Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Meta-Analysis

The Inhibitory Effect on Tumor Cells Proliferation Induced by Arsenic Through DNMTs and its Downstream Molecules: A Systematic Review and Meta-Analysis

Author(s): Jingyi Zhang, Sheng Li, Mingxiao Ma and Shugang Li*

Volume 28, Issue 31, 2022

Published on: 06 September, 2022

Page: [2583 - 2599] Pages: 17

DOI: 10.2174/1381612828666220818150959

Price: $65

conference banner
Abstract

Background: We aimed to systematically evaluate the regulatory effect of arsenic on DNMTs and its downstream molecules in tumor cells and to provide a theoretical framework revealing the specific mechanism of arsenic in the treatment of tumors.

Methods: Meta-analysis was performed using RevMan 5.3 and Stata 12.0, and differences between groups were described as standardized mean difference.

Results: We found out that compared with the control group, the expression of DNMT1, DNMT3a, DNMT3b, MMP-9 & β-catenin decreased and the expression of RECK and E-cadherin increased in the arsenic-treated group. Subgroup analysis showed that high-dose arsenic exposure (> 2 μmol/L) reduced the expression of DNMT1, DNMT3b, MMP-9, and β-catenin and promoted the expression of E-cadherin. Arsenic could decrease the level of DNMT1, MMP-9 & β-catenin and increase the level of E-cadherin with short-time arsenic intervention (≤ 48 h). Arsenic could reduce DNMT1, DNMT3a, DNMT3b & β-catenin in hematological tumor cells; under the effect of arsenic, the expression of DNMT1, DNMT3b, MMP-9 & β-catenin decreased in solid tumor cells. In addition, the regulation of arsenic on DNMT3a was dose-dependent in the range of arsenic concentration from 0 to 5.0 μmol/L. The dose, time, and cell types of arsenic intervention were the variables of heterogeneity.

Conclusion: Arsenic could inhibit the proliferation and viability of tumor cells, and its mechanism may be related to the reduction of DNMTs and regulation of the expression of its downstream molecules. Overall, arsenic may be a promising candidate for the treatment of tumors.

Keywords: Arsenic, tumor cells, DNMTs, DNA methylation, cell proliferation, treatment, molecular mechanism, meta-analysis.

« Previous
[1]
Minatel BC, Sage AP, Anderson C, et al. Environmental arsenic exposure: From genetic susceptibility to pathogenesis. Environ Int 2018; 112: 183-97.
[http://dx.doi.org/10.1016/j.envint.2017.12.017] [PMID: 29275244]
[2]
Watson KD. Poisoning crimes and forensic toxicology since the 18th Century. Acad Forensic Pathol 2020; 10(1): 35-46.
[http://dx.doi.org/10.1177/1925362120937923] [PMID: 32983292]
[3]
Zhang P. Arsenic and the treatment of tumor. Chinese Int J Med 2003; 2: 105-14.
[4]
Lu DP, Qiu JY, Jiang B, et al. Tetra arsenic tetra sulfide for the treatment of acute promyelocytic leukemia: A pilot report. Blood 2002; 99(9): 3136-43.
[http://dx.doi.org/10.1182/blood.V99.9.3136] [PMID: 11964275]
[5]
Si L, Jiang F, Li Y, et al. Induction of the mesenchymal to epithelial transition by demethylation activated microRNA-200c is involved in the anti migration/invasion effects of arsenic trioxide on human breast cancer cells. Mol Carcinog 2015; 54(9): 859-69.
[http://dx.doi.org/10.1002/mc.22157] [PMID: 24729530]
[6]
Yang MH, Chang KJ, Zheng JC, et al. Anti angiogenic effect of arsenic trioxide in lung cancer via inhibition of endothelial cell migration, proliferation and tube formation. Oncol Lett 2017; 14(3): 3103-9.
[http://dx.doi.org/10.3892/ol.2017.6518] [PMID: 28928847]
[7]
Huang Y, Zhou B, Luo H, et al. ZnAs@SiO 2 nanoparticles as a potential anti tumor drug for targeting stemness and epithelial mesenchymal transition in hepatocellular carcinoma via SHP-1/JAK2/STAT3 signaling. Theranostics 2019; 9(15): 4391-408.
[http://dx.doi.org/10.7150/thno.32462] [PMID: 31285768]
[8]
Wang J, Wang T, Ceng J, et al. Effects of arsenic trioxide combined with fenofibrate on epithelial mesenchymal transformation and E-cadherin/Snail transforming factor in human lung cancer A549 cells. J Third Mil Med Univ 2012; 34: 1406-10.
[9]
Esteller M. Cancer epigenomics: DNA methylomes and histone modification maps. Nat Rev Genet 2007; 8(4): 286-98.
[http://dx.doi.org/10.1038/nrg2005] [PMID: 17339880]
[10]
Smith ZD, Meissner A. DNA methylation: Roles in mammalian development. Nat Rev Genet 2013; 14(3): 204-20.
[http://dx.doi.org/10.1038/nrg3354] [PMID: 23400093]
[11]
Cebrian A, Pharoah PD, Ahmed S, et al. Genetic variants in epigenetic genes and breast cancer risk. Carcinogenesis 2006; 27(8): 1661-9.
[http://dx.doi.org/10.1093/carcin/bgi375] [PMID: 16501248]
[12]
Okano M, Bell DW, Haber DA, Li E. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 1999; 99(3): 247-57.
[http://dx.doi.org/10.1016/S0092-8674(00)81656-6] [PMID: 10555141]
[13]
Li Y, Zhang Z, Chen J, et al. Stella safeguards the oocyte methylome by preventing de novo methylation mediated by DNMT1. Nature 2018; 564(7734): 136-40.
[http://dx.doi.org/10.1038/s41586-018-0751-5] [PMID: 30487604]
[14]
Chang HC, Cho CY, Hung WC. Silencing of the metastasis suppressor RECK by RAS oncogene is mediated by DNA methyltransferase 3b-induced promoter methylation. Cancer Res 2006; 66(17): 8413-20.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-0685] [PMID: 16951151]
[15]
Simizu S, Takagi S, Tamura Y, Osada H. RECK mediated suppression of tumor cell invasion is regulated by glycosylation in human tumor cell lines. Cancer Res 2005; 65(16): 7455-61.
[http://dx.doi.org/10.1158/0008-5472.CAN-04-4446] [PMID: 16103099]
[16]
Symowicz J, Adley BP, Gleason KJ, et al. Engagement of collagen binding integrins promotes matrix metalloproteinase-9-dependent E-cadherin ectodomain shedding in ovarian carcinoma cells. Cancer Res 2007; 67(5): 2030-9.
[http://dx.doi.org/10.1158/0008-5472.CAN-06-2808] [PMID: 17332331]
[17]
van Roy F, Berx G. The cell cell adhesion molecule E cadherin. Cell Mol Life Sci 2008; 65(23): 3756-88.
[http://dx.doi.org/10.1007/s00018-008-8281-1] [PMID: 18726070]
[18]
Klucky B, Mueller R, Vogt I, et al. Kallikrein 6 induces E-cadherin shedding and promotes cell proliferation, migration, and invasion. Cancer Res 2007; 67(17): 8198-206.
[http://dx.doi.org/10.1158/0008-5472.CAN-07-0607] [PMID: 17804733]
[19]
Yang JF, Chen SL, Liu ZH, Zhang Y. Correlation among expression of E-cadherin, β-catenin, and cyclin D1 in breast cancers. Chin J Cancer 2004; 23(7): 799-802.
[PMID: 15248915]
[20]
Zhao H, Zhang H. Relationship between the expression of E cadherin and β catenin and the prognosis of pancreatic cancer. J Pract Cancer 2016; 31: 899-904.
[21]
Hu J, Dong Y, Ding L, et al. Local delivery of arsenic trioxide nanoparticles for hepatocellular carcinoma treatment. Signal Transduct Target Ther 2019; 4(1): 28.
[http://dx.doi.org/10.1038/s41392-019-0062-9] [PMID: 31637008]
[22]
Lin W, Yu A, Xu G, et al. Demethylation and transcription of P16 gene in the retinoblastoma cell line Y79 induced by arsenic trioxide. Chinese J Ocul Fundus Dis 2009; 25: 99-102.
[23]
Zhou QB, Liu ZT, Wang HZ, Guo XQ, Xu YG, Hu XM. Arsenic disulfide promoted hypomethylation by increasing DNA methyltransferases expression in myelodysplastic syndrome. Drug Des Devel Ther 2020; 14: 1641-50.
[http://dx.doi.org/10.2147/DDDT.S239158] [PMID: 32431489]
[24]
Zhao F, Zhao J, Guo Z, et al. Development of a standard process for systematic reviews on cell experimental studies. Chinese J Cardiovasc Evid Based Med 2019; 11: 658-69.
[25]
Tan Z, Zhang X, Kang T, Zhang L, Chen S. Arsenic sulfide amplifies JQ1 toxicity via mitochondrial pathway in gastric and colon cancer cells. Drug Des Devel Ther 2018; 12: 3913-27.
[http://dx.doi.org/10.2147/DDDT.S180976] [PMID: 30532520]
[26]
Lin C, You Y, Xin S, et al. Molecular mechanism of As2 O3 in suppressing metastasis of esophagus carcinoma cells. J Chinese Phys 2014; 465-7.
[27]
Eyvani H, Moghaddaskho F, Kabuli M, et al. Arsenic trioxide induces cell cycle arrest and alters DNA methylation patterns of cell cycle regulatory genes in colorectal cancer cells. Life Sci 2016; 167: 67-77.
[http://dx.doi.org/10.1016/j.lfs.2016.10.020] [PMID: 27769816]
[28]
Lai SC, Su YT, Chi CC, et al. DNMT3b/OCT4 expression confers sorafenib resistance and poor prognosis of hepatocellular carcinoma through IL-6/STAT3 regulation. J Exp Clin Cancer Res 2019; 38(1): 474.
[http://dx.doi.org/10.1186/s13046-019-1442-2] [PMID: 31771617]
[29]
Yang ZG, Awan FM, Du WW, et al. The circular RNA interacts with STAT3, increasing its nuclear translocation and wound repair by modulating Dnmt3a and miR-17 function. Mol Ther 2017; 25(9): 2062-74.
[http://dx.doi.org/10.1016/j.ymthe.2017.05.022] [PMID: 28676341]
[30]
Kim SH, Yoo HS, Joo MK, et al. Arsenic trioxide attenuates STAT-3 activity and epithelial mesenchymal transition through induction of SHP-1 in gastric cancer cells. BMC Cancer 2018; 18(1): 150.
[http://dx.doi.org/10.1186/s12885-018-4071-9] [PMID: 29409467]
[31]
Ren X, McHale CM, Skibola CF, Smith AH, Smith MT, Zhang L. An emerging role for epigenetic dysregulation in arsenic toxicity and carcinogenesis. Environ Health Perspect 2011; 119(1): 11-9.
[http://dx.doi.org/10.1289/ehp.1002114] [PMID: 20682481]
[32]
Fu HY, Shen JZ, Wu Y, Shen SF, Zhou HR, Fan LP. Arsenic trioxide inhibits DNA methyltransferase and restores expression of methylation silenced CDKN2B/CDKN2A genes in human hematologic malignant cells. Oncol Rep 2010; 24(2): 335-43.
[PMID: 20596618]
[33]
Yu S, Zhang G, Li J. Effects of arsenic trioxide on expression and demethylation of RECK gene in larvngocarcinoma cells. J Hubei University Med 2011; 30: 367-73.
[34]
Ning S, Ma X. Dephosphorylation induced EZH2 activation mediated RECK downregulation by ERK1/2 signaling. J Cell Physiol 2019; 234(10): 19010-8.
[http://dx.doi.org/10.1002/jcp.28540] [PMID: 30912166]
[35]
Viré E, Brenner C, Deplus R, et al. The Polycomb group protein EZH2 directly controls DNA methylation. Nature 2006; 439(7078): 871-4.
[http://dx.doi.org/10.1038/nature04431] [PMID: 16357870]
[36]
Dong Z, Gao M, Li C, Xu M, Liu S. LncRNA UCA1 Antagonizes arsenic induced cell cycle arrest through destabilizing EZH2 and facilitating NFATc2 expression. Adv Sci 2020; 7(11): 1903630.
[http://dx.doi.org/10.1002/advs.201903630] [PMID: 32537408]
[37]
Takahashi C, Sheng Z, Horan TP, et al. Regulation of matrix metalloproteinase-9 and inhibition of tumor invasion by the membrane anchored glycoprotein RECK. Proc Natl Acad Sci USA 1998; 95(22): 13221-6.
[http://dx.doi.org/10.1073/pnas.95.22.13221] [PMID: 9789069]
[38]
Gumbiner BM. Regulation of cadherin mediated adhesion in morphogenesis. Nat Rev Mol Cell Biol 2005; 6(8): 622-34.
[http://dx.doi.org/10.1038/nrm1699] [PMID: 16025097]
[39]
Maretzky T, Reiss K, Ludwig A, et al. ADAM10 mediates E cadherin shedding and regulates epithelial cell cell adhesion, migration, and β catenin translocation. Proc Natl Acad Sci USA 2005; 102(26): 9182-7.
[http://dx.doi.org/10.1073/pnas.0500918102] [PMID: 15958533]
[40]
Nelson WJ, Nusse R. Convergence of Wnt, beta catenin, and cadherin pathways. Science 2004; 303(5663): 1483-7.
[http://dx.doi.org/10.1126/science.1094291] [PMID: 15001769]
[41]
Li S, Ren Q. Effects of arsenic on wnt/β-catenin signaling pathway: A systematic review and meta analysis. Chem Res Toxicol 2020; 33(6): 1458-67.
[http://dx.doi.org/10.1021/acs.chemrestox.0c00019] [PMID: 32307979]
[42]
Zhu HH. The history of the chemo free model in the treatment of acute promyelocytic leukemia. Front Oncol 2020; 10: 592996.
[http://dx.doi.org/10.3389/fonc.2020.592996] [PMID: 33304850]
[43]
Tong H, Lin M. Arsenic trioxide induced p15INK4B gene expression in myelodysplastic syndrome cell line MUTZ-1. Zhonghua Xue Ye Xue Za Zhi 2002; 23(12): 638-41.
[PMID: 12667347]
[44]
Li JQ, Li Y, Shi YJ, Wu SL. Re expression of p16 gene in myeloma cell line U266 by arsenic trioxide. Chin J Cancer 2004; 23(6): 626-30.
[PMID: 15191659]
[45]
Park MJ, Lee JY, Kwak HJ, et al. Arsenic trioxide (As2O3) inhibits invasion of HT1080 human fibrosarcoma cells: Role of nuclear factor-κB and reactive oxygen species. J Cell Biochem 2005; 95(5): 955-69.
[http://dx.doi.org/10.1002/jcb.20452] [PMID: 15962302]
[46]
Cui Y, Qin S, Chen H, et al. Effect of arsenic trioxide on the expression of related genes and proteins in vascular endothelial cells induced by hepatocellular carcinoma. World J Chinese Digest 2005; 100-2.
[47]
Wei LH, Lai KP, Chen CA, et al. Arsenic trioxide prevents radiation-enhanced tumor invasiveness and inhibits matrix metalloproteinase-9 through downregulation of nuclear factor κB. Oncogene 2005; 24(3): 390-8.
[http://dx.doi.org/10.1038/sj.onc.1208192] [PMID: 15531921]
[48]
Cui X, Wakai T, Shirai Y, Yokoyama N, Hatakeyama K, Hirano S. Arsenic trioxide inhibits DNA methyltransferase and restores methylation silenced genes in human liver cancer cells. Hum Pathol 2006; 37(3): 298-311.
[http://dx.doi.org/10.1016/j.humpath.2005.10.013] [PMID: 16613325]
[49]
Du CW, Wen BG, Li DR, et al. Arsenic trioxide reduces the invasive and metastatic properties of nasopharyngeal carcinoma cells in vitro. Braz J Med Biol Res 2006; 39(5): 677-85.
[http://dx.doi.org/10.1590/S0100-879X2006000500015] [PMID: 16648906]
[50]
Zhang J, Wang B. Arsenic trioxide (As2O3) inhibits peritoneal invasion of ovarian carcinoma cells in vitro and in vivo. Gynecol Oncol 2006; 103(1): 199-206.
[http://dx.doi.org/10.1016/j.ygyno.2006.02.037] [PMID: 16624393]
[51]
Fu HY, Sheng JZ, Sheng SF, Zhou HR. n-MSP detection of p16 gene demethylation and transcription in human multiple myeloma U266 cell line induced by arsenic trioxide. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2007; 15(1): 79-85.
[PMID: 17490527]
[52]
Yu J, Qian H, Li Y, et al. Arsenic trioxide (As2O3) reduces the invasive and metastatic properties of cervical cancer cells in vitro and in vivo. Gynecol Oncol 2007; 106(2): 400-6.
[http://dx.doi.org/10.1016/j.ygyno.2007.04.016] [PMID: 17512576]
[53]
Wang D, Mi C, Chen Z, et al. Mechanisms of angiogenesis, invasion and metastasis inhibited by arsenic trioxide (As2O3) in human renal cell carcinoma 786-0 cells. Chongqing Yike Daxue Xuebao 2007; 32: 134-7.
[54]
Zhou LL, Fu WJ, Yuan ZG, Wang DX, Hou J. Effect of arsenic trioxide combined with bortezomib on proliferation, apoptosis and β-catenin level in myeloma cell lines. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2008; 16(1): 84-8.
[PMID: 18315906]
[55]
Zhou L, Hou J, Fu W, Wang D, Yuan Z, Jiang H. Arsenic trioxide and 2-methoxyestradiol reduce β-catenin accumulation after proteasome inhibition and enhance the sensitivity of myeloma cells to Bortezomib. Leuk Res 2008; 32(11): 1674-83.
[http://dx.doi.org/10.1016/j.leukres.2008.03.039] [PMID: 18485479]
[56]
Liang H, Zhang Y, Yao J. Up regulation of the tumor-suppressing gene expression in nasopharyngeal carcinoma cells induced by Arsenic Trioxide. Chinese Otorhinolaryngology Head and Neck Surgery 2009; 16: 179-82.
[57]
Li Q, Bartlett DL, Gorry MC, O’Malley ME, Guo ZS. Three epigenetic drugs up regulate homeobox gene Rhox5 in cancer cells through overlapping and distinct molecular mechanisms. Mol Pharmacol 2009; 76(5): 1072-81.
[http://dx.doi.org/10.1124/mol.109.056291] [PMID: 19679824]
[58]
Zhou J, Meng R, Feng G, et al. Influence of two arsenic trioxide treatment regimen on activity of MMPs and cell invasion in NB4 cells. Chung Kuo Yao Hsueh Tsa Chih 2009; 44: 1141-6.
[59]
Du Y, Zhang D, Liu H, Lai R. Thermochemotherapy effect of nanosized As2O3/Fe3O4complex on experimental mouse tumors and its influence on the expression of CD44v6, VEGF-C and MMP-9. BMC Biotechnol 2009; 9(1): 84.
[http://dx.doi.org/10.1186/1472-6750-9-84] [PMID: 19804631]
[60]
Zhou HR, Shen JZ, Fu HY, Shen SF, Fan LP. Arsenic trioxide reverses hypermethylation of p16 and activates its transcription in malignant lymphoma cell line CA46. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2010; 18(2): 403-9.
[PMID: 20416177]
[61]
Li G, Lei K, Liu G, et al. Effect and mechanism of arsenic trioxide on invasiveness of human cholangiocarcinoma cells. Shandong Yiyao 2010; 50: 3-5.
[62]
Shen SF, Shen JZ, Fu HY, Wu DS, Xu CB, Zhu YF. Mechanism of As(2)O(3) on hdpr1 gene demethylation in Jurkat cell line. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2010; 18(6): 1484-8.
[PMID: 21176356]
[63]
Tingting R, Wei G, Changliang P, Xinchang L, Yi Y. Arsenic trioxide inhibits osteosarcoma cell invasiveness via MAPK signaling pathway. Cancer Biol Ther 2010; 10(3): 251-7.
[http://dx.doi.org/10.4161/cbt.10.3.12349] [PMID: 20592496]
[64]
Nie Y, Yin W, He Q, et al. Expression and demethylation of RECK gene in human nasopharyngeal carcinoma cells induced by arsenite. Shandong Yiyao 2011; 51: 69-70.
[65]
Yu L, Li Y, Hao Y. Effect of arsenic trioxide on expressions of matrix metalloproteinase 2 and 9 in HL-60 cells. J Bengbu Medical College 2011; 36.
[66]
Zhang Z, Wang X, Cheng S, et al. Reactive oxygen species mediate arsenic induced cell transformation and tumorigenesis through Wnt/β-catenin pathway in human colorectal adenocarcinoma DLD1 cells. Toxicol Appl Pharmacol 2011; 256(2): 114-21.
[http://dx.doi.org/10.1016/j.taap.2011.07.016] [PMID: 21854796]
[67]
Du J, Zhou N, Liu H, et al. Arsenic induces functional re expression of estrogen receptor α by demethylation of DNA in estrogen receptor negative human breast cancer. PLoS One 2012; 7(4): e35957.
[http://dx.doi.org/10.1371/journal.pone.0035957] [PMID: 22558281]
[68]
Zhang S, Guo W, Ren TT, Lu XC, Tang GQ, Zhao FL. Arsenic trioxide inhibits Ewing’s sarcoma cell invasiveness by targeting p38MAPK and c-Jun N-terminal kinase. Anticancer Drugs 2012; 23(1): 108-18.
[http://dx.doi.org/10.1097/CAD.0b013e32834bfd68] [PMID: 21946058]
[69]
Zhang WJ, Xu DF, Fan QX, et al. Arsenic trioxide restores ERα expression in ERα-negative human breast cancer cells and its treatment efficacy in combination with tamoxifen in xenografts in nude mice. Zhonghua Zhong Liu Za Zhi 2012; 34(9): 645-51.
[PMID: 23159075]
[70]
Zhang S, Zhou J, Zhang C, et al. Arsenic trioxide inhibits HCCLM3 cells invasion through de novo ceramide synthesis and sphingomyelinase-induced ceramide production. Med Oncol 2012; 29(3): 2251-60.
[http://dx.doi.org/10.1007/s12032-011-0023-9] [PMID: 21773820]
[71]
Wang X, Mandal AK, Saito H, et al. Arsenic and chromium in drinking water promote tumorigenesis in a mouse colitis associated colorectal cancer model and the potential mechanism is ROS-mediated Wnt/β-catenin signaling pathway. Toxicol Appl Pharmacol 2012; 262(1): 11-21.
[http://dx.doi.org/10.1016/j.taap.2012.04.014] [PMID: 22552367]
[72]
Tian W, Ding W, Jin X, et al. Arsenic sulfide inhibits the proliferation and migration ability of HCT116 cells in vitro. Xiandai Shengwu Yixue Jinzhan 2013; 13: 3615-8.
[73]
Li H, Cao L, Wang J. Inhibition on proliferation, migration and invasion in human hepatocellular carcinoma SMMC-7721 cells by arsenic trioxide. Zhongguo Laonianxue Zazhi 2013; 33: 2572-4.
[74]
Yao H, Du X. Effect of As2O3 on demethylation of XAF1 and expression of related mRNA in SKM-1. The Journal of Practical Medicine 2014; 2214-6.
[75]
Fu H, Shen J, Wu D. Hypermethylation of CpG island of DLC-1 gene and arsenic trioxide-induced DLC-1 gene demethylation in multiple myeloma. Zhonghua Yi Xue Za Zhi 2014; 94(36): 2816-21.
[PMID: 25534098]
[76]
Sun X, He L, Lu K, et al. he effect of arsenic trioxide on invasion of human tongue squamous carcinoma cell line CAL-27. Int J Stomatology 2014; 41: 541-5.
[77]
Wang T, Zhang Z, Wang L, et al. Effets of VPA combining with arsenic trioxide on the expressions of VEGF, NF-κB and MMP-9 in NB4 cell line. Basic & Clinical Medicine 2014; 34(3): 328-31.
[78]
Wang GZ, Zhang W, Fang ZT, et al. Arsenic trioxide: Marked suppression of tumor metastasis potential by inhibiting the transcription factor Twist in vivo and in vitro. J Cancer Res Clin Oncol 2014; 140(7): 1125-36.
[http://dx.doi.org/10.1007/s00432-014-1659-6] [PMID: 24756364]
[79]
Wang X, Jiang F, Mu J, et al. Arsenic trioxide attenuates the invasion potential of human liver cancer cells through the demethylation activated microRNA-491. Toxicol Lett 2014; 227(2): 75-83.
[http://dx.doi.org/10.1016/j.toxlet.2014.03.016] [PMID: 24680928]
[80]
Han Y, Zhang L, Cheng H. Effects of FOXO3a on the expression of β-catenin in colorecatl cancer cells exposed to As2O3. Acta Academiae Medicinae Xuzhou 2014; 258-61.
[81]
Li H, Wang Y, Xu W, et al. Arsenic trioxide inhibits DNA methyltransferase and restores TMS1 gene expression in K562 cells. Acta Haematol 2015; 133(1): 18-25.
[http://dx.doi.org/10.1159/000362683] [PMID: 24993472]
[82]
Zhang L, Kim S, Ding W, et al. Arsenic sulfide inhibits cell migration and invasion of gastric cancer in vitro and in vivo. Drug Des Devel Ther 2015; 9: 5579-90.
[PMID: 26487802]
[83]
Zheng L, Jiang H, Zhang ZW, et al. Arsenic trioxide inhibits viability and induces apoptosis through reactivating the Wnt inhibitor secreted frizzled related protein-1 in prostate cancer cells. OncoTargets Ther 2016; 9: 885-94.
[PMID: 26966376]
[84]
Rea M, Jiang T, Eleazer R, Eckstein M, Marshall AG, Fondufe MYN. Quantitative mass spectrometry reveals changes in histone H2B variants as cells undergo inorganic arsenic-mediated cellular transformation. Mol Cell Proteomics 2016; 15(7): 2411-22.
[http://dx.doi.org/10.1074/mcp.M116.058412] [PMID: 27169413]
[85]
Pan C, Zhu D, Zhuo J, et al. Role of signal regulatory protein α in arsenic trioxide-induced promyelocytic leukemia cell apoptosis. Sci Rep 2016; 6(1): 23710.
[http://dx.doi.org/10.1038/srep23710] [PMID: 27010069]
[86]
Li XY, Li Y, Zhang L, Liu X, Feng L, Wang X. The antitumor effects of arsenic trioxide in mantle cell lymphoma via targeting Wnt/β-catenin pathway and DNA methyltransferase-1. Oncol Rep 2017; 38(5): 3114-20.
[http://dx.doi.org/10.3892/or.2017.5945] [PMID: 28901456]
[87]
Liu Q, Pei R, Qian L, et al. Effects of tetra arsenic oxide on proliferation, migration and invasion of human breast cancer MCF-7 cells. Zhongguo Zhongyiyao Xinxi Zazhi 2017; 24: 44-8.
[88]
Qiu F, Wang X, Zhao J, et al. Mechanism of sodium arsenite by Wnt signaling pathway inhibits the proliferation of oral squamous cell carcinoma and promote apoptosis. Chinese J Biochem Pharmaceut 2017; 37: 12-6.
[89]
He J, Wang F, Luo F, et al. Effects of long term low and high dose sodium arsenite exposure in human transitional cells. Am J Transl Res 2017; 9(2): 416-28.
[PMID: 28337271]
[90]
Feng T, Xu J, He P, Chen Y, Fang R, Shao X. Decrease in stathmin expression by arsenic trioxide inhibits the proliferation and invasion of osteosarcoma cells via the MAPK signal pathway. Oncol Lett 2017; 14(2): 1333-40.
[http://dx.doi.org/10.3892/ol.2017.6347] [PMID: 28789348]
[91]
Chen N, Zhao M, Chen L, et al. The effect of arsenic trioxide (As2O3) in combination with hyperthermia on gastric cancer cells SGC-7901. J Mod Oncol 2017; 25: 3952-6.
[92]
Wang Y, Wang Z, Li H, et al. Arsenic trioxide increases expression of secreted frizzled-related protein 1 gene and inhibits the WNT/β-catenin signaling pathway in Jurkat cells. Exp Ther Med 2017; 13(5): 2050-5.
[http://dx.doi.org/10.3892/etm.2017.4184] [PMID: 28565807]
[93]
Zhang P, Zhao X, Zhang W, et al. Leukemia associated gene MLAA-34 reduces arsenic trioxide-induced apoptosis in hela cells via activation of the Wnt/β-catenin signaling pathway. PLoS One 2017; 12(10): e0186868.
[http://dx.doi.org/10.1371/journal.pone.0186868] [PMID: 29059232]
[94]
Liu Q, Pei R, Qian L, et al. HER-2/EGFR,the major targets for anti-metastasis effect of tetraarsenic oxide on SKBR3 breast cancer cells. J Chin Pharm Sci 2017; 26: 87-94.
[95]
Bian X, Sun G. Decitabine combined with arsenic trioxide effects the expression of P15INK4B and DNA methyltransferase in liver cancer SMMC-7721 cell line. Zhejiang J Integrat Trad Chinese West Med 2018; 28: 924-7.
[96]
Guo T, Li H, Pang H, et al. Effect and mechanism of arsenic trioxide combined with resveratrol on invasion and migration of lung cancer cells. Zhongguo Laonianxue Zazhi 2018; 38: 2972-4.
[97]
Zhang L, Liu L, Zhan S, et al. Arsenic trioxide suppressed migration and angiogenesis by targeting FOXO3a in gastric cancer cells. Int J Mol Sci 2018; 19(12): 3739.
[http://dx.doi.org/10.3390/ijms19123739] [PMID: 30477221]
[98]
Wang X, Zhang G, Zhao C, et al. The molecular mechanism exploration of As2O3 combined with tanshinone IIA on colon cancer cells. Modern Medicine Journal of China 2018; 20: 5-8.
[99]
Zhang F, Zhang CM, Li S, et al. Low dosage of arsenic trioxide inhibits vasculogenic mimicry in hepatoblastoma without cell apoptosis. Mol Med Rep 2018; 17(1): 1573-82.
[PMID: 29138840]
[100]
Zhao Y, Onda K, Sugiyama K, et al. Antitumor effects of arsenic disulfide on the viability, migratory ability, apoptosis and autophagy of breast cancer cells. Oncol Rep 2019; 41(1): 27-42.
[PMID: 30320388]
[101]
Zhou P, Wang Y, Huang G, Li Y. Effects of arsenic trioxide on migration and invasion of human ovarian cancer SKOV3 cells and study on related molecular mechanism. Pharma Care Res 2019; 19(2): 93-7.
[http://dx.doi.org/10.5428/pcar20190204]
[102]
Chao R, Hu X, Zhu S, et al. Effects of matrine combined with chemotherapeutic drugs on proliferation and invasion of human acute myeloid leukemia HL-60 Cells. World Chinese Med 2019; 14: 2910-3.
[103]
Fan Z, He J, Fu T, et al. Arsenic trioxide inhibits EMT in hepatocellular carcinoma by promoting lncRNA MEG3 via PKM2. Biochem Biophys Res Commun 2019; 513(4): 834-40.
[http://dx.doi.org/10.1016/j.bbrc.2019.04.081] [PMID: 31003765]
[104]
Xu W, Tao H, Zhang Q. Effect of Six1 gene on As2O3 induced apoptosis and ROS level in oral squamous cell carcinoma. J Clinic Exper Med 2019; 18: 1607-11.
[105]
He J, Xu B, Gao W, et al. Effects of arsenic trioxide on migration, invasion and apoptosis of hepatocellular carcinoma HepG2 cells. Sheng Wu I Hsueh Kung Cheng Hsueh Tsa Chih 2020; 37(1): 105-11.
[PMID: 32096383]
[106]
Huang C, Lee Y, Chiou J, et al. Arsenic trioxide induced p38 MAPK and Akt mediated MCL1 downregulation causes apoptosis of BCR-ABL1 positive leukemia cells. Toxicol Appl Pharm 2020; 397.
[107]
Sathua K, Srivastava S, Flora SJS. MiADMSA ameliorate arsenic induced urinary bladder carcinogenesis in vivo and in vitro. Biomed Pharmacother 2020; 128: 110257.
[http://dx.doi.org/10.1016/j.biopha.2020.110257] [PMID: 32474354]
[108]
Duan X, Zhao G, Han X, et al. Arsenic trioxide loaded CalliSpheres: In vitro study of drug release and antitumor activity, and in vivo study of pharmacokinetics, treatment efficacy and safety in liver cancer. Oncol Rep 2021; 46(1): 124.
[http://dx.doi.org/10.3892/or.2021.8075] [PMID: 33982781]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy