Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Fabrication and Applications of Polymeric Nanoparticles for Herbal Drug Delivery and Targeting

Author(s): Dipthi Shree*, Chinam N. Patra and Biswa M. Sahoo

Volume 9, Issue 5, 2023

Published on: 20 October, 2022

Article ID: e180822207632 Pages: 11

DOI: 10.2174/2215083808666220818112031

Price: $65

Abstract

Background and Objective: In the pharmaceutical era, nanoscience and nanotechnology have been revolutionary as substantial and scientific growth with the development of several innovative nanocarriers to amplify the therapeutic worth. In particular, the invention of nanomedicine is impetuous to developing nanocarriers, enabling the phytoconstituents to encapsulate within the smart carrier to boost nanotherapeutics. Thus, herbal drugs molded-in novel nanocarriers have been extensively investigated as they are the most promising drug delivery system. Herbal-based polymeric nanoparticles are the most prominent and emerging polymeric nanocarrier that have gained much research attention in the field of novel drug delivery systems.

Methods: In herbal drug delivery technologies, the advancement of phytopharmacological science has led to the elucidation of the composition of phytoconstituents and their biological activities. By fabricating herbal medicaments in nano-size-form, there are considerable chances to circumvent poor bioavailability, in vivo degradation and toxicity, uneven drug distribution, intestinal absorption, and nonspecific site of action. The combinatorial strategy of employing both herbal drugs and nanotechnology enables potentiation of the therapeutics, reducing the required dose and unwanted toxic effects. The herbal nanosystem has the potential to convey the active constituents in a controlled manner to the targeted site with greater therapeutic value compared to the conventional system. In this current manuscript, sterling efforts were made to gather information from the existing original research papers using databases viz., Google Scholar, Pubmed, Embase, Scopus, Baidu, Web of Science, etc. Furthermore, painstaking efforts were made to compile and update potential pharmaceutical and cosmeceutical applications of herbal-based polymeric nanoparticles in the form of tables. This article portrays a comprehensive recent finding that formulation scientists are working on novel herbal nanocarriers to pave the way for future research in the field of pharmaceutical nanotechnology.

Conclusion: The herbal extracts encapsulated within the nanocapsule or nanosphere are an effective and emerging way for the herbal drug delivery to the intended site of action with pronounced therapeutic worth. Therefore, extensive scientific research is still being carried out in the field of herbal drug technology, which offers several positive aspects to impart the phytoconstituents to the intended sites and is a considerably promising herbal drug delivery system for controlled drug delivery and targeting.

Keywords: Herbal medicine, novel carrier, therapeutic efficacy, drug targeting, bioavailability, nanocapsule, nanosphere.

Graphical Abstract
[1]
Pan SY, Litscher G, Gao SH, et al. Historical perspective of traditional indigenous medical practices: The current renaissance and conservation of herbal resources. Evid Based Complement Alternat Med 2014; 2014: 525340.
[http://dx.doi.org/10.1155/2014/525340] [PMID: 24872833]
[2]
Chamundeeswari M, Jeslin J, Verma ML, et al. Nanocarriers for drug delivery applications. Environ Chem Lett 2019; 17: 849-65.
[http://dx.doi.org/10.1007/s10311-018-00841-1]
[3]
Kesarwani K, Gupta R, Mukerjee A. Bioavailability enhancers of herbal origin: An overview. Asian Pac J Trop Biomed 2013; 3(4): 253-66.
[http://dx.doi.org/10.1016/S2221-1691(13)60060-X] [PMID: 23620848]
[4]
Kyriakoudi A, Spanidi E, Mourtzinos I, Gardikis K. Innovative delivery systems loaded with plant bioactive ingredients: Formulation approaches and applications. Plants 2021; 10(6): 1238.
[http://dx.doi.org/10.3390/plants10061238] [PMID: 34207139]
[5]
Bonifácio BV, Silva PBD, Ramos MADS, Negri KMS, Bauab TM, Chorilli M. Nanotechnology-based drug delivery systems and herbal medicines: A review. Int J Nanomedicine 2014; 9: 1-15.
[PMID: 24363556]
[6]
Mughees M, Wajid S. Herbal based polymeric nanoparticles as a therapeutic remedy for breast cancer. Anticancer Agents Med Chem 2021; 21(4): 433-44.
[http://dx.doi.org/10.2174/1871520620666200619171616] [PMID: 32560619]
[7]
Chenthamara D, Subramaniam S, Ramakrishnan SG, et al. Therapeutic efficacy of nanoparticles and routes of administration. Biomater Res 2019; 23: 20.
[http://dx.doi.org/10.1186/s40824-019-0166-x] [PMID: 31832232]
[8]
Rahman HS, Othman HH, Hammadi NI, et al. Novel drug delivery systems for loading of natural plant extracts and their biomedical applications. Int J Nanomedicine 2020; 15: 2439-83.
[http://dx.doi.org/10.2147/IJN.S227805] [PMID: 32346289]
[9]
Obeid MA, Al Qaraghuli MM, Alsaadi M, Alzahrani AR, Niwasabutra K, Ferro VA. Delivering natural products and biotherapeutics to improve drug efficacy. Ther Deliv 2017; 8(11): 947-56.
[http://dx.doi.org/10.4155/tde-2017-0060] [PMID: 29061102]
[10]
Harika P, Deepthi BVP, Vinitha B, Baherji R, Ali J, Sharma JVC. Herbal nanoparticles. World J Pharm & Med Res 2021; 7(3): 127-30.
[11]
Yadav D, Suri S, Choudhary AA, Sikender M. Hemant, Beg NM. Novel approach: Herbal remedies and natural products in pharmaceutical science as nano drug delivery systems. Int J Pharm Tech 2011; 3: 3092-116.
[12]
Mathur M, Vyas G. Role of nanoparticles for production of smart herbal drug-An overview. Indian J Nat Prod Resour 2013; 4(4): 329-38.
[13]
Zielińska A, Carreiró F, Oliveira AM, et al. Polymeric nanoparticles: Production, characterization, toxicology and ecotoxicology. Molecules 2020; 25(16): 3731.
[http://dx.doi.org/10.3390/molecules25163731] [PMID: 32824172]
[14]
Jawahar N, Meyyanathan SN. Polymeric nanoparticles for drug delivery and targeting: A comprehensive review. Int J Health Allied Sci 2012; 1(4): 217-23.
[http://dx.doi.org/10.4103/2278-344X.107832]
[15]
Din FU, Aman W, Ullah I, et al. Effective use of nanocarriers as drug delivery systems for the treatment of selected tumors. Int J Nanomedicine 2017; 12: 7291-309.
[http://dx.doi.org/10.2147/IJN.S146315] [PMID: 29042776]
[16]
Chiriac AP, Rusu AG, Nita LE, Chiriac VM, Neamtu I, Sandu A. Polymeric carriers designed for encapsulation of essential oils with biological activity. Pharmaceutics 2021; 13(5): 631.
[http://dx.doi.org/10.3390/pharmaceutics13050631] [PMID: 33925127]
[17]
Qadir A, Khan N, Singh SP, Akhtar J, Arif M. Nanotechnological approaches to herbal drugs used in cancer therapy. Int J Pharm Sci Res 2015; 6(10): 4137-44.
[18]
Essa D, Kondiah PPD, Choonara YE, Pillay V. The design of poly (lactide-co-glycolide) nanocarriers for medical applications. Front Bioeng Biotechnol 2020; 8: 48.
[http://dx.doi.org/10.3389/fbioe.2020.00048] [PMID: 32117928]
[19]
Gunasekaran T, Haile T, Nigusse T, Dhanaraju MD. Nanotechnology: An effective tool for enhancing bioavailability and bioactivity of phytomedicine. Asian Pac J Trop Biomed 2014; 4(1) (Suppl. 1): S1-7.
[http://dx.doi.org/10.12980/APJTB.4.2014C980] [PMID: 25183064]
[20]
Kulkarni GT. Herbal drug delivery systems: An emerging area in herbal drug research. J chronother Drug Deliv 2011; 2(3): 113-9.
[21]
Ruirui Z, He J, Xu X, et al. PLGA-based drug delivery system for combined therapy of cancer: Research progress. Mater Res Express 2021; 8(12): 122002.
[http://dx.doi.org/10.1088/2053-1591/ac3f5e]
[22]
Gadad AP, Vannuruswamy G, Sharath CP, Dandagi PM, Mastiholimath VS. Study of different properties and applications of Poly Lactic-co-Glycolic Acid (PLGA) nanotechnology: An overview. Indian Drugs 2012; 49(12): 5-22.
[23]
Shitole AA, Sharma N, Giram P, et al. LHRH-conjugated, PEGylated, poly-lactide-co-glycolide nanocapsules for targeted delivery of combinational chemotherapeutic drugs Docetaxel and Quercetin for prostate cancer. Mater Sci Eng C 2020; 114: 111035.
[http://dx.doi.org/10.1016/j.msec.2020.111035] [PMID: 32994029]
[24]
Sharma N, Madan P, Lin S, et al. Effect of process and formulation variables on the preparation of parenteral paclitaxel-loaded biodegradable polymeric nanoparticles: A co-surfactant study. Asian J Pharm Sci 2015; 11(3): 1-13.
[25]
Ansari SH, Islam F, Sameem M. Influence of nanotechnology on herbal drugs: A review. J Adv Pharm Technol Res 2012; 3(3): 142-6.
[http://dx.doi.org/10.4103/2231-4040.101006] [PMID: 23057000]
[26]
Patra JK, Das G, Fraceto LF, et al. Nano based drug delivery systems: Recent developments and future prospects. J Nanobiotechnology 2018; 16(1): 71.
[http://dx.doi.org/10.1186/s12951-018-0392-8] [PMID: 30231877]
[27]
Devi VK, Jain N, Valli KS. Importance of novel drug delivery systems in herbal medicines. Pharmacogn Rev 2010; 4(7): 27-31.
[http://dx.doi.org/10.4103/0973-7847.65322] [PMID: 22228938]
[28]
Kaur G, Banerjee S, Kalia A, Christina E. Application of nanoparticles and nanotools in pharmaceutics and medicine. Biol Forum 2021; 13(1): 690-702.
[29]
Sinha B, Müller RH, Möschwitzer JP. Bottom-up approaches for preparing drug nanocrystals: Formulations and factors affecting particle size. Int J Pharm 2013; 453(1): 126-41.
[http://dx.doi.org/10.1016/j.ijpharm.2013.01.019] [PMID: 23333709]
[30]
Fessi H, Puisieux F, Devissaguet JP, Ammoury N, Benita S. Nanocapsule formation by interfacial polymer deposition following solvent displacement. Int J Pharm 1989; 55(1): R1-4.
[http://dx.doi.org/10.1016/0378-5173(89)90281-0]
[31]
Krishnamoorthy K, Mahalingam M. Selection of a suitable method for the preparation of polymeric nanoparticles: Multi-criteria decision making approach. Adv Pharm Bull 2015; 5(1): 57-67.
[PMID: 25789220]
[32]
El-Hammadi MM, Arias JL. Advanced engineering approaches in the development of PLGA-based nanomedicines. In: Aliofkhazraei M, Ed. Handbook of Nanoparticles. Cham: Springer 2016; 39: pp. 1009-39.
[33]
Sharma S, Parmar A, Kori S, Sandhir R. PLGA-based nanoparticles: A new paradigm in biomedical applications. TrAC: Trends Analyt Chem 2016; 80: 30-40.
[http://dx.doi.org/10.1016/j.trac.2015.06.014]
[34]
Rezvantalab S, Drude NI, Moraveji MK, et al. PLGA-based nanoparticles in cancer treatment. Front Pharmacol 2018; 9: 1260.
[http://dx.doi.org/10.3389/fphar.2018.01260] [PMID: 30450050]
[35]
Roointan A, Kianpour K, Memari F, Gandomani M, Hayat SMG, Mohammadi-Samani S. Poly (lactic-co-glycolic acid): The most ardent and flexible candidate in biomedicine! Int J Polym Mater Polym Biomater 2018; 67(17): 1028-49.
[http://dx.doi.org/10.1080/00914037.2017.1405350]
[36]
Swider E, Koshkina O, Tel J, Cruz LJ, de Vries IJM, Srinivas M. Customizing poly (lactic-co-glycolic acid) particles for biomedical applications. Acta Biomater 2018; 73: 38-51.
[http://dx.doi.org/10.1016/j.actbio.2018.04.006] [PMID: 29653217]
[37]
Elmowafy EM, Tiboni M, Soliman ME. Biocompatibility, biodegradation and biomedical applications of poly (lactic acid)/poly (lactic-co-glycolic acid) micro and nanoparticles. J Pharm Investig 2019; 49: 347-80.
[http://dx.doi.org/10.1007/s40005-019-00439-x]
[38]
Wang Y, Li P, Truong-Dinh TT, Zhang J, Kong L. Manufacturing techniques and surface engineering of polymer based nanoparticles for targeted drug delivery to cancer. Nanomaterials 2016; 6(2): 26.
[http://dx.doi.org/10.3390/nano6020026] [PMID: 28344283]
[39]
Lammari N, Louaer O, Meniai AH, Elaissari A. Encapsulation of essential oils via nanoprecipitation process: Overview, progress, challenges and prospects. Pharmaceutics 2020; 12(5): 431.
[http://dx.doi.org/10.3390/pharmaceutics12050431] [PMID: 32392726]
[40]
Ferreira LS, Trierweiler JO. Modeling and simulation of the polymeric nanocapsule formation process. IFAC Proc Vol 2009; 42(11): 405-10.
[http://dx.doi.org/10.3182/20090712-4-TR-2008.00064]
[41]
Sternling CV, Scriven LE. Interfacial turbulence: Hydrodynamic instability and the marangoni effect. AIChE J 1959; 19595: 514-23.
[http://dx.doi.org/10.1002/aic.690050421]
[42]
Joye IJ, McClements DJ. Production of nanoparticles by anti-solvent precipitation for use in food systems. Trends Food Sci Technol 2013; 34(2): 109-23.
[http://dx.doi.org/10.1016/j.tifs.2013.10.002]
[43]
Sugimoto T. Preparation of monodispersed colloidal particles. Adv Colloid Interface Sci 1987; 28: 65-108.
[http://dx.doi.org/10.1016/0001-8686(87)80009-X]
[44]
Martínez Rivas CJ, Tarhini M, Badri W, et al. Nanoprecipitation process: From encapsulation to drug delivery. Int J Pharm 2017; 532(1): 66-81.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.064] [PMID: 28801107]
[45]
Belda-Galbis M, Pina-Perez MC, Leufven A, Martinez A, Rodrigo D. Impact assessment of carvacroland citral effect on Escherichia coli K12 and Listeria innocua growth. Food Control 2013; 33(2): 536-44.
[http://dx.doi.org/10.1016/j.foodcont.2013.03.038]
[46]
Sah H, Thoma LA, Desu HR, Sah E, Wood GC. Concepts and practices used to develop functional PLGA-based nanoparticulate systems. Int J Nanomedicine 2013; 8: 747-65.
[http://dx.doi.org/10.2147/IJN.S40579] [PMID: 23459088]
[47]
El-Hammadi MM, Arias JL. Recent advances in the surface functionalization of PLGA-based nanomedicines. Nanomaterials (Basel) 2022; 12(3): 354.
[http://dx.doi.org/10.3390/nano12030354] [PMID: 35159698]
[48]
Heinz H, Pramanik C, Heinz O, et al. Nanoparticle decoration with surfactants: Molecular interactions, assembly, and applications. Surf Sci Rep 2017; 72: 1-58.
[http://dx.doi.org/10.1016/j.surfrep.2017.02.001]
[49]
Derman S. Caffeic acid phenethyl ester loaded PLGA nanoparticles: Effect of various process parameters on reaction yield, encapsulation efficiency, and particle size. J Nanomater 2015; 16(1): 318.
[http://dx.doi.org/10.1155/2015/341848]
[50]
Mehanny M, Hathout RM, Geneidi AS, Mansour S. Studying the effect of physically-adsorbed coating polymers on the cytotoxic activity of optimized bisdemethoxycurcumin loaded-PLGA nanoparticles. J Biomed Mater Res A 2017; 105(5): 1433-45.
[http://dx.doi.org/10.1002/jbm.a.36028] [PMID: 28177570]
[51]
Behzadi S, Serpooshan V, Tao W, et al. Cellular uptake of nanoparticles: Journey inside the cell. Chem Soc Rev 2017; 46(14): 4218-44.
[http://dx.doi.org/10.1039/C6CS00636A] [PMID: 28585944]
[52]
Jiménez-López J, El-Hammadi MM, Ortiz R, et al. A novel nanoformulation of PLGA with high non-ionic surfactant content improves in vitro and in vivo PTX activity against lung cancer. Pharmacol Res 2019; 141: 451-65.
[http://dx.doi.org/10.1016/j.phrs.2019.01.013] [PMID: 30634051]
[53]
Bose RJC, Lee SH, Park H. Lipid-based surface engineering of PLGA nanoparticles for drug and gene delivery applications. Biomater Res 2016; 20: 34.
[http://dx.doi.org/10.1186/s40824-016-0081-3] [PMID: 27807476]
[54]
Campani V, Giarra S, de Rosa G. Lipid-based core-shell nanoparticles: Evolution and potentialities in drug delivery. OpenNano 2018; 3: 5-17.
[http://dx.doi.org/10.1016/j.onano.2017.12.001]
[55]
Baek JS, Tan CH, Ng NKJ, Yeo YP, Rice SA, Loo SCJ. A programmable lipid-polymer hybrid nanoparticle system for localized, sustained antibiotic delivery to Gram-positive and Gram-negative bacterial biofilms. Nanoscale Horiz 2018; 3(3): 305-11.
[http://dx.doi.org/10.1039/C7NH00167C] [PMID: 32254078]
[56]
Albisa A, Piacentini E, Sebastian V, Arruebo M, Santamaria J, Giorno L. Preparation of drug-loaded PLGA-PEG nanoparticles by membrane-assisted nanoprecipitation. Pharm Res 2017; 34(6): 1296-308.
[http://dx.doi.org/10.1007/s11095-017-2146-y] [PMID: 28342057]
[57]
Martín-Banderas L, Muñoz-Rubio I, Prados J, et al. In vitro and in vivo evaluation of Δ⁹-tetrahidrocannabinol/PLGA nanoparticles for cancer chemotherapy. Int J Pharm 2015; 487(1-2): 205-12.
[http://dx.doi.org/10.1016/j.ijpharm.2015.04.054] [PMID: 25899283]
[58]
Martín-Banderas L, Muñoz-Rubio I, Álvarez-Fuentes J, et al. Engineering of Δ9-tetrahydrocannabinol delivery systems based on surface modified-PLGA nanoplatforms. Colloids Surf B Biointerfaces 2014; 123: 114-22.
[http://dx.doi.org/10.1016/j.colsurfb.2014.09.002] [PMID: 25262411]
[59]
Huang N, Lu S, Liu X-G, Zhu J, Wang Y-J, Liu R-T. PLGA nanoparticles modified with a BBB-penetrating peptide co-delivering Aβ generation inhibitor and curcumin attenuate memory deficits and neuropathology in Alzheimer’s disease mice. Oncotarget 2017; 8(46): 81001-13.
[http://dx.doi.org/10.18632/oncotarget.20944] [PMID: 29113362]
[60]
Cruz LJ, Tacken PJ, Fokkink R, Figdor CG. The influence of PEG chain length and targeting moiety on antibody-mediated delivery of nanoparticle vaccines to human dendritic cells. Biomaterials 2011; 32(28): 6791-803.
[http://dx.doi.org/10.1016/j.biomaterials.2011.04.082] [PMID: 21724247]
[61]
Shi L, Zhang J, Zhao M, et al. Effects of polyethylene glycol on the surface of nanoparticles for targeted drug delivery. Nanoscale 2021; 13(24): 10748-64.
[http://dx.doi.org/10.1039/D1NR02065J] [PMID: 34132312]
[62]
Fang Y, Xue J, Gao S, et al. Cleavable PEGylation: A strategy for overcoming the “PEG dilemma” in efficient drug delivery. Drug Deliv 2017; 24 (sup1): 22-32.
[http://dx.doi.org/10.1080/10717544.2017.1388451] [PMID: 29069920]
[63]
Czekanska EM, Geng J, Glinka M, et al. Combinatorial delivery of bioactive molecules by a nanoparticle-decorated and functionalized biodegradable scaffold. J Mater Chem B Mater Biol Med 2018; 6(27): 4437-45.
[http://dx.doi.org/10.1039/C8TB00474A] [PMID: 32254661]
[64]
Pucci A, Locatelli E, Ponti J, Uboldi C, Molinari V, Comes Franchini M. Click chemistry on the surface of PLGA-b-PEG polymeric nanoparticles: A novel targetable fluorescent imaging nanocarrier. J Nanopart Res 2013; 15: 1818.
[http://dx.doi.org/10.1007/s11051-013-1818-8]
[65]
Esfandyari-Manesh M, Abdi M, Talasaz AH, Ebrahimi SM, Atyabi F, Dinarvand R. S2P peptide-conjugated PLGA-Maleimide-PEG nanoparticles containing Imatinib for targeting drug delivery to atherosclerotic plaques. Daru 2020; 28(1): 131-8.
[http://dx.doi.org/10.1007/s40199-019-00324-w] [PMID: 31919789]
[66]
Venugopal V, Krishnan S, Palanimuthu VR, et al. Anti-EGFR anchored paclitaxel loaded PLGA nanoparticles for the treatment of triple negative breast cancer. In-vitro and in-vivo anticancer activities. PLoS One 2018; 13(11): e0206109.
[http://dx.doi.org/10.1371/journal.pone.0206109] [PMID: 30408068]
[67]
Thamake SI, Raut SL, Gryczynski Z, Ranjan AP, Vishwanatha JK. Alendronate coated poly-lactic-co-glycolic acid (PLGA) nanoparticles for active targeting of metastatic breast cancer. Biomaterials 2012; 33(29): 7164-73.
[http://dx.doi.org/10.1016/j.biomaterials.2012.06.026] [PMID: 22795543]
[68]
Chittasupho C, Xie SX, Baoum A, Yakovleva T, Siahaan TJ, Berkland CJ. ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. Eur J Pharm Sci 2009; 37(2): 141-50.
[http://dx.doi.org/10.1016/j.ejps.2009.02.008] [PMID: 19429421]
[69]
Zhou X, Yang G, Guan F. Biological functions and analytical strategies of sialic acids in tumor. Cells 2020; 9(2): 273.
[http://dx.doi.org/10.3390/cells9020273] [PMID: 31979120]
[70]
Zhang T, She Z, Huang Z, Li J, Luo X, Deng Y. Application of sialic acid/polysialic acid in the drug delivery systems. Asian J Pharm Sci 2014; 9: 75-81.
[http://dx.doi.org/10.1016/j.ajps.2014.03.001]
[71]
Xiao G, Zou J, Xiao X. Sialic acid-conjugated PLGA nanoparticles enhance the protective effect of lycopene in chemotherapeutic drug-induced kidney injury. IET Nanobiotechnol 2020; 14(4): 341-5.
[http://dx.doi.org/10.1049/iet-nbt.2019.0363] [PMID: 32463025]
[72]
Nie X, Liu Y, Li M, et al. SP94 peptide-functionalized PEG-PLGA nanoparticle loading with cryptotanshinone for targeting therapy of hepatocellular carcinoma. AAPS PharmSciTech 2020; 21(4): 124.
[http://dx.doi.org/10.1208/s12249-020-01655-7] [PMID: 32342227]
[73]
Ramezanpour M, Leung SSW, Delgado-Magnero KH, Bashe BYM, Thewalt J, Tieleman DP. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. Biochim Biophys Acta 2016; 1858 (7 Pt B): 1688-709.
[http://dx.doi.org/10.1016/j.bbamem.2016.02.028] [PMID: 26930298]
[74]
Frenkel D, Smit B. Understanding Molecular Simulation: From Algorithms to Applications. (2nd Ed.), Cambridge, Massachusetts: Academic Press 2001.
[75]
Karplus M, McCammon JA. Molecular dynamics simulations of biomolecules. Nat Struct Biol 2002; 9(9): 646-52.
[http://dx.doi.org/10.1038/nsb0902-646] [PMID: 12198485]
[76]
van Gunsteren WF, Dolenc J, Mark AE. Molecular simulation as an aid to experimentalists. Curr Opin Struct Biol 2008; 18(2): 149-53.
[http://dx.doi.org/10.1016/j.sbi.2007.12.007] [PMID: 18280138]
[77]
Velinova M, Sengupta D, Tadjer AV, Marrink SJ. Sphere-to-rod transitions of nonionic surfactant micelles in aqueous solution modeled by molecular dynamics simulations. Langmuir 2011; 27(23): 14071-7.
[http://dx.doi.org/10.1021/la203055t] [PMID: 21981373]
[78]
Shinoda W, DeVane R, Klein ML. Computer simulation studies of self-assembling macromolecules. Curr Opin Struct Biol 2012; 22(2): 175-86.
[http://dx.doi.org/10.1016/j.sbi.2012.01.011] [PMID: 22402497]
[79]
Messina PV, Besada-Porto JM, Ruso JM. Self-assembly drugs: From micelles to nanomedicine. Curr Top Med Chem 2014; 14(5): 555-71.
[http://dx.doi.org/10.2174/1568026614666140121112118] [PMID: 24444168]
[80]
Aoun B, Sharma VK, Pellegrini E, Mitra S, Johnson M, Mukhopadhyay R. Structure and dynamics of ionic micelles: MD simulation and neutron scattering study. J Phys Chem B 2015; 119(15): 5079-86.
[http://dx.doi.org/10.1021/acs.jpcb.5b00020] [PMID: 25803564]
[81]
Vuković L, Khatib FA, Drake SP, et al. Structure and dynamics of highly PEG-ylated sterically stabilized micelles in aqueous media. J Am Chem Soc 2011; 133(34): 13481-8.
[http://dx.doi.org/10.1021/ja204043b] [PMID: 21780810]
[82]
Huynh L, Neale C, Pomes R, Allen C. Systematic design of unimolecular star copolymer micelles using molecular dynamics simulations. Soft Matter 2010; 6: 5491-501.
[http://dx.doi.org/10.1039/c001988g]
[83]
Jiwani M, Pathak H, Mehul R, Solanki HK, Sarkar D. Recent approaches in computational drug delivery system. Res Rev Drug Drug Develop 2019; 2(1): 1-10.
[http://dx.doi.org/10.5281/zenodo.3378213]
[84]
Tian W, Ma YQ. Insights into the endosomal escape mechanism via investigation of dendrimers-membrane interactions. Soft Matter 2012; 8: 6378-84.
[http://dx.doi.org/10.1039/c2sm25538c]
[85]
Martinez-Veracoechea FJ, Frenkel D. Designing super selectivity in multivalent nano-particle binding. Proc Natl Acad Sci USA 2011; 108(27): 10963-8.
[http://dx.doi.org/10.1073/pnas.1105351108] [PMID: 21690358]
[86]
Makarucha AJ, Todorova N, Yarovsky I. Nanomaterials in biological environment: A review of computer modelling studies. Eur Biophys J 2011; 40(2): 103-15.
[http://dx.doi.org/10.1007/s00249-010-0651-6] [PMID: 21153635]
[87]
Gupta J, Nunes C, Vyas S, Jonnalagadda S. Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations. J Phys Chem B 2011; 115(9): 2014-23.
[http://dx.doi.org/10.1021/jp108540n] [PMID: 21306175]
[88]
Wang S, Dormidontova EE. Nanoparticle design optimization for enhanced targeting: Monte Carlo simulations. Biomacromolecules 2010; 11(7): 1785-95.
[http://dx.doi.org/10.1021/bm100248e] [PMID: 20536119]
[89]
Lai L, Barnard AS. Functionalized nanodiamonds for biological and medical applications. J Nanosci Nanotechnol 2015; 15(2): 989-99.
[http://dx.doi.org/10.1166/jnn.2015.9735] [PMID: 26353604]
[90]
Tian F, Yue T, Li Y, Zhang X. Computer simulation studies on the interactions between nanoparticles and cell membrane. Sci China Chem 2014; 57: 1662-71.
[http://dx.doi.org/10.1007/s11426-014-5231-7]
[91]
Li Y, Yue T, Yang K, Zhang X. Molecular modeling of the relationship between nanoparticle shape anisotropy and endocytosis kinetics. Biomaterials 2012; 33(19): 4965-73.
[http://dx.doi.org/10.1016/j.biomaterials.2012.03.044] [PMID: 22483010]
[92]
Ding HM, Ma YQ. Theoretical and computational investigations of nanoparticle-biomembrane interactions in cellular delivery. Small 2015; 11(9-10): 1055-71.
[http://dx.doi.org/10.1002/smll.201401943] [PMID: 25387905]
[93]
Li Y, Zhang X, Cao D. Nanoparticle hardness controls the internalization pathway for drug delivery. Nanoscale 2015; 7(6): 2758-69.
[http://dx.doi.org/10.1039/C4NR05575F] [PMID: 25585060]
[94]
Van Lehn RC, Alexander-Katz A. Penetration of lipid bilayers by nanoparticles with environmentally-responsive surfaces: Simulations and theory. Soft Matter 2011; 7: 11392-404.
[http://dx.doi.org/10.1039/c1sm06405c]
[95]
Ding HM, Ma YQ. Role of physicochemical properties of coating ligands in receptor-mediated endocytosis of nanoparticles. Biomaterials 2012; 33(23): 5798-802.
[http://dx.doi.org/10.1016/j.biomaterials.2012.04.055] [PMID: 22607914]
[96]
Parham S, Kharazi AZ, Bakhsheshi-Rad HR, et al. Antioxidant, antimicrobial and antiviral properties of herbal materials. Antioxidants 2020; 9(12): 1309.
[http://dx.doi.org/10.3390/antiox9121309] [PMID: 33371338]
[97]
Ajazuddin SS, Saraf S. Applications of novel drug delivery system for herbal formulations. Fitoterapia 2010; 81(7): 680-9.
[http://dx.doi.org/10.1016/j.fitote.2010.05.001] [PMID: 20471457]
[98]
Majumder J, Minko T. Multifunctional and stimuli-responsive nanocarriers for targeted therapeutic delivery. Expert Opin Drug Deliv 2021; 18(2): 205-27.
[http://dx.doi.org/10.1080/17425247.2021.1828339] [PMID: 32969740]
[99]
Zhou P, An T, Zhao C, et al. Lactosylated PLGA nanoparticles containing ϵ-polylysine for the sustained release and liver-targeted delivery of the negatively charged proteins. Int J Pharm 2015; 478(2): 633-43.
[http://dx.doi.org/10.1016/j.ijpharm.2014.12.017] [PMID: 25510599]
[100]
Ramamoorthy R, Andiappan M, Muthalagu M. Characterization of polyherbal incorporated polycaprolactone nanofibrous mat for biomedical applications. J Bioact Compat Polym 2019; 34(4-5): 401-11.
[http://dx.doi.org/10.1177/0883911519876065]
[101]
Das J, Das S, Samadder A, Bhadra K, Khuda-Bukhsh AR. Poly (lactide-co-glycolide) encapsulated extract of Phytolacca decandra demonstrates better intervention against induced lung adenocarcinoma in mice and on A549 cells. Eur J Pharm Sci 2012; 47(2): 313-24.
[http://dx.doi.org/10.1016/j.ejps.2012.06.018] [PMID: 22771545]
[102]
Jung KH, Lee JH, Park JW, et al. Resveratrol-loaded polymeric nanoparticles suppress glucose metabolism and tumor growth in vitro and in vivo. Int J Pharm 2015; 478(1): 251-7.
[http://dx.doi.org/10.1016/j.ijpharm.2014.11.049] [PMID: 25445992]
[103]
Kizilbey K. Optimization of rutin-loaded PLGA nanoparticles synthesized by single-emulsion solvent evaporation method. ACS Omega 2019; 4: 555-62.
[http://dx.doi.org/10.1021/acsomega.8b02767]
[104]
Md S, Alhakamy NA, Neamatallah T, et al. Development, characterization, and evaluation of mangostin-loaded polymeric nanoparticle gel for topical therapy in skin cancer. Gels 2021; 7(4): 230.
[http://dx.doi.org/10.3390/gels7040230] [PMID: 34842729]
[105]
Tuncer B, Mansuroglu B, Derman S. Antioxidant effect of catechin-loaded polymeric nanoparticle. Sigma J Eng & Nat Sci 2016; 34(3): 453-65.
[106]
Devi UMA, Khanam S. Preparation and characterization of herbal nanoformulation containing Andrographis paniculata extract. Int J Pharm Sci Res 2019; 10(12): 5380-5.
[107]
Timbe PPR, Motta ADSD, Isaia HA, Brandelli A. Polymeric nanoparticles loaded with Baccharis dracunculifolia DC essential oil: Preparation, characterization, and antibacterial activity in milk. J Food Process Preserv 2020; 44(9): e14712.
[http://dx.doi.org/10.1111/jfpp.14712]
[108]
Vuddanda PR, Mishra A, Singh SK, Singh S. Development of polymeric nanoparticles with highly entrapped herbal hydrophilic drug using nanoprecipitation technique: An approach of quality by design. Pharm Dev Technol 2015; 20(5): 579-87.
[http://dx.doi.org/10.3109/10837450.2014.908302] [PMID: 24831535]
[109]
Xiao B, Si X, Han MK, Viennois E, Zhang M, Merlin D. Co-delivery of camptothecin and curcumin by cationic polymeric nanoparticles for synergistic colon cancer combination chemotherapy. J Mater Chem B Mater Biol Med 2015; 3(39): 7724-33.
[http://dx.doi.org/10.1039/C5TB01245G] [PMID: 26617985]
[110]
Luu NDH, Dang LH, Bui HM, et al. Nanoencapsulation of chromolaenaodorata extract using Pluronic F127 as an effectively herbal delivery system for wound healing. J Nanomater 2021; 2021: 1-12.
[http://dx.doi.org/10.1155/2021/6663986]
[111]
Bisht S, Feldmann G, Soni S, et al. Polymeric nanoparticle-encapsulated curcumin (“nanocurcumin”): A novel strategy for human cancer therapy. J Nanobiotechnology 2007; 5(3): 3.
[http://dx.doi.org/10.1186/1477-3155-5-3] [PMID: 17439648]
[112]
Yen FL, Wu TH, Lin LT, Cham TM, Lin CC. Nanoparticles formulation of Cuscuta chinensis prevents acetaminophen-induced hepatotoxicity in rats. Food Chem Toxicol 2008; 46(5): 1771-7.
[http://dx.doi.org/10.1016/j.fct.2008.01.021] [PMID: 18308443]
[113]
Mukerjee A, Vishwanatha JK. Formulation, characterization and evaluation of curcumin-loaded PLGA nanospheres for cancer therapy. Anticancer Res 2009; 29(10): 3867-75.
[PMID: 19846921]
[114]
Mahboob T, Nawaz M, de Lourdes PM, et al. PLGA nanoparticles loaded with Gallic acid- a constituent of Leea indica against Acanthamoeba triangularis. Sci Rep 2020; 10(1): 8954.
[http://dx.doi.org/10.1038/s41598-020-65728-0] [PMID: 32488154]
[115]
Min KH, Park K, Kim YS, et al. Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy. J Control Release 2008; 127(3): 208-18.
[http://dx.doi.org/10.1016/j.jconrel.2008.01.013] [PMID: 18336946]
[116]
Moulari B, Lboutounne H, Chaumont JP, Guillaume Y, Millet J, Pellequer Y. Potentiation of the bactericidal activity of Harungana madagascariensis Lam. ex Poir. (Hypericaceae) leaf extract against oral bacteria using poly (D, L-lactide-co-glycolide) nanoparticles: In vitro study. Acta Odontol Scand 2006; 64(3): 153-8.
[http://dx.doi.org/10.1080/00016350500483152] [PMID: 16809192]
[117]
Zheng X, Kan B, Gou M, et al. Preparation of MPEG-PLA nanoparticle for honokiol delivery in vitro. Int J Pharm 2010; 386(1-2): 262-7.
[http://dx.doi.org/10.1016/j.ijpharm.2009.11.014] [PMID: 19932160]
[118]
Dhayabaran V, Margret A. Nanoparticulated formulations of St. John’s wort (Hypericum perforatum L.) as smart drug delivery system combating depression incited in mice models. J Pharm Pharmacogn Res 2017; 5(3): 187-99.
[119]
Yen FL, Wu TH, Lin LT, Cham TM, Lin CC. Naringenin-loaded nanoparticles improve the physicochemical properties and the hepatoprotective effects of naringenin in orally-administered rats with CCl(4)-induced acute liver failure. Pharm Res 2009; 26(4): 893-902.
[http://dx.doi.org/10.1007/s11095-008-9791-0] [PMID: 19034626]
[120]
Bire P, Trivedi S, Durugkar N, Umekar M. Formulation and cytotoxic characterization of Trigonella foenum loaded polymeric nanoparticles. J Drug Deliv Ther 2020; 10(4-s): 187-92.
[http://dx.doi.org/10.22270/jddt.v10i4-s.4332]
[121]
Malini DM, Kuntana YP, Furqon W, Hermawan W. Treatment of PLGA nanoparticles ointment-ethanol extract of Archidendron pauciflorum in the wound healing in diabetic mice. J Biodjati 2020; 5(2): 214-22.
[http://dx.doi.org/10.15575/biodjati.v5i2.9256]
[122]
Singh G, Pai RS. In-vitro/in-vivo characterization of trans-resveratrol-loaded nanoparticulate drug delivery system for oral administration. J Pharm Pharmacol 2014; 66(8): 1062-76.
[http://dx.doi.org/10.1111/jphp.12232] [PMID: 24779896]
[123]
Rodriguez-Luis O, Verde-Star J, Gonzalez-Horta A, et al. Preparation of polymer nanoparticles loaded with Syzygium aromaticum essential oil: An oral potential application. BLADMA 2020; 19(1): 65-76.
[124]
Wu TH, Yen FL, Lin LT, Tsai TR, Lin CC, Cham TM. Preparation, physicochemical characterization, and antioxidant effects of quercetin nanoparticles. Int J Pharm 2008; 346(1-2): 160-8.
[http://dx.doi.org/10.1016/j.ijpharm.2007.06.036] [PMID: 17689897]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy