ed., 2020, 31(16), 2152-2168.
[http://dx.doi.org/10.1080/09205063.2020.1793706] [PMID: 32646287]
[122]
Pofali, P.; Mondal, A.; Londhe, V. Exosome as a natural gene delivery vector for cancer treatment. Curr. Cancer Drug Targets, 2020, 20(11), 821-830.
[http://dx.doi.org/10.2174/1568009620666200924154149] [PMID: 32972340]
[123]
Kam, N.W.; Liu, Z.; Dai, H. Functionalization of carbon nanotubes via cleavable disulfide bonds for efficient intracellular delivery of siRNA and potent gene silencing. J. Am. Chem. Soc., 2005, 127(36), 12492-12493.
[http://dx.doi.org/10.1021/ja053962k] [PMID: 16144388]
[124]
Liu, Z.; Winters, M.; Holodniy, M.; Dai, H. siRNA delivery into human T cells and primary cells with carbon-nanotube transporters. Angew. Chem. Int. Ed., 2007, 46(12), 2023-2027.
[http://dx.doi.org/10.1002/anie.200604295] [PMID: 17290476]
[125]
Zhang, Z.; Yang, X.; Zhang, Y.; Zeng, B.; Wang, S.; Zhu, T.; Roden, R.B.; Chen, Y.; Yang, R. Delivery of telomerase reverse transcriptase small interfering RNA in complex with positively charged single-walled carbon nanotubes suppresses tumor growth. Clin. Cancer Res., 2006, 12(16), 4933-4939.
[http://dx.doi.org/10.1158/1078-0432.CCR-05-2831] [PMID: 16914582]
[126]
Francis, A.P.; Devasena, T. Toxicity of carbon nanotubes: A review. Toxicol. Ind. Health, 2018, 34(3), 200-210.
[http://dx.doi.org/10.1177/0748233717747472] [PMID: 29506458]
[127]
Choudhury, H.; Maheshwari, R.; Pandey, M.; Tekade, M.; Gorain, B.; Tekade, R.K. Advanced nanoscale carrier-based approaches to overcome biopharmaceutical issues associated with anticancer drug ‘Etoposide’. Mater. Sci. Eng. C, 2020, 106, 110275-110296.
[http://dx.doi.org/10.1016/j.msec.2019.110275] [PMID: 31753398]
[128]
Maruyama, K.; Haniu, H.; Saito, N.; Matsuda, Y.; Tsukahara, T.; Kobayashi, S.; Tanaka, M.; Aoki, K.; Takanashi, S.; Okamoto, M.; Kato, H. Endocytosis of multiwalled carbon nanotubes in bronchial epithelial and mesothelial cells. BioMed Res. Int., 2015, 2015, 793186-793194.
[http://dx.doi.org/10.1155/2015/793186] [PMID: 26090445]
[129]
Kostarelos, K.; Lacerda, L.; Pastorin, G.; Wu, W.; Wieckowski, S.; Luangsivilay, J.; Godefroy, S.; Pantarotto, D.; Briand, J.P.; Muller, S.; Prato, M.; Bianco, A. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nat. Nanotechnol., 2007, 2(2), 108-113.
[http://dx.doi.org/10.1038/nnano.2006.209] [PMID: 18654229]
[130]
Jin, H.; Heller, D.A.; Strano, M.S. Single-particle tracking of endocytosis and exocytosis of single-walled carbon nanotubes in NIH-3T3 cells. Nano Lett., 2008, 8(6), 1577-1585.
[http://dx.doi.org/10.1021/nl072969s] [PMID: 18491944]
[131]
Pastorin, G.; Wu, W.; Wieckowski, S.; Briand, J.P.; Kostarelos, K.; Prato, M.; Bianco, A. Double functionalization of carbon nanotubes for multimodal drug delivery. Chem. Commun. (Camb.), 2006, 11(11), 1182-1184.
[http://dx.doi.org/10.1039/b516309a] [PMID: 16518484]
[132]
Wu, W.; Wieckowski, S.; Pastorin, G.; Benincasa, M.; Klumpp, C.; Briand, J.P.; Gennaro, R.; Prato, M.; Bianco, A. Targeted delivery of amphotericin B to cells by using functionalized carbon nanotubes. Angew. Chem. Int. Ed., 2005, 44(39), 6358-6362.
[http://dx.doi.org/10.1002/anie.200501613] [PMID: 16138384]
[133]
Feazell, R.P.; Nakayama-Ratchford, N.; Dai, H.; Lippard, S.J. Soluble single-walled carbon nanotubes as longboat delivery systems for platinum(IV) anticancer drug design. J. Am. Chem. Soc., 2007, 129(27), 8438-8439.
[http://dx.doi.org/10.1021/ja073231f] [PMID: 17569542]
[134]
Liu, Z.; Sun, X.; Nakayama-Ratchford, N.; Dai, H. Supramolecular chemistry on water-soluble carbon nanotubes for drug loading and delivery. ACS Nano, 2007, 1(1), 50-56.
[http://dx.doi.org/10.1021/nn700040t] [PMID: 19203129]
[135]
Sun, X.; Liu, Z.; Welsher, K.; Robinson, J.T.; Goodwin, A.; Zaric, S.; Dai, H. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res., 2008, 1(3), 203-212.
[http://dx.doi.org/10.1007/s12274-008-8021-8] [PMID: 20216934]
[136]
Liu, Z.; Robinson, J.T.; Sun, X.; Dai, H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc., 2008, 130(33), 10876-10877.
[http://dx.doi.org/10.1021/ja803688x] [PMID: 18661992]
[137]
Daniyal, M.; Liu, B.; Wang, W. Comprehensive review on graphene oxide for use in drug delivery system. Curr. Med. Chem., 2020, 27(22), 3665-3685.
[http://dx.doi.org/10.2174/13816128256661902011296290] [PMID: 30706776]
[138]
Dhar, S.; Liu, Z.; Thomale, J.; Dai, H.; Lippard, S.J. Targeted single-wall carbon nanotube-mediated Pt(IV) prodrug delivery using folate as a homing device. J. Am. Chem. Soc., 2008, 130(34), 11467-11476.
[http://dx.doi.org/10.1021/ja803036e] [PMID: 18661990]
[139]
Zhang, Y.; Mao, X.; Li, F.; Li, M.; Jing, X.; Ge, Z.; Wang, L.; Liu, K.; Zhang, H.; Fan, C.; Zuo, X. Nanoparticle-assisted alignment of carbon nanotubes on DNA origami. Angew. Chem. Int. Ed. Engl., 2020, 59(12), 4892-4896.
[http://dx.doi.org/10.1002/anie.201916043] [PMID: 31943596]
[140]
Li, J.; Yap, S.Q.; Yoong, S.L.; Nayak, T.R.; Chandra, G.W.; Ang, W.H.; Panczyk, T.; Ramaprabhu, S.; Vashist, S.K.; Sheu, F.S.; Tan, A.; Pastorin, G. Carbon nanotube bottles for incorporation, release and enhanced cytotoxic effect of cisplatin. Carbon, 2019, 50(4), 1625-1634.
[http://dx.doi.org/10.1016/j.carbon.2011.11.043] [PMID: 31105316]
[141]
Singh, R.; Pantarotto, D.; Lacerda, L.; Pastorin, G.; Klumpp, C.; Prato, M.; Bianco, A.; Kostarelos, K. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc. Natl. Acad. Sci. USA, 2006, 103(9), 3357-3362.
[http://dx.doi.org/10.1073/pnas.0509009103] [PMID: 16492781]
[142]
Choi, H.S.; Liu, W.; Misra, P.; Tanaka, E.; Zimmer, J.P.; Itty Ipe, B.; Bawendi, M.G.; Frangioni, J.V. Renal clearance of quantum dots. Nat. Biotechnol., 2007, 25(10), 1165-1170.
[http://dx.doi.org/10.1038/nbt1340] [PMID: 17891134]
[143]
Liu, Z.; Davis, C.; Cai, W.; He, L.; Chen, X.; Dai, H. Circulation and long-term fate of functionalized, biocompatible single-walled carbon nanotubes in mice probed by Raman spectroscopy. Proc. Natl. Acad. Sci. USA, 2008, 105(5), 1410-1415.
[http://dx.doi.org/10.1073/pnas.0707654105] [PMID: 18230737]
[144]
Ali, M.; Riaz, R.; Bae, S.; Lee, H.S.; Jeong, S.H.; Ko, M.J. Layer-by-layer self-assembly of hollow nitrogen-doped carbon quantum dots on cationized textured crystalline silicon solar cells for an efficient energy down-shift. ACS Appl. Mater. Interfaces, 2020, 12(9), 10369-10381.
[http://dx.doi.org/10.1021/acsami.9b21087] [PMID: 32052623]
[145]
Baker, S.N.; Baker, G.A. Luminescent carbon nanodots: Emergent nanolights. Angew. Chem. Int. Ed. Engl., 2010, 49(38), 6726-6744.
[http://dx.doi.org/10.1002/anie.200906623] [PMID: 20687055]
[146]
Holá, K.; Sudolská, M.; Kalytchuk, S.; Nachtigallová, D.; Rogach, A.L.; Otyepka, M.; Zbořil, R. Graphitic nitrogen triggers red fluorescence in carbon dots. ACS Nano, 2017, 11(12), 12402-12410.
[http://dx.doi.org/10.1021/acsnano.7b06399] [PMID: 29136460]
[147]
Duan, Q.; Ma, Y.; Che, M.; Zhang, B.; Zhang, Y.; Li, Y.; Zhang, W.; Sang, S. Fluorescent carbon dots as carriers for intracellular doxorubicin delivery and track. J. Drug Deliv. Sci. Technol., 2019, 49, 527-533.
[http://dx.doi.org/10.1016/j.jddst.2018.12.015]
[148]
Wang, L.; Gao, J.; An, Z.; Zhao, X.; Yao, H.; Zhang, M.; Tian, Q.; Zhai, X.; Liu, Y. Polymer microsphere for water- soluble drug delivery via carbon dot-stabilizing W/O emulsion. J. Mater. Sci., 2019, 54(6), 5160-5175.
[http://dx.doi.org/10.1007/s10853-018-03197-7]
[149]
Wen, Y.; Xu, M.; Liu, X.; Jin, X.; Kang, J.; Xu, D.; Sang, H.; Gao, P.; Chen, X.; Zhao, L. Magnetofluorescent nanohybrid comprising polyglycerol grafted carbon dots and iron oxides: Colloidal synthesis and applications in cellular imaging and magnetically enhanced drug delivery. Colloids Surf. B Biointerfaces, 2019, 173, 842-850.
[http://dx.doi.org/10.1016/j.colsurfb.2018.10.073] [PMID: 30551300]
[150]
Gao, N.; Yang, W.; Nie, H.; Gong, Y.; Jing, J.; Gao, L.; Zhang, X. Turn-on theranostic fluorescent nanoprobe by electrostatic self-assembly of carbon dots with doxorubicin for targeted cancer cell imaging, in vivo hyaluronidase analysis, and targeted drug delivery. Biosens. Bioelectron., 2017, 96, 300-307.
[http://dx.doi.org/10.1016/j.bios.2017.05.019] [PMID: 28511113]
[151]
Zhang, Y.; Han, L.; Zhang, Y.; Chang, Y.Q.; Chen, X.W.; He, R.H.; Shu, Y.; Wang, J.H. Glutathione-mediated mesoporous carbon as a drug delivery nanocarrier with carbon dots as a cap and fluorescent tracer. Nanotechnology, 2016, 27(35), 355102-355111.
[http://dx.doi.org/10.1088/0957-4484/27/35/355102] [PMID: 27458235]
[152]
Das, R.K.; Pramanik, A.; Majhi, M.; Mohapatra, S. Magnetic mesoporous silica gated with doped carbon dot for site-specific drug delivery, fluorescence, and MR imaging. Langmuir, 2018, 34(18), 5253-5262.
[http://dx.doi.org/10.1021/acs.langmuir.7b04268] [PMID: 29634272]
[153]
Tomeh, M.A.; Zhao, X. Recent advances in microfluidics for the preparation of drug and gene delivery systems. Mol. Pharm., 2020, 17(12), 4421-4434.
[http://dx.doi.org/10.1021/acs.molpharmaceut.0c00913] [PMID: 33213144]
[154]
Zhang, M.; Guo, X.; Wang, M.; Liu, K. Tumor microenvironment-induced structure changing drug/gene delivery system for overcoming delivery-associated challenges. J. Control. Release, 2020, 323, 203-224.
[http://dx.doi.org/10.1016/j.jconrel.2020.04.026] [PMID: 32320817]
[155]
Cao, X.; Wang, J.; Deng, W.; Chen, J.; Wang, Y.; Zhou, J.; Du, P.; Xu, W.; Wang, Q.; Wang, Q.; Yu, Q.; Spector, M.; Yu, J.; Xu, X. Photoluminescent cationic carbon dots as efficient non-viral delivery of plasmid SOX9 and chondrogenesis of fibroblasts. Sci. Rep., 2018, 8(1), 7057-7066.
[http://dx.doi.org/10.1038/s41598-018-25330-x] [PMID: 29728593]
[156]
Zuo, G.; Xie, A.; Pan, X.; Su, T.; Li, J.; Dong, W. Fluorine-doped cationic carbon dots for efficient gene delivery. ACS Appl. Nano Mater., 2018, 1(5), 2376-2385.
[http://dx.doi.org/10.1021/acsanm.8b00521]
[157]
Mishra, V.; Patil, A.; Thakur, S.; Kesharwani, P. Carbon dots: Emerging theranostic nanoarchitectures. Drug Discov. Today, 2018, 23(6), 1219-1232.
[http://dx.doi.org/10.1016/j.drudis.2018.01.006] [PMID: 29366761]
[158]
Li, S.; Xiao, D.; Liu, D.; He, H. Calcium-doped fluorescent carbon nanoparticles: Spontaneous thermal synthesis, pH-sensitive fluorescence off-on, and mechanism. Sens. Actuators B Chem., 2018, 266, 594-602.
[http://dx.doi.org/10.1016/j.snb.2018.02.142]
[159]
Chang, S.L.Y.; Reineck, P.; Williams, D.; Bryant, G.; Opletal, G.; El-Demrdash, S.A.; Chiu, P.L.; Ōsawa, E.; Barnard, A.S.; Dwyer, C. Dynamic self-assembly of detonation nanodiamond in water. Nanoscale, 2020, 12(9), 5363-5367.
[http://dx.doi.org/10.1039/C9NR08984E] [PMID: 32100774]
[160]
Ackermann, J.; Krueger, A. Efficient surface functionalization of detonation nanodiamond using ozone under ambient conditions. Nanoscale, 2019, 11(16), 8012-8019.
[http://dx.doi.org/10.1039/C9NR01716J] [PMID: 30946413]
[161]
Fujisaku, T.; Tanabe, R.; Onoda, S.; Kubota, R.; Segawa, T.F.; So, F.T.; Ohshima, T.; Hamachi, I.; Shirakawa, M.; Igarashi, R. pH nanosensor using electronic spins in diamond. ACS Nano, 2019, 13(10), 11726-11732.
[http://dx.doi.org/10.1021/acsnano.9b05342] [PMID: 31538479]
[162]
Moore, L.; Yang, J.; Lan, T.T.; Osawa, E.; Lee, D.K.; Johnson, W.D.; Xi, J.; Chow, E.K.; Ho, D. Biocompatibility assessment of detonation nanodiamond in non-human primates and rats using histological, hematologic, and urine analysis. ACS Nano, 2016, 10(8), 7385-7400.
[http://dx.doi.org/10.1021/acsnano.6b00839] [PMID: 27439019]
[163]
Shi, Q.; Li, Y.; Li, S.; Jin, L.; Lai, H.; Wu, Y.; Cai, Z.; Zhu, M.; Li, Q.; Li, Y.; Wang, J.; Liu, Y.; Wu, Z.; Song, E.; Liu, Q. LncRNA DILA1 inhibits Cyclin D1 degradation and contributes to tamoxifen resistance in breast cancer. Nat. Commun., 2020, 11(1), 5513-5527.
[http://dx.doi.org/10.1038/s41467-020-19349-w] [PMID: 33139730]
[164]
Ren, Z.; Sun, S.; Sun, R.; Cui, G.; Hong, L.; Rao, B.; Li, A.; Yu, Z.; Kan, Q.; Mao, Z. A metal-polyphenol-coordinated nanomedicine for synergistic cascade cancer chemotherapy and chemodynamic therapy. Adv. Mater., 2020, 32(6), e1906024.
[http://dx.doi.org/10.1002/adma.201906024] [PMID: 31834662]
[165]
Simpson, D.A.; Morrisroe, E.; McCoey, J.M.; Lombard, A.H.; Mendis, D.C.; Treussart, F.; Hall, L.T.; Petrou, S.; Hollenberg, L.C.L. Non-neurotoxic nanodiamond probes for intraneuronal temperature mapping. ACS Nano, 2017, 11(12), 12077-12086.
[http://dx.doi.org/10.1021/acsnano.7b04850] [PMID: 29111670]
[166]
Caruso, G.; Fresta, C.G.; Costantino, A.; Lazzarino, G.; Amorini, A.M.; Lazzarino, G.; Tavazzi, B.; Lunte, S.M.; Dhar, P.; Gulisano, M.; Caraci, F. Lung surfactant decreases biochemical alterations and oxidative stress induced by a sub-toxic concentration of carbon nanoparticles in alveolar epithelial and microglial cells. Int. J. Mol. Sci., 2021, 22(5), 2694-2706.
[http://dx.doi.org/10.3390/ijms22052694] [PMID: 33800016]
[167]
Mochalin, V.N.; Shenderova, O.; Ho, D.; Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol., 2011, 7(1), 11-23.
[http://dx.doi.org/10.1038/nnano.2011.209] [PMID: 22179567]
[168]
Wanna, N.N.; Dobney, A.; Van Hoecke, K.; Vasile, M.; Vanhaecke, F. Quantification of uranium, plutonium, neodymium and gadolinium for the characterization of spent nuclear fuel using isotope dilution HPIC-SF-ICP-MS. Talanta, 2021, 221, 121592-121602.
[http://dx.doi.org/10.1016/j.talanta.2020.121592] [PMID: 33076126]
[169]
Hammons, J.A.; Nielsen, M.H.; Bagge-Hansen, M.; Bastea, S.; May, C.; Shaw, W.L.; Martin, A.; Li, Y.; Sinclair, N.; Lauderbach, L.M.; Hodgin, R.L.; Orlikowski, D.A.; Fried, L.E.; Willey, T.M. Submicrosecond aggregation during detonation synthesis of nanodiamond. J. Phys. Chem. Lett., 2021, 12(22), 5286-5293.
[http://dx.doi.org/10.1021/acs.jpclett.1c01209] [PMID: 34061531]
[170]
Li, X.; Cui, Y.Y.; Yang, C.X. Covalent coupling fabrication of microporous organic network bonded capillary columns for gas chromatographic separation. Talanta, 2021, 224, 121914-121921.
[http://dx.doi.org/10.1016/j.talanta.2020.121914] [PMID: 33379116]
[171]
Kaur, R.; Badea, I. Nanodiamonds as novel nanomaterials for biomedical applications: Drug delivery and imaging systems. Int. J. Nanomedicine, 2013, 8, 203-220.
[PMID: 23326195]
[172]
Huang, H.; Pierstorff, E.; Osawa, E.; Ho, D. Active nanodiamond hydrogels for chemotherapeutic delivery. Nano Lett., 2007, 7(11), 3305-3314.
[http://dx.doi.org/10.1021/nl071521o] [PMID: 17918903]
[173]
Meng, W.; He, C.; Hao, Y.; Wang, L.; Li, L.; Zhu, G. Prospects and challenges of extracellular vesicle-based drug delivery system: Considering cell source. Drug Deliv., 2020, 27(1), 585-598.
[http://dx.doi.org/10.1080/10717544.2020.1748758] [PMID: 32264719]
[174]
Shi, J.; Kantoff, P.W.; Wooster, R.; Farokhzad, O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer, 2017, 17(1), 20-37.
[http://dx.doi.org/10.1038/nrc.2016.108] [PMID: 27834398]
[175]
Sun, Y.; Zhao, D.; Wang, G.; Wang, Y.; Cao, L.; Sun, J.; Jiang, Q.; He, Z. Recent progress of hypoxia-modulated multifunctional nanomedicines to enhance photodynamic therapy: Opportunities, challenges, and future development. Acta Pharm. Sin. B, 2020, 10(8), 1382-1396.
[http://dx.doi.org/10.1016/j.apsb.2020.01.004] [PMID: 32963938]
[176]
Tsoi, K.M.; MacParland, S.A.; Ma, X.Z.; Spetzler, V.N.; Echeverri, J.; Ouyang, B.; Fadel, S.M.; Sykes, E.A.; Goldaracena, N.; Kaths, J.M.; Conneely, J.B.; Alman, B.A.; Selzner, M.; Ostrowski, M.A.; Adeyi, O.A.; Zilman, A.; McGilvray, I.D.; Chan, W.C. Mechanism of hard-nanomaterial clearance by the liver. Nat. Mater., 2016, 15(11), 1212-1221.
[http://dx.doi.org/10.1038/nmat4718] [PMID: 27525571]
[177]
Cortez-Jugo, C.; Czuba-Wojnilowicz, E.; Tan, A.; Caruso, F. A focus on “Bio” in bio-nanoscience: The impact of biological factors on nanomaterial interactions. Adv. Healthc. Mater., 2021, 10(16), e2100574.
[http://dx.doi.org/10.1002/adhm.202100574] [PMID: 34170631]
[178]
Liang, S.; Deng, X.; Ma, P.; Cheng, Z.; Lin, J. Recent advances in nanomaterial-assisted combinational sonodynamic cancer therapy. Adv. Mater., 2020, 32(47), e2003214.
[http://dx.doi.org/10.1002/adma.202003214] [PMID: 33064322]
[179]
Li, X.; Lovell, J.F.; Yoon, J.; Chen, X. Clinical development and potential of photothermal and photodynamic therapies for cancer. Nat. Rev. Clin. Oncol., 2020, 17(11), 657-674.
[http://dx.doi.org/10.1038/s41571-020-0410-2] [PMID: 32699309]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy