Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Nano/Microcarriers in Drug Delivery: Moving the Timeline to Contemporary

Author(s): Ana Vujačić Nikezić* and Jasmina Grbović Novaković

Volume 30, Issue 26, 2023

Published on: 10 November, 2022

Page: [2996 - 3023] Pages: 28

DOI: 10.2174/0929867329666220821193938

Price: $65

conference banner
Abstract

Treatment of various diseases, especially cancer treatment, includes the potential use of different types of nanoparticles and nanostructures as drug carriers. However, searching for less toxic and more efficient therapy requires further progress, wherein recent developments in medicine increasingly include the use of various advanced nanostructures. Their more successful application might be achieved by leveling imbalances between the potentiality of different nanostructures and the demands required for their safe use. Biocompatibility, biodegradability, prolonged circulation time and enhanced accumulation and uptake by cells are some of the key preconditions for their usage in efficient drug delivery. Thanks to their greatly tunable functions, they are major building blocks for manufacturing novel materials. Nevertheless, given that their toxicity is questionable, their practical application is challenging. Hereof, before entering the sphere of human consumption, it is of critical importance to perform more studies regarding their toxicity and drug distribution. This review emphasizes recent advances in nanomedicine, employing different kinds of conventionally used nanoparticles as well as novel nanoparticles and nanostructures. Special emphasis is placed on micro/nanomotors (MNMs), discussing their opportunities, limitations, challenges and possible applications in drug delivery and outlining some perspectives in the nanomedicine area.

Keywords: Smart nanocarriers, drug delivery vehicles, micro/nanorobots, biomedical application, targeted therapy, toxicity.

[1]
Tratnyek, P.G.; Johnson, R.L. Nanotechnologies for environmental cleanup. Nano Today, 2006, 1(2), 44-48.
[http://dx.doi.org/10.1016/S1748-0132(06)70048-2]
[2]
Miyazaki, K.; Islam, N. Nanotechnology systems of innovation—An analysis of industry and academia research activities. Technovation, 2007, 27(11), 661-675.
[http://dx.doi.org/10.1016/j.technovation.2007.05.009]
[3]
Ochekpe, N.A.; Olorunfemi, P.O.; Ngwuluka, N.C. Nanotechnology and drug delivery part 1: Background and applications. Trop. J. Pharm. Res., 2009, 8(3), 265-274.
[http://dx.doi.org/10.4314/tjpr.v8i3.44546]
[4]
Schätzlein, A.G. Delivering cancer stem cell therapies – A role for nanomedicines? Eur. J. Cancer, 2006, 42(9), 1309-1315.
[http://dx.doi.org/10.1016/j.ejca.2006.01.044] [PMID: 16682183]
[5]
Chen, G.; Roy, I.; Yang, C.; Prasad, P.N. Nanochemistry and nanomedicine for nanoparticle-based diagnostics and therapy. Chem. Rev., 2016, 116(5), 2826-2885.
[http://dx.doi.org/10.1021/acs.chemrev.5b00148] [PMID: 26799741]
[6]
Peterson, C.L. Nanotechnology: From Feynman to the grand challenge of molecular manufacturing. IEEE Technol. Soc. Mag., 2004, 23(4), 9-15.
[http://dx.doi.org/10.1109/MTAS.2004.1371633]
[7]
de Jong, W.H.; Borm, P.J.A. Drug delivery and nanoparticles: Applications and hazards. Int. J. Nanomedicine, 2008, 3(2), 133-149.
[http://dx.doi.org/10.2147/IJN.S596] [PMID: 18686775]
[8]
Cai, W.; Gao, T.; Hong, H.; Sun, J. Applications of gold nanoparticles in cancer nanotechnology. Nanotechnol. Sci. Appl., 2008, 1, 17-32.
[http://dx.doi.org/10.2147/NSA.S3788] [PMID: 24198458]
[9]
Drbohlavova, J.; Chomoucka, J.; Adam, V.; Ryvolova, M.; Eckschlager, T.; Hubalek, J.; Kizek, R. Nanocarriers for anticancer drugs-new trends in nanomedicine. Curr. Drug Metab., 2013, 14(5), 547-564.
[http://dx.doi.org/10.2174/1389200211314050005] [PMID: 23687925]
[10]
Benetti, F.; Bregoli, L.; Olivato, I.; Sabbioni, E. Effects of metal(loid)-based nanomaterials on essential element homeostasis: The central role of nanometallomics for nanotoxicology. Metallomics, 2014, 6(4), 729-747.
[http://dx.doi.org/10.1039/c3mt00167a] [PMID: 24576883]
[11]
Zhang, H.; Yang, Z.; Ju, Y.; Chu, X.; Ding, Y.; Huang, X.; Zhu, K.; Tang, T.; Su, X.; Hou, Y. Galvanic displacement synthesis of monodisperse janus- and satellite-like plasmonic-magnetic Ag-Fe@Fe3O4 heterostructures with reduced cytotoxicity. Adv. Sci. (Weinh.), 2018, 5(8), 1800271.
[http://dx.doi.org/10.1002/advs.201800271] [PMID: 30128240]
[12]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[13]
Hossen, S.; Hossain, M.K.; Basher, M.K.; Mia, M.N.H.; Rahman, M.T.; Uddin, M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. J. Adv. Res., 2019, 15, 1-18.
[http://dx.doi.org/10.1016/j.jare.2018.06.005] [PMID: 30581608]
[14]
Park, Y.H.; Bae, H.C.; Jang, Y.; Jeong, S.H.; Lee, H.N.; Ryu, W.I.; Yoo, M.G.; Kim, Y.R.; Kim, M.K.; Lee, J.K.; Jeong, J.; Son, S.W. Effect of the size and surface charge of silica nanoparticles on cutaneous toxicity. Mol. Cell. Toxicol., 2013, 9(1), 67-74.
[http://dx.doi.org/10.1007/s13273-013-0010-7]
[15]
Ajdary, M.; Moosavi, M.; Rahmati, M.; Falahati, M.; Mahboubi, M.; Mandegary, A.; Jangjoo, S.; Mohammadinejad, R.; Varma, R. Health concerns of various nanoparticles: A review of their in vitro and in vivo toxicity. Nanomaterials (Basel), 2018, 8(9), 634.
[http://dx.doi.org/10.3390/nano8090634] [PMID: 30134524]
[16]
Sukhanova, A.; Bozrova, S.; Sokolov, P.; Berestovoy, M.; Karaulov, A.; Nabiev, I. Dependence of nanoparticle toxicity on their physical and chemical properties. Nanoscale Res. Lett., 2018, 13(1), 44.
[http://dx.doi.org/10.1186/s11671-018-2457-x] [PMID: 29417375]
[17]
Kumar, V.; Sharma, N.; Maitra, S.S. In vitro and in vivo toxicity assessment of nanoparticles. Int. Nano Lett., 2017, 7(4), 243-256.
[http://dx.doi.org/10.1007/s40089-017-0221-3]
[18]
Davis, M.E.; Chen, Z.; Shin, D.M. Nanoparticle therapeutics: An emerging treatment modality for cancer. Nat. Rev. Drug Discov., 2008, 7(9), 771-782.
[http://dx.doi.org/10.1038/nrd2614] [PMID: 18758474]
[19]
Arias, J.L. Nanoplatforms in drug delivery. In: Nanotechnology and Drug Delivery, 1st ed; CRC Press: Boca Raton, 2014.
[20]
Nikezić, A.V.V.; Bondžić, A.M.; Vasić, V.M. Drug delivery systems based on nanoparticles and related nanostructures. Eur. J. Pharm. Sci., 2020, 151, 105412.
[http://dx.doi.org/10.1016/j.ejps.2020.105412] [PMID: 32505796]
[21]
Liu, D.; Yang, F.; Xiong, F.; Gu, N. The smart drug delivery system and its clinical potential. Theranostics, 2016, 6(9), 1306-1323.
[http://dx.doi.org/10.7150/thno.14858] [PMID: 27375781]
[22]
Mura, S.; Nicolas, J.; Couvreur, P. Stimuli-responsive nanocarriers for drug delivery. Nat. Mater., 2013, 12(11), 991-1003.
[http://dx.doi.org/10.1038/nmat3776] [PMID: 24150417]
[23]
Xu, H.; Li, Z.; Si, J. Nanocarriers in gene therapy: A review. J. Biomed. Nanotechnol., 2014, 10(12), 3483-3507.
[http://dx.doi.org/10.1166/jbn.2014.2044] [PMID: 26000367]
[24]
Lee, B.K.; Yun, Y.H.; Park, K. Smart nanoparticles for drug delivery: Boundaries and opportunities. Chem. Eng. Sci., 2015, 125, 158-164.
[http://dx.doi.org/10.1016/j.ces.2014.06.042] [PMID: 25684780]
[25]
Kang, L.; Gao, Z.; Huang, W.; Jin, M.; Wang, Q. Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment. Acta Pharm. Sin. B, 2015, 5(3), 169-175.
[http://dx.doi.org/10.1016/j.apsb.2015.03.001] [PMID: 26579443]
[26]
Qi, S.S.; Sun, J.H.; Yu, H.H.; Yu, S.Q. Co-delivery nanoparticles of anti-cancer drugs for improving chemotherapy efficacy. Drug Deliv., 2017, 24(1), 1909-1926.
[http://dx.doi.org/10.1080/10717544.2017.1410256] [PMID: 29191057]
[27]
Parvanian, S.; Mostafavi, S.M.; Aghashiri, M. Multifunctional nanoparticle developments in cancer diagnosis and treatment. Sens. Biosensing Res., 2017, 13, 81-87.
[http://dx.doi.org/10.1016/j.sbsr.2016.08.002]
[28]
Cao, H.; Yang, Y.; Chen, X.; Shao, Z. Intelligent Janus nanoparticles for intracellular real-time monitoring of dual drug release. Nanoscale, 2016, 8(12), 6754-6760.
[http://dx.doi.org/10.1039/C6NR00987E] [PMID: 26952741]
[29]
Yánez-Sedeño, P.; Campuzano, S.; Pingarrón, J.M. Janus particles for (bio)sensing. Appl. Mater. Today, 2017, 9, 276-288.
[http://dx.doi.org/10.1016/j.apmt.2017.08.004]
[30]
Jurado-Sánchez, B.; Sattayasamitsathit, S.; Gao, W.; Santos, L.; Fedorak, Y.; Singh, V.V.; Orozco, J.; Galarnyk, M.; Wang, J. Self-propelled activated carbon Janus micromotors for efficient water purification. Small, 2015, 11(4), 499-506.
[http://dx.doi.org/10.1002/smll.201402215] [PMID: 25207503]
[31]
Kirillova, A.; Schliebe, C.; Stoychev, G.; Jakob, A.; Lang, H.; Synytska, A. Hybrid hairy janus particles decorated with metallic nanoparticles for catalytic applications. ACS Appl. Mater. Interfaces, 2015, 7(38), 21218-21225.
[http://dx.doi.org/10.1021/acsami.5b05224] [PMID: 26357969]
[32]
Yang, T.; Wei, L.; Jing, L.; Liang, J.; Zhang, X.; Tang, M.; Monteiro, M.J.; Chen, Y.I.; Wang, Y.; Gu, S.; Zhao, D.; Yang, H.; Liu, J.; Lu, G.Q.M. Dumbbell-shaped bi-component mesoporous janus solid nanoparticles for biphasic interface catalysis. Angew. Chem. Int. Ed., 2017, 56(29), 8459-8463.
[http://dx.doi.org/10.1002/anie.201701640] [PMID: 28471042]
[33]
Rucinskaite, G.; Thompson, S.A.; Paterson, S.; de la Rica, R. Enzyme-coated Janus nanoparticles that selectively bind cell receptors as a function of the concentration of glucose. Nanoscale, 2017, 9(17), 5404-5407.
[http://dx.doi.org/10.1039/C7NR00298J] [PMID: 28426045]
[34]
Popescu, M.N.; Uspal, W.E.; Bechinger, C.; Fischer, P. Chemotaxis of active janus nanoparticles. Nano Lett., 2018, 18(9), 5345-5349.
[http://dx.doi.org/10.1021/acs.nanolett.8b02572] [PMID: 30047271]
[35]
Campuzano, S.; Gamella, M.; Serafín, V.; Pedrero, M.; Yáñez-Sedeño, P.; Pingarrón, J.M. Magnetic janus particles for static and dynamic (bio)sensing. Magnetochemistry, 2019, 5(3), 47.
[http://dx.doi.org/10.3390/magnetochemistry5030047]
[36]
Hu, L.; Wang, N.; Tao, K. Catalytic micro/nanomotors: Propulsion mechanisms, fabrication, control, and applications. In: Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis; Shabatina, T.; Bochenkov, V., Eds.; IntechOpen: London, 2020. Available from: https://www.intechopen.com/chapters/70457
[http://dx.doi.org/10.5772/intechopen.90456]
[37]
Wen, T.; Quan, G.; Niu, B.; Zhou, Y.; Zhao, Y.; Lu, C.; Pan, X.; Wu, C. Versatile nanoscale Metal–Organic Frameworks (nMOFs): An emerging 3D nanoplatform for drug delivery and therapeutic applications. Small, 2021, 17(8), 2005064.
[http://dx.doi.org/10.1002/smll.202005064] [PMID: 33511778]
[38]
Sun, W.; Li, S.; Tang, G.; Luo, Y.; Ma, S.; Sun, S.; Ren, J.; Gong, Y.; Xie, C. Recent progress of nanoscale metal-organic frameworks in cancer theranostics and the challenges of their clinical application. Int. J. Nanomedicine, 2020, 14, 10195-10207.
[http://dx.doi.org/10.2147/IJN.S230524] [PMID: 32099352]
[39]
Matteis, V.D.; Rinaldi, R. Toxicity assessment in the nanoparticle era. In: Cellular and Molecular Toxicology of Nanoparticles; Saquib, Q.; Faisal, M.; Al-Khedhairy, A.A.; Altar, A.A., Eds.; Springer International Publishing: New Yorks., 2018; pp. 1-19.
[40]
Lombardo, D.; Kiselev, M.A.; Caccamo, M.T. Smart nanoparticles for drug delivery application: Development of versatile nanocarrier platforms in biotechnology and nanomedicine. J. Nanomater., 2019, 2019, 1-26.
[http://dx.doi.org/10.1155/2019/3702518]
[41]
Keservani, R.K.; Sharma, A.K.; Kesharwani, R.K. Drug delivery approaches and nanosystems. In: Novel Drug Carriers, 1st ed.; Apple Academic Press Inc.: USA, 2017; 1, .
[http://dx.doi.org/10.4018/978-1-5225-0751-2]
[42]
Duncan, B.; Kim, C.; Rotello, V.M. Gold nanoparticle platforms as drug and biomacromolecule delivery systems. J. Control. Release, 2010, 148, 122-127.
[43]
Lee, S.C.; Huh, K.M.; Lee, J.; Cho, Y.W.; Galinsky, R.E.; Park, K. Hydrotropic polymeric micelles for enhanced paclitaxel solubility: In vitro and in vivo characterization. Biomacromolecules, 2007, 8(1), 202-208.
[http://dx.doi.org/10.1021/bm060307b] [PMID: 17206808]
[44]
Lu, Y.; Park, K. Polymeric micelles and alternative nanonized delivery vehicles for poorly soluble drugs. Int. J. Pharm., 2013, 453(1), 198-214.
[http://dx.doi.org/10.1016/j.ijpharm.2012.08.042] [PMID: 22944304]
[45]
Gaucher, G.; Dufresne, M.H.; Sant, V.P.; Kang, N.; Maysinger, D.; Leroux, J.C. Block copolymer micelles: Preparation, characterization and application in drug delivery. J. Control. Release, 2005, 109(1-3), 169-188.
[http://dx.doi.org/10.1016/j.jconrel.2005.09.034] [PMID: 16289422]
[46]
Orive, G.; Ali, O.A.; Anitua, E.; Pedraz, J.L.; Emerich, D.F. Biomaterial-based technologies for brain anti-cancer therapeutics and imaging. Biochim. Biophys. Acta, 2010, 1806(1), 96-107.
[PMID: 20406668]
[47]
Ghezzi, M.; Pescina, S.; Padula, C.; Santi, P.; Del Favero, E.; Cantù, L.; Nicoli, S. Polymeric micelles in drug delivery: An insight of the techniques for their characterization and assessment in biorelevant conditions. J. Control. Release, 2021, 332, 312-336.
[http://dx.doi.org/10.1016/j.jconrel.2021.02.031] [PMID: 33652113]
[48]
Mamo, T.; Moseman, E.A.; Kolishetti, N.; Salvador-Morales, C.; Shi, J.; Kuritzkes, D.R.; Langer, R.; Andrian, U.; Farokhzad, O.C. Emerging nanotechnology approaches for HIV/AIDS treatment and prevention. Nanomedicine (Lond.), 2010, 5(2), 269-285.
[http://dx.doi.org/10.2217/nnm.10.1] [PMID: 20148638]
[49]
Rukavina, Z.; Vanić, Ž. Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics, 2016, 8(2), 18.
[http://dx.doi.org/10.3390/pharmaceutics8020018] [PMID: 27231933]
[50]
Guimarães, D.; Cavaco-Paulo, A.; Nogueira, E. Design of liposomes as drug delivery system for therapeutic applications. Int. J. Pharm., 2021, 601, 120571.
[http://dx.doi.org/10.1016/j.ijpharm.2021.120571] [PMID: 33812967]
[51]
Beezer, A.E.; King, A.S.H.; Martin, I.K.; Mitchel, J.C.; Twyman, L.J.; Wain, C.F. Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives. Tetrahedron, 2003, 59(22), 3873-3880.
[http://dx.doi.org/10.1016/S0040-4020(03)00437-X]
[52]
Svenson, S.; Tomalia, D.A. Dendrimers in biomedical applications-reflections on the field. Adv. Drug Deliv. Rev., 2005, 57, 2106-2129.
[http://dx.doi.org/10.1016/j.addr.2005.09.018]
[53]
Cheng, Y.; Wang, J.; Rao, T.; He, X.; Xu, T. Pharmaceutical applications of dendrimers: Promising nanocarriers for drug delivery. Front. Biosci., 2008, 13(13), 1447-1471.
[http://dx.doi.org/10.2741/2774] [PMID: 17981642]
[54]
Nimesh, S. Gene Therapy: Potential Applications of Nanotechnology, 1st ed.; Elsevier Science: Amsterdam, 2013.
[http://dx.doi.org/10.1533/9781908818645]
[55]
Chis, A.A.; Dobrea, C.; Morgovan, C.; Arseniu, A.M.; Rus, L.L.; Butuca, A.; Juncan, A.M.; Totan, M.; Vonica-Tincu, A.L.; Cormos, G.; Muntean, A.C.; Muresan, M.L.; Gligor, F.G.; Frum, A. Applications and limitations of dendrimers in biomedicine. Molecules, 2020, 25(17), 3982.
[http://dx.doi.org/10.3390/molecules25173982] [PMID: 32882920]
[56]
Cho, K.; Wang, X.; Nie, S.; Chen, Z.G.; Shin, D.M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res., 2008, 14(5), 1310-1316.
[http://dx.doi.org/10.1158/1078-0432.CCR-07-1441] [PMID: 18316549]
[57]
Rawat, M.; Singh, D.; Saraf, S.; Saraf, S. Nanocarriers: Promising vehicle for bioactive drugs. Biol. Pharm. Bull., 2006, 29(9), 1790-1798.
[http://dx.doi.org/10.1248/bpb.29.1790] [PMID: 16946487]
[58]
Sung, Y.K.; Kim, S.W. Recent advances in polymeric drug delivery systems. Biomater. Res., 2020, 24(1), 12.
[http://dx.doi.org/10.1186/s40824-020-00190-7] [PMID: 32537239]
[59]
Dresselhaus, M.S.; Dresselhaus, G.; Charlier, J.C.; Hernández, E. Electronic, thermal and mechanical properties of carbon nanotubes. Philos. Trans. Royal Soc., Math. Phys. Eng. Sci., 2004, 362(1823), 2065-2098.
[http://dx.doi.org/10.1098/rsta.2004.1430] [PMID: 15370472]
[60]
Joselevich, E. Electronic structure and chemical reactivity of carbon nanotubes: A chemist’s view. ChemPhysChem, 2004, 5(5), 619-624.
[http://dx.doi.org/10.1002/cphc.200301049] [PMID: 15179713]
[61]
Dieckmann, G.R.; Dalton, A.B.; Johnson, P.A.; Razal, J.; Chen, J.; Giordano, G.M.; Muñoz, E.; Musselman, I.H.; Baughman, R.H.; Draper, R.K. Controlled assembly of carbon nanotubes by designed amphiphilic Peptide helices. J. Am. Chem. Soc., 2003, 125(7), 1770-1777.
[http://dx.doi.org/10.1021/ja029084x] [PMID: 12580602]
[62]
Foldvari, M.; Bagonluri, M. Carbon nanotubes as functional excipients for nanomedicines: I. pharmaceutical properties. Nanomedicine, 2008, 4(3), 173-182.
[http://dx.doi.org/10.1016/j.nano.2008.04.002] [PMID: 18550451]
[63]
Foldvari, M.; Bagonluri, M. Carbon nanotubes as functional excipients for nanomedicines: II. Drug delivery and biocompatibility issues. Nanomedicine, 2008, 4(3), 183-200.
[http://dx.doi.org/10.1016/j.nano.2008.04.003] [PMID: 18550450]
[64]
Guo, Q.; Shen, X.T.; Li, Y.Y.; Xu, S.Q. Carbon nanotubes-based drug delivery to cancer and brain. J. Huazhong Univ. Sci. Technolog. Med. Sci., 2017, 37(5), 635-641.
[PMID: 29058274]
[65]
Kaur, J.; Gill, G.S.; Jeet, K. Applications of carbon nanotubes in drug delivery: A comprehensive review. In: Characterization and Biology of Nanomaterials for Drug Delivery; Mohapatra, S.; Ranjan, S.; Dasgupta, N.; Mishra, R.; Thomas, S., Eds.; Elsevier Inc: Amsterdam, 2019; pp. 113-135.
[http://dx.doi.org/10.1016/B978-0-12-814031-4.00005-2]
[66]
Debnath, S.K.; Srivastava, R. Drug delivery with carbon-based nanomaterials as versatile nanocarriers: Progress and prospects. Front. Nanotechnol., 2021, 3, 644564.
[http://dx.doi.org/10.3389/fnano.2021.644564]
[67]
Francis, A.P.; Devasena, T. Toxicity of carbon nanotubes: A review. Toxicol. Ind. Health, 2018, 34(3), 200-210.
[http://dx.doi.org/10.1177/0748233717747472] [PMID: 29506458]
[68]
Li, J.; Yap, S.Q.; Chin, C.F.; Tian, Q.; Yoong, S.L.; Pastorin, G.; Ang, W.H. Platinum (IV) prodrugs entrapped within multiwalled carbon nanotubes: Selective release by chemical reduction and hydrophobicity reversal. Chem. Sci. (Camb.), 2012, 3(6), 2083-2087.
[http://dx.doi.org/10.1039/c2sc01086k]
[69]
Matea, C.; Mocan, T.; Tabaran, F.; Pop, T.; Mosteanu, O.; Puia, C.; Iancu, C.; Mocan, L. Quantum dots in imaging, drug delivery and sensor applications. Int. J. Nanomedicine, 2017, 12, 5421-5431.
[http://dx.doi.org/10.2147/IJN.S138624] [PMID: 28814860]
[70]
Sung, S.Y.; Su, Y.L.; Cheng, W.; Hu, P.F.; Chiang, C.S.; Chen, W.T.; Hu, S.H. Graphene quantum dots-mediated theranostic penetrative delivery of drug and photolytics in deep tumors by targeted biomimetic nanosponges. Nano Lett., 2019, 19(1), 69-81.
[http://dx.doi.org/10.1021/acs.nanolett.8b03249] [PMID: 30521346]
[71]
Bao, W.; Ma, H.; Wang, N.; He, Z. pH-sensitive carbon quantum dots−doxorubicin nanoparticles for tumor cellular targeted drug delivery. Polym. Adv. Technol., 2019, 30(11), 2664-2673.
[http://dx.doi.org/10.1002/pat.4696]
[72]
Zayed, D.G.; AbdElhamid, A.S.; Freag, M.S.; Elzoghby, A.O. Hybrid quantum dot-based theranostic nanomedicines for tumor-targeted drug delivery and cancer imaging. Nanomedicine (Lond.), 2019, 14(3), 225-228.
[http://dx.doi.org/10.2217/nnm-2018-0414] [PMID: 30652951]
[73]
Biswas, M.C.; Islam, M.T.; Nandy, P.K.; Hossain, M.M. Graphene Quantum Dots (GQDs) for bioimaging and drug delivery applications: A review. ACS Mater. Lett., 2021, 3(6), 889-911.
[http://dx.doi.org/10.1021/acsmaterialslett.0c00550]
[74]
Kaji, N.; Tokeshi, M.; Baba, Y. Quantum dots for single bio-molecule imaging. Anal. Sci., 2007, 23(1), 21-24.
[http://dx.doi.org/10.2116/analsci.23.21] [PMID: 17213618]
[75]
Vujačić, A.; Vasić, V.; Dramićanin, M.; Sovilj, S.P.; Bibić, N.; Hranisavljević, J.; Wiederrecht, G.P. Kinetics of J-aggregate formation on the surface of Au nanoparticle colloids. J. Phys. Chem. C, 2012, 116(7), 4655-4661.
[http://dx.doi.org/10.1021/jp210549u]
[76]
Vujačić, A.; Vasić, V.; Dramićanin, M.; Sovilj, S.P.; Bibić, N.; Milonjić, S.; Vodnik, V. Fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye adsorbed on gold nanoparticles. J. Phys. Chem. C, 2013, 117(13), 6567-6577.
[http://dx.doi.org/10.1021/jp311015w]
[77]
Vujačić, A.; Vodnik, V.; Sovilj, S.P.; Dramićanin, M.; Bibić, N.; Milonjić, S.; Vasić, V. Adsorption and fluorescence quenching of 5,5′-disulfopropyl-3,3′-dichlorothiacyanine dye on gold nanoparticles. New J. Chem., 2013, 37(3), 743-751.
[http://dx.doi.org/10.1039/c2nj40865a]
[78]
Pal, R.; Panigrahi, S.; Bhattacharyya, D.; Chakraborti, A.S. Characterization of citrate capped gold nanoparticle-quercetin complex: Experimental and quantum chemical approach. J. Mol. Struct., 2013, 1046, 153-163.
[http://dx.doi.org/10.1016/j.molstruc.2013.04.043]
[79]
Khan, A.K.; Rashid, R.; Murtaza, G.; Zahra, A. Gold nanoparticles: Synthesis and applications in drug delivery. Trop. J. Pharm. Res., 2014, 13(7), 1169-1177.
[http://dx.doi.org/10.4314/tjpr.v13i7.23]
[80]
Bondžić, A.M.; Vujačić Nikezić, A.V.; Klekotka, U.; Marković, M.M.; Vodnik, V.V.; Kalska, B.; Vasić, V.M. Insight into the interaction between selected antitumor gold(III) complexes and citrate stabilized gold nanoparticles. Russian J. Phys. Chem. A. Focus Chem., 2019, 93(13), 2765-2770.
[http://dx.doi.org/10.1134/S0036024419130065]
[81]
Bondžić, A.M.; Leskovac, A.R.; Petrović, S.Ž.; Vasić Anićijević, D.D.; Luce, M.; Massai, L.; Generosi, A.; Paci, B.; Cricenti, A.; Messori, L.; Vasić, V.M. Conjugates of gold nanoparticles and antitumor gold(III) complexes as a tool for their afm and sers detection in biological tissue. Int. J. Mol. Sci., 2019, 20(24), 6306.
[http://dx.doi.org/10.3390/ijms20246306] [PMID: 31847177]
[82]
Shittu, K.O.; Bankole, M.T.; Abdulkareem, A.S.; Abubakre, O.K.; Ubaka, A.U. Application of gold nanoparticles for improved drug efficiency. Adv. Nat. Sci. Nanosci. Nanotechnol., 2017, 8(3), 035014.
[http://dx.doi.org/10.1088/2043-6254/aa7716]
[83]
Gupta, R.; Rai, B. Effect of size and surface charge of gold nanoparticles on their skin permeability: A molecular dynamics study. Sci. Rep., 2017, 7(1), 45292.
[http://dx.doi.org/10.1038/srep45292] [PMID: 28349970]
[84]
Singh, P.; Pandit, S.; Mokkapati, V.R.S.S.; Garg, A.; Ravikumar, V.; Mijakovic, I. Gold nanoparticles in diagnostics and therapeutics for human cancer. Int. J. Mol. Sci., 2018, 19(7), 1979.
[http://dx.doi.org/10.3390/ijms19071979] [PMID: 29986450]
[85]
Bednarski, M.; Dudek, M.; Knutelska, J.; Nowiński, L.; Sapa, J.; Zygmunt, M.; Nowak, G.; Luty-Błocho, M.; Wojnicki, M.; Fitzner, K.; Tęsiorowski, M. The influence of the route of administration of gold nanoparticles on their tissue distribution and basic biochemical parameters: In vivo studies. Pharmacol. Rep., 2015, 67(3), 405-409.
[http://dx.doi.org/10.1016/j.pharep.2014.10.019] [PMID: 25933945]
[86]
Kong, F.Y.; Zhang, J.W.; Li, R.F.; Wang, Z.X.; Wang, W.J.; Wang, W. Unique roles of gold nanoparticles in drug delivery, targeting and imaging applications. Molecules, 2017, 22(9), 1445.
[http://dx.doi.org/10.3390/molecules22091445] [PMID: 28858253]
[87]
Farooq, M.U.; Novosad, V.; Rozhkova, E.A.; Wali, H.; Ali, A.; Fateh, A.A.; Neogi, P.B.; Neogi, A.; Wang, Z. Gold nanoparticles-enabled efficient dual delivery of anticancer therapeutics to hela cells. Sci. Rep., 2018, 8(1), 2907.
[http://dx.doi.org/10.1038/s41598-018-21331-y] [PMID: 29440698]
[88]
Jahangirian, H.; Kalantari, K.; Izadiyan, Z.; Rafiee-Moghaddam, R.; Shameli, K.; Webster, T.J. A review of small molecules and drug delivery applications using gold and iron nanoparticles. Int. J. Nanomedicine, 2019, 14, 1633-1657.
[http://dx.doi.org/10.2147/IJN.S184723] [PMID: 30880970]
[89]
Amina, S.J.; Guo, B. A review on the synthesis and functionalization of gold nanoparticles as a drug delivery vehicle. Int. J. Nanomedicine, 2020, 15, 9823-9857.
[http://dx.doi.org/10.2147/IJN.S279094] [PMID: 33324054]
[90]
Bennett, K.M.; Jo, J.; Cabral, H.; Bakalova, R.; Aoki, I. MR imaging techniques for nano-pathophysiology and theranostics. Adv. Drug Deliv. Rev., 2014, 74, 75-94.
[http://dx.doi.org/10.1016/j.addr.2014.04.007] [PMID: 24787226]
[91]
Deng, R.; Liang, F.; Qu, X.; Wang, Q.; Zhu, J.; Yang, Z. Diblock copolymer based Janus nanoparticles. Macromolecules, 2015, 48(3), 750-755.
[http://dx.doi.org/10.1021/ma502339s]
[92]
Deng, R.; Li, H.; Zhu, J.; Li, B.; Liang, F.; Jia, F.; Qu, X.; Yang, Z. Janus nanoparticles of block copolymers by emulsion solvent evaporation induced assembly. Macromolecules, 2016, 49(4), 1362-1368.
[http://dx.doi.org/10.1021/acs.macromol.5b02507]
[93]
Fan, J.B.; Song, Y.; Liu, H.; Lu, Z.; Zhang, F.; Liu, H.; Meng, J.; Gu, L.; Wang, S.; Jiang, L. A general strategy to synthesize chemically and topologically anisotropic Janus particles. Sci. Adv., 2017, 3(6), e1603203.
[http://dx.doi.org/10.1126/sciadv.1603203] [PMID: 28691089]
[94]
Wang, Y.; Gong, S.; Gómez, D.; Ling, Y.; Yap, L.W.; Simon, G.P.; Cheng, W. Unconventional Janus properties of enokitake-like gold nanowire films. ACS Nano, 2018, 12(8), 8717-8722.
[http://dx.doi.org/10.1021/acsnano.8b04748] [PMID: 30047720]
[95]
Dai, B.; Wang, J.; Xiong, Z.; Zhan, X.; Dai, W.; Li, C.C.; Feng, S.P.; Tang, J. Programmable artificial phototactic microswimmer. Nat. Nanotechnol., 2016, 11(12), 1087-1092.
[http://dx.doi.org/10.1038/nnano.2016.187] [PMID: 27749832]
[96]
Acton, A.L.; Fante, C.; Flatley, B.; Burattini, S.; Hamley, I.W.; Wang, Z.; Greco, F.; Hayes, W. Janus PEG-based dendrimers for use in combination therapy: Controlled multi-drug loading and sequential release. Biomacromolecules, 2013, 14(2), 564-574.
[http://dx.doi.org/10.1021/bm301881h] [PMID: 23305104]
[97]
Schick, I.; Lorenz, S.; Gehrig, D.; Tenzer, S.; Storck, W.; Fischer, K.; Strand, D.; Laquai, F.; Tremel, W. Inorganic Janus particles for biomedical applications. Beilstein J. Nanotechnol., 2014, 5, 2346-2362.
[http://dx.doi.org/10.3762/bjnano.5.244] [PMID: 25551063]
[98]
Lee, K.; Yu, Y. Janus nanoparticles for T cell activation: Clustering ligands to enhance stimulation. J. Mater. Chem. B Mater. Biol. Med., 2017, 5(23), 4410-4415.
[http://dx.doi.org/10.1039/C7TB00150A] [PMID: 28966791]
[99]
Zhang, M.; Zhang, L.; Chen, Y.; Li, L.; Su, Z.; Wang, C. Precise synthesis of unique polydopamine/mesoporous calcium phosphate hollow Janus nanoparticles for imaging-guided chemo-photothermal synergistic therapy. Chem. Sci. (Camb.), 2017, 8(12), 8067-8077.
[http://dx.doi.org/10.1039/C7SC03521G] [PMID: 29568455]
[100]
Wang, Z.; Shao, D.; Chang, Z.; Lu, M.; Wang, Y.; Yue, J.; Yang, D.; Li, M.; Xu, Q.; Dong, W. Janus gold nanoplatform for synergetic chemoradiotherapy and computed tomography imaging of hepatocellular carcinoma. ACS Nano, 2017, 11(12), 12732-12741.
[http://dx.doi.org/10.1021/acsnano.7b07486] [PMID: 29140684]
[101]
Llopis-Lorente, A.; Díez, P.; de la Torre, C.; Sánchez, A.; Sancenón, F.; Aznar, E.; Marcos, M.D.; Martínez-Ruíz, P.; Martínez-Máñez, R.; Villalonga, R. Enzyme-controlled nanodevice for acetylcholine-triggered cargo delivery based on janus Au-mesoporous silica nanoparticles. Chemistry, 2017, 23(18), 4276-4281.
[http://dx.doi.org/10.1002/chem.201700603]
[102]
Zhang, L.; Zhang, M.; Zhou, L.; Han, Q.; Chen, X.; Li, S.; Li, L.; Su, Z.; Wang, C. Dual drug delivery and sequential release by amphiphilic Janus nanoparticles for liver cancer theranostics. Biomaterials, 2018, 181, 113-125.
[http://dx.doi.org/10.1016/j.biomaterials.2018.07.060] [PMID: 30081302]
[103]
Park, J.H.; Dumani, D.S.; Arsiwala, A.; Emelianov, S.; Kane, R.S. Tunable aggregation of gold-silica janus nanoparticles to enable contrast-enhanced multiwavelength photoacoustic imaging in vivo. Nanoscale, 2018, 10(32), 15365-15370.
[http://dx.doi.org/10.1039/C8NR03973A] [PMID: 30083665]
[104]
Sánchez, A.; Ovejero Paredes, K.; Ruiz-Cabello, J.; Martínez-Ruíz, P.; Pingarrón, J.M.; Villalonga, R.; Filice, M. Hybrid decorated core@shell janus nanoparticles as a flexible platform for targeted multimodal molecular bioimaging of cancer. ACS Appl. Mater. Interfaces, 2018, 10(37), 31032-31043.
[http://dx.doi.org/10.1021/acsami.8b10452] [PMID: 30141615]
[105]
Efremova, M.V.; Naumenko, V.A.; Spasova, M.; Garanina, A.S.; Abakumov, M.A.; Blokhina, A.D.; Melnikov, P.A.; Prelovskaya, A.O.; Heidelmann, M.; Li, Z.A.; Ma, Z.; Shchetinin, I.V.; Golovin, Y.I.; Kireev, I.I.; Savchenko, A.G.; Chekhonin, V.P.; Klyachko, N.L.; Farle, M.; Majouga, A.G.; Wiedwald, U. Magnetite-Gold nanohybrids as ideal all-in-one platforms for theranostics. Sci. Rep., 2018, 8(1), 11295.
[http://dx.doi.org/10.1038/s41598-018-29618-w] [PMID: 30050080]
[106]
Li, S.; Zhang, L.; Chen, X.; Wang, T.; Zhao, Y.; Li, L.; Wang, C. Selective growth synthesis of ternary janus nanoparticles for imaging-guided synergistic chemo- and photothermal therapy in the second NIR Window. ACS Appl. Mater. Interfaces, 2018, 10(28), 24137-24148.
[http://dx.doi.org/10.1021/acsami.8b06527] [PMID: 29952199]
[107]
Hu, S.H.; Chen, S.Y.; Gao, X. Multifunctional nanocapsules for simultaneous encapsulation of hydrophilic and hydrophobic compounds and on-demand release. ACS Nano, 2012, 6(3), 2558-2565.
[http://dx.doi.org/10.1021/nn205023w] [PMID: 22339040]
[108]
Zhang, L.; Chen, Y.; Li, Z.; Li, L.; Saint-Cricq, P.; Li, C.; Lin, J.; Wang, C.; Su, Z.; Zink, J.I. Tailored synthesis of octopus-type janus nanoparticles for synergistic actively-targeted and chemo-photothermal therapy. Angew. Chem. Int. Ed., 2016, 55(6), 2118-2121.
[http://dx.doi.org/10.1002/anie.201510409] [PMID: 26732130]
[109]
Liu, Y.; Yang, X.; Huang, Z.; Huang, P.; Zhang, Y.; Deng, L.; Wang, Z.; Zhou, Z.; Liu, Y.; Kalish, H.; Khachab, N.M.; Chen, X.; Nie, Z. Magneto-plasmonic janus vesicles for magnetic field-enhanced photoacoustic and magnetic resonance imaging of tumors. Angew. Chem. Int. Ed., 2016, 55(49), 15297-15300.
[http://dx.doi.org/10.1002/anie.201608338] [PMID: 27862808]
[110]
Wang, H.; Li, S.; Zhang, L.; Chen, X.; Wang, T.; Zhang, M.; Li, L.; Wang, C. Tunable fabrication of folic acid-Au@poly(acrylic acid)/mesoporous calcium phosphate Janus nanoparticles for CT imaging and active-targeted chemotherapy of cancer cells. Nanoscale, 2017, 9(38), 14322-14326.
[http://dx.doi.org/10.1039/C7NR05382G] [PMID: 28948263]
[111]
Zhang, Q.; Zhang, L.; Li, S.; Chen, X.; Zhang, M.; Wang, T.; Li, L.; Wang, C. Designed synthesis of Au/Fe3O4 @C janus nanoparticles for dual-modal imaging and actively targeted chemo-photothermal synergistic therapy of cancer cells. Chemistry, 2017, 23(68), 17242-17248.
[http://dx.doi.org/10.1002/chem.201703498] [PMID: 28845884]
[112]
Song, G.; Chen, M.; Zhang, Y.; Cui, L.; Qu, H.; Zheng, X.; Wintermark, M.; Liu, Z.; Rao, J. Janus iron oxides @ semiconducting polymer nanoparticle tracer for cell tracking by magnetic particle imaging. Nano Lett., 2018, 18(1), 182-189.
[http://dx.doi.org/10.1021/acs.nanolett.7b03829] [PMID: 29232142]
[113]
Hu, S.H.; Gao, X. Nanocomposites with spatially separated functionalities for combined imaging and magnetolytic therapy. J. Am. Chem. Soc., 2010, 132(21), 7234-7237.
[http://dx.doi.org/10.1021/ja102489q] [PMID: 20459132]
[114]
Zhang, Y.; Huang, K.; Lin, J.; Huang, P. Janus nanoparticles in cancer diagnosis, therapy and theranostics. Biomater. Sci., 2019, 7(4), 1262-1275.
[http://dx.doi.org/10.1039/C8BM01523F] [PMID: 30694268]
[115]
Tran, L.T.C.; Lesieur, S.; Faivre, V. Janus nanoparticles: Materials, preparation and recent advances in drug delivery. Expert Opin. Drug Deliv., 2014, 11(7), 1061-1074.
[http://dx.doi.org/10.1517/17425247.2014.915806] [PMID: 24811771]
[116]
Luo, M.; Feng, Y.; Wang, T.; Guan, J. Micro-/nanorobots at work in active drug delivery. Adv. Funct. Mater., 2018, 28(25), 1706100.
[http://dx.doi.org/10.1002/adfm.201706100]
[117]
Villa, K.; Krejčová, L.; Novotný, F.; Heger, Z.; Sofer, Z.; Pumera, M. Drug delivery: Cooperative multifunctional self-propelled paramagnetic microrobots with chemical handles for cell manipulation and drug delivery. Adv. Funct. Mater., 2018, 28(43), 1870311.
[http://dx.doi.org/10.1002/adfm.201870311]
[118]
Rahiminezhad, Z.; Tamaddon, A.M.; Borandeh, S.; Abolmaali, S.S. Janus nanoparticles: New generation of multifunctional nanocarriers in drug delivery, bioimaging and theranostics. Appl. Mater. Today, 2020, 18, 100513.
[http://dx.doi.org/10.1016/j.apmt.2019.100513]
[119]
Tu, Y.; Peng, F.; André, A.A.M.; Men, Y.; Srinivas, M.; Wilson, D.A. Biodegradable hybrid stomatocyte nanomotors for drug delivery. ACS Nano, 2017, 11(2), 1957-1963.
[http://dx.doi.org/10.1021/acsnano.6b08079] [PMID: 28187254]
[120]
Falcaro, P.; Ricco, R.; Yazdi, A.; Imaz, I.; Furukawa, S.; Maspoch, D.; Ameloot, R.; Evans, J.D.; Doonan, C.J. Application of metal and metal oxide nanoparticles@MOFs. Coord. Chem. Rev., 2016, 307, 237-254.
[http://dx.doi.org/10.1016/j.ccr.2015.08.002]
[121]
Kumar, P.; Deep, A.; Kim, K-H. Metal organic frameworks for sensing applications. Trac-Trend. Anal. Chem., 2015, 73, 39-53.
[122]
Yang, X.; Xu, Q. Bimetallic metal–organic frameworks for gas storage and separation. Cryst. Growth Des., 2017, 17(4), 1450-1455.
[http://dx.doi.org/10.1021/acs.cgd.7b00166]
[123]
Ricco, R.; Malfatti, L.; Takahashi, M.; Hill, A.J.; Falcaro, P. Applications of magnetic metal–organic framework composites. J. Mater. Chem. A Mater. Energy Sustain., 2013, 1(42), 13033-13045.
[http://dx.doi.org/10.1039/c3ta13140h]
[124]
Liu, L.; Chen, X.; Qiu, J.; Hao, C. New insights into the nitroaromatics-detection mechanism of the luminescent metal–organic framework sensor. Dalton Trans., 2015, 44(6), 2897-2906.
[http://dx.doi.org/10.1039/C4DT03185G] [PMID: 25563388]
[125]
Yi, F.Y.; Chen, D.; Wu, M.K.; Han, L.; Jiang, H.L. Chemical sensors based on metal-organic frameworks. ChemPlusChem, 2016, 81(8), 675-690.
[http://dx.doi.org/10.1002/cplu.201600137] [PMID: 31968841]
[126]
Khaletskaya, K.; Reboul, J.; Meilikhov, M.; Nakahama, M.; Diring, S.; Tsujimoto, M.; Isoda, S.; Kim, F.; Kamei, K.; Fischer, R.A.; Kitagawa, S.; Furukawa, S. Integration of porous coordination polymers and gold nanorods into core-shell mesoscopic composites toward light-induced molecular release. J. Am. Chem. Soc., 2013, 135(30), 10998-11005.
[http://dx.doi.org/10.1021/ja403108x] [PMID: 23672307]
[127]
Rojas, S.; Carmona, F.J.; Maldonado, C.R.; Horcajada, P.; Hidalgo, T.; Serre, C.; Navarro, J.A.R.; Barea, E. Nanoscaled zinc pyrazolate metal–organic frameworks as drug-delivery systems. Inorg. Chem., 2016, 55(5), 2650-2663.
[http://dx.doi.org/10.1021/acs.inorgchem.6b00045] [PMID: 26886572]
[128]
Ma, Y.; Qu, X.; Liu, C.; Xu, Q.; Tu, K. Metal-organic frameworks and their composites towards biomedical applications. Front. Mol. Biosci., 2021, 8, 805228.
[http://dx.doi.org/10.3389/fmolb.2021.805228] [PMID: 34993235]
[129]
Bondžić, A.M.; Senćanski, M.V.; Vujačić Nikezić, A.V.; Kirillova, M.V.; André, V.; Kirillov, A.M.; Bondžić, B.P. Aminoalcoholate-driven tetracopper(II) cores as dual acetyl and butyrylcholinesterase inhibitors: Experimental and theoretical elucidation of mechanism of action. J. Inorg. Biochem., 2020, 205, 110990.
[http://dx.doi.org/10.1016/j.jinorgbio.2019.110990] [PMID: 32035286]
[130]
Chen, C.; Wang, B.F.; Zeng, C.S.; Chen, M.; Chen, L.; Su, Q.J.; Xing, H.J. 1D/3D Co(II)-based coordination polymers: Protective effect on Alzheimer’s disease by reducing Aβ accumulation and neurons apoptosis in mice. Inorg. Nano-Met. Chem, 2020, 51(10), 1396-1404.
[131]
Zhu, Q.L.; Xu, Q. Metal–organic framework composites. Chem. Soc. Rev., 2014, 43(16), 5468-5512.
[http://dx.doi.org/10.1039/C3CS60472A] [PMID: 24638055]
[132]
Ahmed, I.; Jhung, S.H. Composites of metal–organic frameworks: Preparation and application in adsorption. Mater. Today, 2014, 17(3), 136-146.
[http://dx.doi.org/10.1016/j.mattod.2014.03.002]
[133]
Ben, T.; Lu, C.; Pei, C.; Xu, S.; Qiu, S. Polymer-supported and free-standing metal-organic framework membrane. Chemistry, 2012, 18(33), 10250-10253.
[http://dx.doi.org/10.1002/chem.201201574] [PMID: 22807003]
[134]
Ke, F.; Zhu, J.; Qiu, L.G.; Jiang, X. Controlled synthesis of novel Au@MIL-100(Fe) core–shell nanoparticles with enhanced catalytic performance. Chem. Commun. (Camb.), 2013, 49(13), 1267-1269.
[http://dx.doi.org/10.1039/C2CC33964A] [PMID: 23135003]
[135]
Wang, P.; Zhao, J.; Li, X.; Yang, Y.; Yang, Q.; Li, C. Assembly of ZIF nanostructures around free Pt nanoparticles: Efficient size-selective catalysts for hydrogenation of alkenes under mild conditions. Chem. Commun. (Camb.), 2013, 49(32), 3330-3332.
[http://dx.doi.org/10.1039/c3cc39275a] [PMID: 23505631]
[136]
Cui, Y.; Chen, B.; Qian, G. Lanthanide metal-organic frameworks for luminescent sensing and light-emitting applications. Coord. Chem. Rev., 2014, 273-274, 76-86.
[http://dx.doi.org/10.1016/j.ccr.2013.10.023]
[137]
Zhou, H.; Zhang, J.; Zhang, J.; Yan, X.F.; Shen, X.P.; Yuan, A.H. Spillover enhanced hydrogen storage in Pt- doped MOF/graphene oxide composite produced via an impregnation method. Inorg. Chem. Commun., 2015, 54, 54-56.
[http://dx.doi.org/10.1016/j.inoche.2015.02.001]
[138]
Aijaz, A.; Akita, T.; Tsumori, N.; Xu, Q. Metal-organic framework-immobilized polyhedral metal nanocrystals: Reduction at solid-gas interface, metal segregation, core-shell structure, and high catalytic activity. J. Am. Chem. Soc., 2013, 135(44), 16356-16359.
[http://dx.doi.org/10.1021/ja4093055] [PMID: 24138338]
[139]
Zhu, Q.L.; Li, J.; Xu, Q. Immobilizing metal nanoparticles to metal-organic frameworks with size and location control for optimizing catalytic performance. J. Am. Chem. Soc., 2013, 135(28), 10210-10213.
[http://dx.doi.org/10.1021/ja403330m] [PMID: 23805877]
[140]
He, L.; Liu, Y.; Liu, J.; Xiong, Y.; Zheng, J.; Liu, Y.; Tang, Z. Core-shell noble-metal@metal-organic-framework nanoparticles with highly selective sensing property. Angew. Chem. Int. Ed., 2013, 52(13), 3741-3745.
[http://dx.doi.org/10.1002/anie.201209903] [PMID: 23417824]
[141]
Kaur, R.; Paul, A.K.; Deep, A. Nanocomposite of europium organic framework and quantum dots for highly sensitive chemosensing of trinitrotoluene. Forensic Sci. Int., 2014, 242, 88-93.
[http://dx.doi.org/10.1016/j.forsciint.2014.06.028] [PMID: 25047215]
[142]
Wehner, T.; Mandel, K.; Schneider, M.; Sextl, G.; Müller-Buschbaum, K. Superparamagnetic luminescent MOF@Fe3O4/SiO2 composite particles for signal augmentation by magnetic harvesting as potential water detectors. ACS Appl. Mater. Interfaces, 2016, 8(8), 5445-5452.
[http://dx.doi.org/10.1021/acsami.5b11965] [PMID: 26860449]
[143]
He, J.; Liu, Y.; Hood, T.C.; Zhang, P.; Gong, J.; Nie, Z. Asymmetric organic/metal(oxide) hybrid nanoparticles: Synthesis and applications. Nanoscale, 2013, 5(12), 5151-5166.
[http://dx.doi.org/10.1039/c3nr34014g] [PMID: 23400298]
[144]
Yadnum, S.; Roche, J.; Lebraud, E.; Négrier, P.; Garrigue, P.; Bradshaw, D.; Warakulwit, C.; Limtrakul, J.; Kuhn, A. Site-selective synthesis of Janus-type metal-organic framework composites. Angew. Chem. Int. Ed., 2014, 53(15), 4001-4005.
[http://dx.doi.org/10.1002/anie.201400581] [PMID: 24604879]
[145]
Liu, S.; Xiang, Z.; Hu, Z.; Zheng, X.; Cao, D. Zeolitic imidazolate framework-8 as a luminescent material for the sensing of metal ions and small molecules. J. Mater. Chem., 2011, 21(18), 6649-6653.
[http://dx.doi.org/10.1039/c1jm10166h]
[146]
Horcajada, P.; Serre, C.; Vallet-Regí, M.; Sebban, M.; Taulelle, F.; Férey, G. Metal-organic frameworks as efficient materials for drug delivery. Angew. Chem. Int. Ed., 2006, 45(36), 5974-5978.
[http://dx.doi.org/10.1002/anie.200601878] [PMID: 16897793]
[147]
Horcajada, P.; Chalati, T.; Serre, C.; Gillet, B.; Sebrie, C.; Baati, T.; Eubank, J.F.; Heurtaux, D.; Clayette, P.; Kreuz, C.; Chang, J.S.; Hwang, Y.K.; Marsaud, V.; Bories, P.N.; Cynober, L.; Gil, S.; Férey, G.; Couvreur, P.; Gref, R. Porous metal–organic-framework nanoscale carriers as a potential platform for drug delivery and imaging. Nat. Mater., 2010, 9(2), 172-178.
[http://dx.doi.org/10.1038/nmat2608] [PMID: 20010827]
[148]
Lykourinou, V.; Chen, Y.; Wang, X.S.; Meng, L.; Hoang, T.; Ming, L.J.; Musselman, R.L.; Ma, S. Immobilization of MP-11 into a mesoporous metal-organic framework, MP-11@mesoMOF: A new platform for enzymatic catalysis. J. Am. Chem. Soc., 2011, 133(27), 10382-10385.
[http://dx.doi.org/10.1021/ja2038003] [PMID: 21682253]
[149]
Lan, Y.Q.; Jiang, H.L.; Li, S.L.; Xu, Q. Mesoporous metal-organic frameworks with size-tunable cages: Selective CO2 uptake, encapsulation of Ln3+ cations for luminescence, and column-chromatographic dye separation. Adv. Mater., 2011, 23(43), 5015-5020.
[http://dx.doi.org/10.1002/adma.201102880] [PMID: 21989794]
[150]
García, E.; Medina, R.; Lozano, M.; Hernández Pérez, I.; Valero, M.; Franco, A. Adsorption of azo-dye orange II from aqueous solutions using a metal-organic framework material: Iron- benzenetricarboxylate. Materials (Basel), 2014, 7(12), 8037-8057.
[http://dx.doi.org/10.3390/ma7128037] [PMID: 28788289]
[151]
Cui, Y.; Song, R.; Yu, J.; Liu, M.; Wang, Z.; Wu, C.; Yang, Y.; Wang, Z.; Chen, B.; Qian, G. Dual-emitting MOF⊃dye composite for ratiometric temperature sensing. Adv. Mater., 2015, 27(8), 1420-1425.
[http://dx.doi.org/10.1002/adma.201404700] [PMID: 25581401]
[152]
Song, T.; Yu, J.; Cui, Y.; Yang, Y.; Qian, G. Encapsulation of dyes in metal–organic frameworks and their tunable nonlinear optical properties. Dalton Trans., 2016, 45(10), 4218-4223.
[http://dx.doi.org/10.1039/C5DT03466C] [PMID: 26517347]
[153]
Yuan, H.; Liu, X.; Wang, L.; Ma, X. Fundamentals and applications of enzyme powered micro/nano-motors. Bioact. Mater., 2021, 6(6), 1727-1749.
[http://dx.doi.org/10.1016/j.bioactmat.2020.11.022] [PMID: 33313451]
[154]
Soto, F.; Chrostowski, R. Frontiers of medical micro/nanorobotics: In vivo applications and commercialization perspectives toward clinical uses. Front. Bioeng. Biotechnol., 2018, 6, 170.
[http://dx.doi.org/10.3389/fbioe.2018.00170] [PMID: 30488033]
[155]
Wang, H.; Moo, J.G.S.; Pumera, M. From nanomotors to micromotors: The influence of the size of an autonomous bubble-propelled device upon its motion. ACS Nano, 2016, 10(5), 5041-5050.
[http://dx.doi.org/10.1021/acsnano.5b07771] [PMID: 27135613]
[156]
Teo, W.Z.; Pumera, M. Motion control of micro-/nanomotors. Chemistry, 2016, 22(42), 14796-14804.
[http://dx.doi.org/10.1002/chem.201602241] [PMID: 27492631]
[157]
Khezri, B.; Sheng Moo, J.G.; Song, P.; Fisher, A.C.; Pumera, M. Detecting the complex motion of self-propelled micromotors in microchannels by electrochemistry. RSC Advances, 2016, 6(102), 99977-99982.
[http://dx.doi.org/10.1039/C6RA22059B]
[158]
Moo, J.G.S.; Mayorga-Martinez, C.C.; Wang, H.; Khezri, B.; Teo, W.Z.; Pumera, M. Nano/microrobots meet electrochemistry. Adv. Funct. Mater., 2017, 27(12), 1604759.
[http://dx.doi.org/10.1002/adfm.201604759]
[159]
Wang, H.; Pumera, M. Emerging materials for the fabrication of micro/nanomotors. Nanoscale, 2017, 9(6), 2109-2116.
[http://dx.doi.org/10.1039/C6NR09217A] [PMID: 28144663]
[160]
Soto, F.; Karshalev, E.; Zhang, F.; Esteban Fernandez de Avila, B.; Nourhani, A.; Wang, J. Smart materials for microrobots. Chem. Rev., 2022, 122(5), 5365-5403.
[http://dx.doi.org/10.1021/acs.chemrev.0c00999] [PMID: 33522238]
[161]
Mitra, M. Medical nanobot for cell and tissue repair. Int. Robotics Automat. J., 2017, 2(6), 218-222.
[http://dx.doi.org/10.15406/iratj.2017.02.00038]
[162]
Li, S.; Jiang, Q.; Liu, S.; Zhang, Y.; Tian, Y.; Song, C.; Wang, J.; Zou, Y.; Anderson, G.J.; Han, J.Y.; Chang, Y.; Liu, Y.; Zhang, C.; Chen, L.; Zhou, G.; Nie, G.; Yan, H.; Ding, B.; Zhao, Y. A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo. Nat. Biotechnol., 2018, 36(3), 258-264.
[http://dx.doi.org/10.1038/nbt.4071] [PMID: 29431737]
[163]
Wang, H.; Khezri, B.; Pumera, M. Catalytic DNA-functionalized self-propelled micromachines for environmental remediation. Chem, 2016, 1(3), 473-481.
[http://dx.doi.org/10.1016/j.chempr.2016.08.009]
[164]
Hoop, M.; Ribeiro, A.S.; Rösch, D.; Weinand, P.; Mendes, N.; Mushtaq, F.; Chen, X.Z.; Shen, Y.; Pujante, C.F.; Puigmartí-Luis, J.; Paredes, J.; Nelson, B.J.; Pêgo, A.P.; Pané, S. Mobile magnetic nanocatalysts for bioorthogonal targeted cancer therapy. Adv. Funct. Mater., 2018, 28(25), 1705920.
[http://dx.doi.org/10.1002/adfm.201705920]
[165]
Yu, J.; Wang, B.; Du, X.; Wang, Q.; Zhang, L. Ultra-extensible ribbon-like magnetic microswarm. Nat. Commun., 2018, 9(1), 3260.
[http://dx.doi.org/10.1038/s41467-018-05749-6] [PMID: 30131487]
[166]
Jafari, S.; Mair, L.O.; Weinberg, I.N.; Baker-McKee, J.; Hale, O.; Watson-Daniels, J.; English, B.; Stepanov, P.Y.; Ropp, C.; Atoyebi, O.F.; Sun, D. Magnetic drilling enhances intra-nasal transport of particles into rodent brain. J. Magn. Magn. Mater., 2019, 469, 302-305.
[http://dx.doi.org/10.1016/j.jmmm.2018.08.048]
[167]
Felfoul, O.; Mohammadi, M.; Taherkhani, S.; de Lanauze, D.; Zhong Xu, Y.; Loghin, D.; Essa, S.; Jancik, S.; Houle, D.; Lafleur, M.; Gaboury, L.; Tabrizian, M.; Kaou, N.; Atkin, M.; Vuong, T.; Batist, G.; Beauchemin, N.; Radzioch, D.; Martel, S. Magneto-aerotactic bacteria deliver drug-containing nanoliposomes to tumour hypoxic regions. Nat. Nanotechnol., 2016, 11(11), 941-947.
[http://dx.doi.org/10.1038/nnano.2016.137] [PMID: 27525475]
[168]
Xu, H.; Medina-Sánchez, M.; Magdanz, V.; Schwarz, L.; Hebenstreit, F.; Schmidt, O.G. Sperm-hybrid micromotor for targeted drug delivery. ACS Nano, 2018, 12(1), 327-337.
[http://dx.doi.org/10.1021/acsnano.7b06398] [PMID: 29202221]
[169]
Wang, H.; Pumera, M. Micro/nanomachines and living biosystems: From simple interactions to microcyborgs. Adv. Funct. Mater., 2018, 28(25), 1705421.
[http://dx.doi.org/10.1002/adfm.201705421]
[170]
Bozuyuk, U.; Yasa, O.; Yasa, I.C.; Ceylan, H.; Kizilel, S.; Sitti, M. Light-triggered drug release from 3d-printed magnetic chitosan microswimmers. ACS Nano, 2018, 12(9), 9617-9625.
[http://dx.doi.org/10.1021/acsnano.8b05997] [PMID: 30203963]
[171]
Liang, Z.; Fan, D. Visible light–gated reconfigurable rotary actuation of electric nanomotors. Sci. Adv., 2018, 4(9), eaau0981.
[http://dx.doi.org/10.1126/sciadv.aau0981] [PMID: 30225371]
[172]
Moo, J.G.S.; Mayorga-Martinez, C.C.; Wang, H.; Teo, W.Z.; Tan, B.H.; Luong, T.D.; Gonzalez-Avila, S.R.; Ohl, C.D.; Pumera, M. Bjerknes forces in motion: Long-range translational motion and chiral directionality switching in bubble-propelled micromotors via an ultrasonic pathway. Adv. Funct. Mater., 2018, 28(25), 1702618.
[http://dx.doi.org/10.1002/adfm.201702618]
[173]
Plutnar, J.; Pumera, M. Chemotactic micro- and nanodevices. Angew. Chem. Int. Ed., 2019, 58(8), 2190-2196.
[http://dx.doi.org/10.1002/anie.201809101] [PMID: 30216620]
[174]
Kroupa, T.; Hermanová, S.; Mayorga-Martinez, C.C.; Novotný, F.; Sofer, Z.; Pumera, M. Micromotors as “Motherships”: A concept for the transport, delivery, and enzymatic release of molecular cargo via nanoparticles. Langmuir, 2019, 35(32), 10618-10624.
[http://dx.doi.org/10.1021/acs.langmuir.9b01192] [PMID: 31322356]
[175]
Kong, L.; Rosli, N.F.; Chia, H.L.; Guan, J.; Pumera, M. Self-propelled autonomous Mg/Pt Janus micromotor interaction with human cells. Bull. Chem. Soc. Jpn., 2019, 92(10), 1754-1758.
[http://dx.doi.org/10.1246/bcsj.20190104]
[176]
Kong, L.; Rohaizad, N.; Nasir, M.Z.M.; Guan, J.; Pumera, M. Micromotor-assisted human serum glucose biosensing. Anal. Chem., 2019, 91(9), 5660-5666.
[http://dx.doi.org/10.1021/acs.analchem.8b05464] [PMID: 30986039]
[177]
Medina-Sánchez, M.; Schmidt, O.G. Medical microbots need better imaging and control. Nature, 2017, 545(7655), 406-408.
[http://dx.doi.org/10.1038/545406a] [PMID: 28541344]
[178]
Reinišová, L.; Hermanová, S.; Pumera, M. Micro/nanomachines: What is needed for them to become a real force in cancer therapy? Nanoscale, 2019, 11(14), 6519-6532.
[http://dx.doi.org/10.1039/C8NR08022D] [PMID: 30632584]
[179]
Hu, M.; Ge, X.; Chen, X.; Mao, W.; Qian, X.; Yuan, W.E. Micro/nanorobot: A promising targeted drug delivery system. Pharmaceutics, 2020, 12(7), 665.
[http://dx.doi.org/10.3390/pharmaceutics12070665] [PMID: 32679772]
[180]
Patra, J.K.; Das, G.; Fraceto, L.F.; Campos, E.V.R.; Rodriguez-Torres, M.P.; Acosta-Torres, L.S.; Diaz-Torres, L.A.; Grillo, R.; Swamy, M.K.; Sharma, S.; Habtemariam, S.; Shin, H.S. Nano based drug delivery systems: Recent developments and future prospects. J. Nanobiotechnol., 2018, 16(1), 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[181]
Witika, B.A.; Makoni, P.A.; Matafwali, S.K.; Chabalenge, B.; Mwila, C.; Kalungia, A.C.; Nkanga, C.I.; Bapolisi, A.M.; Walker, R.B. Biocompatibility of biomaterials for nanoencapsulation: Current approaches. Nanomaterials (Basel), 2020, 10(9), 1649.
[http://dx.doi.org/10.3390/nano10091649] [PMID: 32842562]
[182]
Gao, W.; Chan, J.M.; Farokhzad, O.C. pH-Responsive nanoparticles for drug delivery. Mol. Pharm., 2010, 7(6), 1913-1920.
[http://dx.doi.org/10.1021/mp100253e] [PMID: 20836539]
[183]
Dressman, J.B.; Berardi, R.R.; Dermentzoglou, L.C.; Russell, T.L.; Schmaltz, S.P.; Barnett, J.L.; Jarvenpaa, K.M. Upper gastrointestinal (GI) pH in young, healthy men and women. Pharm. Res., 1990, 7(7), 756-761.
[http://dx.doi.org/10.1023/A:1015827908309] [PMID: 2395805]
[184]
Read, N.W.; Sugden, K. Gastrointestinal dynamics and pharmacology for the optimum design of controlled-release oral dosage forms. Crit. Rev. Ther. Drug Carrier Syst., 1988, 4(3), 221-263.
[PMID: 3276406]
[185]
Kararli, T.T. Comparison of the gastrointestinal anatomy, physiology, and biochemistry of humans and commonly used laboratory animals. Biopharm. Drug Dispos., 1995, 16(5), 351-380.
[http://dx.doi.org/10.1002/bdd.2510160502] [PMID: 8527686]
[186]
Colombo, P.; Sonvico, F.; Colombo, G.; Bettini, R. Novel platforms for oral drug delivery. Pharm. Res., 2009, 26(3), 601-611.
[http://dx.doi.org/10.1007/s11095-008-9803-0] [PMID: 19132514]
[187]
Vaupel, P. Tumor microenvironmental physiology and its implications for radiation oncology. Semin. Radiat. Oncol., 2004, 14(3), 198-206.
[http://dx.doi.org/10.1016/j.semradonc.2004.04.008] [PMID: 15254862]
[188]
Kim, J.; Dang, C.V. Cancer’s molecular sweet tooth and the Warburg effect. Cancer Res., 2006, 66(18), 8927-8930.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-1501] [PMID: 16982728]
[189]
Brahimi-Horn, M.C.; Pouysségur, J. Oxygen, a source of life and stress. FEBS Lett., 2007, 581(19), 3582-3591.
[http://dx.doi.org/10.1016/j.febslet.2007.06.018] [PMID: 17586500]
[190]
Griset, A.P.; Walpole, J.; Liu, R.; Gaffey, A.; Colson, Y.L.; Grinstaff, M.W. Expansile nanoparticles: Synthesis, characterization, and in vivo efficacy of an acid-responsive polymeric drug delivery system. J. Am. Chem. Soc., 2009, 131(7), 2469-2471.
[http://dx.doi.org/10.1021/ja807416t] [PMID: 19182897]
[191]
Mok, H.; Park, J.W.; Park, T.G. Enhanced intracellular delivery of quantum dot and adenovirus nanoparticles triggered by acidic pH via surface charge reversal. Bioconjug. Chem., 2008, 19(4), 797-801.
[http://dx.doi.org/10.1021/bc700464m] [PMID: 18363345]
[192]
Rozema, D.B.; Lewis, D.L.; Wakefield, D.H.; Wong, S.C.; Klein, J.J.; Roesch, P.L.; Bertin, S.L.; Reppen, T.W.; Chu, Q.; Blokhin, A.V.; Hagstrom, J.E.; Wolff, J.A. Dynamic PolyConjugates for targeted in vivo delivery of siRNA to hepatocytes. Proc. Natl. Acad. Sci. USA, 2007, 104(32), 12982-12987.
[http://dx.doi.org/10.1073/pnas.0703778104] [PMID: 17652171]
[193]
Behr, J.P. The proton sponge: A trick to enter cells the viruses did not exploit. Chimia (Aarau), 1997, 51(1-2), 34-36.
[http://dx.doi.org/10.2533/chimia.1997.34]
[194]
You, J.O.; Auguste, D.T. Nanocarrier cross-linking density and pH sensitivity regulate intracellular gene transfer. Nano Lett., 2009, 9(12), 4467-4473.
[http://dx.doi.org/10.1021/nl902789s] [PMID: 19842673]
[195]
Romberg, B.; Hennink, W.E.; Storm, G. Sheddable coatings for long-circulating nanoparticles. Pharm. Res., 2008, 25(1), 55-71.
[http://dx.doi.org/10.1007/s11095-007-9348-7] [PMID: 17551809]
[196]
Cerritelli, S.; Velluto, D.; Hubbell, J.A. PEG-SS-PPS: Reduction-sensitive disulfide block copolymer vesicles for intracellular drug delivery. Biomacromolecules, 2007, 8(6), 1966-1972.
[http://dx.doi.org/10.1021/bm070085x] [PMID: 17497921]
[197]
Takae, S.; Miyata, K.; Oba, M.; Ishii, T.; Nishiyama, N.; Itaka, K.; Yamasaki, Y.; Koyama, H.; Kataoka, K. PEG-detachable polyplex micelles based on disulfide-linked block catiomers as bioresponsive nonviral gene vectors. J. Am. Chem. Soc., 2008, 130(18), 6001-6009.
[http://dx.doi.org/10.1021/ja800336v] [PMID: 18396871]
[198]
Fam, S.Y.; Chee, C.F.; Yong, C.Y.; Ho, K.L.; Mariatulqabtiah, A.R.; Tan, W.S. Stealth coating of nanoparticles in drug-delivery systems. Nanomaterials (Basel), 2020, 10(4), 787.
[http://dx.doi.org/10.3390/nano10040787] [PMID: 32325941]
[199]
Guo, S.; Li, K.; Hu, B.; Li, C.; Zhang, M.; Hussain, A.; Wang, X.; Cheng, Q.; Yang, F.; Ge, K.; Zhang, J.; Chang, J.; Liang, X.J.; Weng, Y.; Huang, Y. Membrane-destabilizing ionizable lipid empowered imaging-guided siRNA delivery and cancer treatment. Exploration, 2021, 1(1), 35-49.
[http://dx.doi.org/10.1002/EXP.20210008]
[200]
Whitehead, K.A.; Dorkin, J.R.; Vegas, A.J.; Chang, P.H.; Veiseh, O.; Matthews, J.; Fenton, O.S.; Zhang, Y.; Olejnik, K.T.; Yesilyurt, V.; Chen, D.; Barros, S.; Klebanov, B.; Novobrantseva, T.; Langer, R.; Anderson, D.G. Degradable lipid nanoparticles with predictable in vivo siRNA delivery activity. Nat. Commun., 2014, 5(1), 4277.
[http://dx.doi.org/10.1038/ncomms5277] [PMID: 24969323]
[201]
Li, C.; Zhou, J.; Wu, Y.; Dong, Y.; Du, L.; Yang, T.; Wang, Y.; Guo, S.; Zhang, M.; Hussain, A.; Xiao, H.; Weng, Y.; Huang, Y.; Wang, X.; Liang, Z.; Cao, H.; Zhao, Y.; Liang, X.J.; Dong, A.; Huang, Y. Core role of hydrophobic core of polymeric nanomicelle in endosomal escape of siRNA. Nano Lett., 2021, 21(8), 3680-3689.
[http://dx.doi.org/10.1021/acs.nanolett.0c04468] [PMID: 33596656]
[202]
Hu, B.; Li, B.; Li, K.; Liu, Y.; Li, C.; Zheng, L.; Zhang, M.; Yang, T.; Guo, S.; Dong, X.; Zhang, T.; Liu, Q.; Hussain, A.; Weng, Y.; Peng, L.; Zhao, Y.; Liang, X.J.; Huang, Y. Thermostable ionizable lipid-like nanoparticle (iLAND) for RNAi treatment of hyperlipidemia. Sci. Adv., 2022, 8(7), eabm1418.
[http://dx.doi.org/10.1126/sciadv.abm1418] [PMID: 35171673]
[203]
Patel, P.; Ibrahim, N.M.; Cheng, K. The importance of apparent pKa in the development of nanoparticles encapsulating siRNA and mRNA. Trends Pharmacol. Sci., 2021, 42(6), 448-460.
[http://dx.doi.org/10.1016/j.tips.2021.03.002] [PMID: 33875229]
[204]
Risom, L.; Møller, P.; Loft, S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat. Res., 2005, 592(1-2), 119-137.
[http://dx.doi.org/10.1016/j.mrfmmm.2005.06.012] [PMID: 16085126]
[205]
De Jong, W.H.; Hagens, W.I.; Krystek, P.; Burger, M.C.; Sips, A.J.A.M.; Geertsma, R.E. Particle size-dependent organ distribution of gold nanoparticles after intravenous administration. Biomaterials, 2008, 29(12), 1912-1919.
[http://dx.doi.org/10.1016/j.biomaterials.2007.12.037] [PMID: 18242692]
[206]
Bhattacharjee, S.; de Haan, L.H.J.; Evers, N.M.; Jiang, X.; Marcelis, A.T.M.; Zuilhof, H.; Rietjens, I.M.C.M.; Alink, G.M. Role of surface charge and oxidative stress in cytotoxicity of organic monolayer-coated silicon nanoparticles towards macrophage NR8383 cells. Part. Fibre Toxicol., 2010, 7(1), 25.
[http://dx.doi.org/10.1186/1743-8977-7-25] [PMID: 20831820]
[207]
King Heiden, T.C.; Dengler, E.; Kao, W.J.; Heideman, W.; Peterson, R.E. Developmental toxicity of low generation PAMAM dendrimers in zebrafish. Toxicol. Appl. Pharmacol., 2007, 225(1), 70-79.
[http://dx.doi.org/10.1016/j.taap.2007.07.009] [PMID: 17764713]
[208]
Weiss, M.; Fan, J.; Claudel, M.; Sonntag, T.; Didier, P.; Ronzani, C.; Lebeau, L.; Pons, F. Density of surface charge is a more predictive factor of the toxicity of cationic carbon nanoparticles than zeta potential. J. Nanobiotechnol., 2021, 19(1), 5.
[http://dx.doi.org/10.1186/s12951-020-00747-7] [PMID: 33407567]
[209]
Kwakye, G.; Paoliello, M.; Mukhopadhyay, S.; Bowman, A.; Aschner, M. Manganese-induced Parkinsonism and Parkinson’s Disease: Shared and distinguishable features. Int. J. Environ. Res. Public Health, 2015, 12(7), 7519-7540.
[http://dx.doi.org/10.3390/ijerph120707519] [PMID: 26154659]
[210]
Aaseth, J.; Dusek, P.; Roos, P.M. Prevention of progression in Parkinson’s disease. Biometals, 2018, 31(5), 737-747.
[http://dx.doi.org/10.1007/s10534-018-0131-5] [PMID: 30030679]
[211]
Shrestha, S.; Bharti, A.; Rai, R.; Singh, M. Assessment of serum minerals and electrolytes in thyroid patients. Int. J. Adv. Sci. Res., 2015, 1(6), 259-263.
[http://dx.doi.org/10.7439/ijasr.v1i6.2189]
[212]
Bahadir, A.; Erduran, E.; Değer, O.; Birinci, Y.; Ayar, A. Augmented mitochondrial cytochrome c oxidase activity in children with iron deficiency: A tandem between iron and copper? Arch. Med. Sci., 2018, 1(1), 151-156.
[http://dx.doi.org/10.5114/aoms.2016.59602] [PMID: 29379545]
[213]
Leone, F.A.; Ciancaglini, P.; Pizauro, J.M.; Rezende, A.A. Rat osseous plate alkaline phosphatase: Mechanism of action of manganese ions. Biometals, 1995, 8(1), 86-91.
[http://dx.doi.org/10.1007/BF00156163] [PMID: 7865996]
[214]
Cortese-Krott, M.M.; Münchow, M.; Pirev, E.; Heβner, F.; Bozkurt, A.; Uciechowski, P.; Pallua, N.; Kröncke, K.D.; Suschek, C.V. Silver ions induce oxidative stress and intracellular zinc release in human skin fibroblasts. Free Radic. Biol. Med., 2009, 47(11), 1570-1577.
[http://dx.doi.org/10.1016/j.freeradbiomed.2009.08.023] [PMID: 19733233]
[215]
Chevallet, M.; Veronesi, G.; Fuchs, A.; Mintz, E.; Michaud-Soret, I.; Deniaud, A. Impact of labile metal nanoparticles on cellular homeostasis. Current developments in imaging, synthesis and applications. Biochim. Biophys. Acta, Gen. Subj., 2017, 1861(6), 1566-1577.
[http://dx.doi.org/10.1016/j.bbagen.2016.12.012] [PMID: 27993661]
[216]
Matusiewicz, H. Potential release of in vivo trace metals from metallic medical implants in the human body: From ions to nanoparticles – A systematic analytical review. Acta Biomater., 2014, 10(6), 2379-2403.
[http://dx.doi.org/10.1016/j.actbio.2014.02.027] [PMID: 24565531]
[217]
Minghetti, M.; Schirmer, K. Interference of silver nanoparticles with essential metal homeostasis in a novel enterohepatic fish in vitro system. Environ. Sci. Nano, 2019, 6(6), 1777-1790.
[http://dx.doi.org/10.1039/C9EN00310J]
[218]
Vallabani, N.V.S.; Singh, S. Recent advances and future prospects of iron oxide nanoparticles in biomedicine and diagnostics. 3 Biotech, 2018, 8, 279.
[219]
Wang, Y.; Yu, L.; Ding, J.; Chen, Y. Iron metabolism in cancer. Int. J. Mol. Sci., 2018, 20(1), 95.
[http://dx.doi.org/10.3390/ijms20010095] [PMID: 30591630]
[220]
Ballou, B.; Ernst, L.A.; Andreko, S.; Harper, T.; Fitzpatrick, J.A.J.; Waggoner, A.S.; Bruchez, M.P. Sentinel lymph node imaging using quantum dots in mouse tumor models. Bioconjug. Chem., 2007, 18(2), 389-396.
[http://dx.doi.org/10.1021/bc060261j] [PMID: 17263568]
[221]
Ibsen, S.; Sonnenberg, A.; Schutt, C.; Mukthavaram, R.; Yeh, Y.; Ortac, I.; Manouchehri, S.; Kesari, S.; Esener, S.; Heller, M.J. Recovery of drug delivery nanoparticles from human plasma using an electrokinetic platform technology. Small, 2015, 11(38), 5088-5096.
[http://dx.doi.org/10.1002/smll.201500892] [PMID: 26274918]
[222]
Poon, W.; Zhang, Y.N.; Ouyang, B.; Kingston, B.R.; Wu, J.L.Y.; Wilhelm, S.; Chan, W.C.W. Elimination pathways of nanoparticles. ACS Nano, 2019, 13(5), 5785-5798.
[http://dx.doi.org/10.1021/acsnano.9b01383] [PMID: 30990673]
[223]
Maric, T.; Mayorga-Martinez, C.C.; Khezri, B.; Nasir, M.Z.M.; Chia, X.; Pumera, M. Nanorobots constructed from nanoclay: Using nature to create self-propelled autonomous nanomachines. Adv. Funct. Mater., 2018, 28(40), 1802762.
[http://dx.doi.org/10.1002/adfm.201802762]
[224]
Ying, Y.; Pumera, M. Micro/nanomotors for water purification. Chemistry, 2019, 25(1), 106-121.
[http://dx.doi.org/10.1002/chem.201804189] [PMID: 30306655]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy