Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Assessment of Atherosclerosis in Ischemic Stroke by means of Ultrasound of Extracranial/Intracranial Circulation and Serum, Urine, and Tissue Biomarkers

Author(s): Grigorios G. Dimas, Maria Zilakaki, Argyrios Giannopoulos, Stylianos Daios, Nikolaos Kakaletsis, Georgia Kaiafa, Triantafyllos Didangelos, Christos Savopoulos, Kyriakos Ktenidis and Thomas Tegos*

Volume 30, Issue 10, 2023

Published on: 27 September, 2022

Page: [1107 - 1121] Pages: 15

DOI: 10.2174/0929867329666220817123442

Price: $65

Open Access Journals Promotions 2
Abstract

It is a common practice to take into consideration age, diabetes, smoking, treated and untreated systolic blood pressure, total cholesterol, and high-density lipoprotein cholesterol for the prediction of atherosclerosis and stroke. There are, however, ultrasound markers in use for the assessment of atherosclerosis and the evaluation of stroke risk. Two areas of investigation are of interest: the carotid artery and the intracranial arterial circulation. Again, within the domain of the carotid artery, two ultrasonic markers have attracted our attention: intima media thickness of the carotid artery and the presence of carotid plaque with its various focal characteristics. In the domain of intracranial circulation, the presence of arterial stenosis and the recruitment of collaterals are considered significant ultrasonic markers for the above-mentioned purpose. On the other hand, a series of serum, urine, and tissue biomarkers are found to be related to atherosclerotic disease. Future studies might address the issue of whether the addition of proven ultrasonic carotid indices to the aforementioned serum, urine, and tissue biomarkers could provide the vascular specialist with a better assessment of the atherosclerotic load and solidify their position as surrogate markers for the evaluation of atherosclerosis and stroke risk.

Keywords: Carotid intima media thickness, carotid plaque, intracranial atherosclerosis, ultrasound, serum, tissue biomarkers.

Next »
[1]
Lozano, R.; Naghavi, M.; Foreman, K.; Lim, S.; Shibuya, K.; Aboyans, V.; Abraham, J.; Adair, T.; Aggarwal, R.; Ahn, S.Y.; Alvarado, M.; Anderson, H.R.; Anderson, L.M.; Andrews, K.G.; Atkinson, C.; Baddour, L.M.; Barker-Collo, S.; Bartels, D.H.; Bell, M.L.; Benjamin, E.J.; Bennett, D.; Bhalla, K.; Bikbov, B.; Bin Abdulhak, A.; Birbeck, G.; Blyth, F.; Bolliger, I.; Boufous, S.; Bucello, C.; Burch, M.; Burney, P.; Carapetis, J.; Chen, H.; Chou, D.; Chugh, S.S.; Coffeng, L.E.; Colan, S.D.; Colquhoun, S.; Colson, K.E.; Condon, J.; Connor, M.D.; Cooper, L.T.; Corriere, M.; Cortinovis, M.; de Vaccaro, K.C.; Couser, W.; Cowie, B.C.; Criqui, M.H.; Cross, M.; Dabhadkar, K.C.; Dahodwala, N.; De Leo, D.; Degenhardt, L.; Delossantos, A.; Denenberg, J.; Des Jarlais, D.C.; Dharmaratne, S.D.; Dorsey, E.R.; Driscoll, T.; Duber, H.; Ebel, B.; Erwin, P.J.; Espindola, P.; Ezzati, M.; Feigin, V.; Flaxman, A.D.; Forouzanfar, M.H.; Fowkes, F.G.; Franklin, R.; Fransen, M.; Freeman, M.K.; Gabriel, S.E.; Gakidou, E.; Gaspari, F.; Gillum, R.F.; Gonzalez-Medina, D.; Halasa, Y.A.; Haring, D.; Harrison, J.E.; Havmoeller, R.; Hay, R.J.; Hoen, B.; Hotez, P.J.; Hoy, D.; Jacobsen, K.H.; James, S.L.; Jasrasaria, R.; Jayaraman, S.; Johns, N.; Karthikeyan, G.; Kassebaum, N.; Keren, A.; Khoo, J.P.; Knowlton, L.M.; Kobusingye, O.; Koranteng, A.; Krishnamurthi, R.; Lipnick, M.; Lipshultz, S.E.; Ohno, S.L.; Mabweijano, J.; MacIntyre, M.F.; Mallinger, L.; March, L.; Marks, G.B.; Marks, R.; Matsumori, A.; Matzopoulos, R.; Mayosi, B.M.; McAnulty, J.H.; McDermott, M.M.; McGrath, J.; Mensah, G.A.; Merriman, T.R.; Michaud, C.; Miller, M.; Miller, T.R.; Mock, C.; Mocumbi, A.O.; Mokdad, A.A.; Moran, A.; Mulholland, K.; Nair, M.N.; Naldi, L.; Narayan, K.M.; Nasseri, K.; Norman, P.; O’Donnell, M.; Omer, S.B.; Ortblad, K.; Osborne, R.; Ozgediz, D.; Pahari, B.; Pandian, J.D.; Rivero, A.P.; Padilla, R.P.; Perez-Ruiz, F.; Perico, N.; Phillips, D.; Pierce, K.; Pope, C.A., III; Porrini, E.; Pourmalek, F.; Raju, M.; Ranganathan, D.; Rehm, J.T.; Rein, D.B.; Remuzzi, G.; Rivara, F.P.; Roberts, T.; De León, F.R.; Rosenfeld, L.C.; Rushton, L.; Sacco, R.L.; Salomon, J.A.; Sampson, U.; Sanman, E.; Schwebel, D.C.; Segui-Gomez, M.; Shepard, D.S.; Singh, D.; Singleton, J.; Sliwa, K.; Smith, E.; Steer, A.; Taylor, J.A.; Thomas, B.; Tleyjeh, I.M.; Towbin, J.A.; Truelsen, T.; Undurraga, E.A.; Venketasubramanian, N.; Vijayakumar, L.; Vos, T.; Wagner, G.R.; Wang, M.; Wang, W.; Watt, K.; Weinstock, M.A.; Weintraub, R.; Wilkinson, J.D.; Woolf, A.D.; Wulf, S.; Yeh, P.H.; Yip, P.; Zabetian, A.; Zheng, Z.J.; Lopez, A.D.; Murray, C.J.; AlMazroa, M.A.; Memish, Z.A. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: A systematic analysis for the Global Burden of Disease Study 2010. Lancet, 2012, 380(9859), 2095-2128.
[http://dx.doi.org/10.1016/S0140-6736(12)61728-0] [PMID: 23245604]
[2]
Mozaffarian, D.; Benjamin, E.J.; Go, A.S.; Arnett, D.K.; Blaha, M.J.; Cushman, M.; Das, S.R.; de Ferranti, S.; Després, J.P.; Fullerton, H.J.; Howard, V.J.; Huffman, M.D.; Isasi, C.R.; Jiménez, M.C.; Judd, S.E.; Kissela, B.M.; Lichtman, J.H.; Lisabeth, L.D.; Liu, S.; Mackey, R.H.; Magid, D.J.; McGuire, D.K.; Mohler, E.R., III; Moy, C.S.; Muntner, P.; Mussolino, M.E.; Nasir, K.; Neumar, R.W.; Nichol, G.; Palaniappan, L.; Pandey, D.K.; Reeves, M.J.; Rodriguez, C.J.; Rosamond, W.; Sorlie, P.D.; Stein, J.; Towfighi, A.; Turan, T.N.; Virani, S.S.; Woo, D.; Yeh, R.W.; Turner, M.B. Stroke Statistics Subcommitte. Executive summary: Heart disease and stroke statistics – 2016 update: A report from the American Heart Association. Circulation, 2016, 133(4), 447-454.
[http://dx.doi.org/10.1161/CIR.0000000000000366] [PMID: 26811276]
[3]
Wolfe, C.D.; Rudd, A.G.; Howard, R.; Coshall, C.; Stewart, J.; Lawrence, E.; Hajat, C.; Hillen, T. Incidence and case fatality rates of stroke subtypes in a multiethnic population: The South London Stroke Register. J. Neurol. Neurosurg. Psychiatry, 2002, 72(2), 211-216.
[http://dx.doi.org/10.1136/jnnp.72.2.211] [PMID: 11796771]
[4]
Owolabi, M.O.; Ugoya, S.; Platz, T. Racial disparity in stroke risk factors: The Berlin-Ibadan experience; A retrospective study. Acta Neurol. Scand., 2009, 119(2), 81-87.
[http://dx.doi.org/10.1111/j.1600-0404.2008.01077.x] [PMID: 18638038]
[5]
Sacco, R.L.; Kargman, D.E.; Gu, Q.; Zamanillo, M.C. Race-ethnicity and determinants of intracranial atherosclerotic cerebral infarction. The Northern Manhattan Stroke Study. Stroke, 1995, 26(1), 14-20.
[http://dx.doi.org/10.1161/01.STR.26.1.14] [PMID: 7839388]
[6]
Hajat, C.; Dundas, R.; Stewart, J.A.; Lawrence, E.; Rudd, A.G.; Howard, R.; Wolfe, C.D. Cerebrovascular risk factors and stroke subtypes: Differences between ethnic groups. Stroke, 2001, 32(1), 37-42.
[http://dx.doi.org/10.1161/01.STR.32.1.37] [PMID: 11136911]
[7]
Bejot, Y.; Caillier, M.; Ben Salem, D.; Couvreur, G.; Rouaud, O.; Osseby, G.V.; Durier, J.; Marie, C.; Moreau, T.; Giroud, M. Ischaemic stroke subtypes and associated risk factors: A French population based study. J. Neurol. Neurosurg. Psychiatry, 2008, 79(12), 1344-1348.
[http://dx.doi.org/10.1136/jnnp.2008.150318] [PMID: 18586864]
[8]
Gutierrez, J.; Koch, S.; Dong, C.; Casanova, T.; Modir, R.; Katsnelson, M.; Ortiz, G.A.; Sacco, R.L.; Romano, J.G.; Rundek, T. Racial and ethnic disparities in stroke subtypes: A multiethnic sample of patients with stroke. Neurol. Sci., 2014, 35(4), 577-582.
[http://dx.doi.org/10.1007/s10072-013-1561-z] [PMID: 24122024]
[9]
Chambless, L.E.; Folsom, A.R.; Clegg, L.X.; Sharrett, A.R.; Shahar, E.; Nieto, F.J.; Rosamond, W.D.; Evans, G. Carotid wall thickness is predictive of incident clinical stroke: The Atherosclerosis Risk in Communities (ARIC) study. Am. J. Epidemiol., 2000, 151(5), 478-487.
[http://dx.doi.org/10.1093/oxfordjournals.aje.a010233] [PMID: 10707916]
[10]
Ohira, T.; Shahar, E.; Iso, H.; Chambless, L.E.; Rosamond, W.D.; Sharrett, A.R.; Folsom, A.R. Carotid artery wall thickness and risk of stroke subtypes: The atherosclerosis risk in communities study. Stroke, 2011, 42(2), 397-403.
[http://dx.doi.org/10.1161/STROKEAHA.110.592261] [PMID: 21164133]
[11]
Lorenz, M.W.; Polak, J.F.; Kavousi, M.; Mathiesen, E.B.; Völzke, H.; Tuomainen, T.P.; Sander, D.; Plichart, M.; Catapano, A.L.; Robertson, C.M.; Kiechl, S.; Rundek, T.; Desvarieux, M.; Lind, L.; Schmid, C.; DasMahapatra, P.; Gao, L.; Ziegelbauer, K.; Bots, M.L.; Thompson, S.G. Carotid intima-media thickness progression to predict cardiovascular events in the general population (the PROG-IMT collaborative project): A meta-analysis of individual participant data. Lancet, 2012, 379(9831), 2053-2062.
[http://dx.doi.org/10.1016/S0140-6736(12)60441-3] [PMID: 22541275]
[12]
Finn, A.V.; Kolodgie, F.D.; Virmani, R. Correlation between carotid intimal/medial thickness and atherosclerosis: A point of view from pathology. Arterioscler. Thromb. Vasc. Biol., 30(2), 177-181.
[13]
Mughal, M.M.; Khan, M.K.; DeMarco, J.K.; Majid, A.; Shamoun, F.; Abela, G.S. Symptomatic and asymptomatic carotid artery plaque. Expert Rev. Cardiovasc. Ther., 9(10), 1315-1330.
[14]
Stary, H.C.; Chandler, A.B.; Dinsmore, R.E.; Fuster, V.; Glagov, S.; Insull, W., Jr; Rosenfeld, M.E.; Schwartz, C.J.; Wagner, W.D.; Wissler, R.W. A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. Arterioscler. Thromb. Vasc. Biol., 1995, 15(9), 1512-1531.
[http://dx.doi.org/10.1161/01.ATV.15.9.1512] [PMID: 7670967]
[15]
Bock, R.W.; Gray-Weale, A.C.; Mock, P.A.; App Stats, M.; Robinson, D.A.; Irwig, L.; Lusby, R.J. The natural history of asymptomatic carotid artery disease. J. Vasc. Surg., 1993, 17(1), 160-169.
[http://dx.doi.org/10.1016/0741-5214(93)90020-M] [PMID: 8421333]
[16]
Stary, H.C. Natural history and histological classification of atherosclerotic lesions: An update. Arterioscler. Thromb. Vasc. Biol., 2000, 20(5), 1177-1178.
[http://dx.doi.org/10.1161/01.ATV.20.5.1177] [PMID: 10807728]
[17]
Abe, Y.; Rundek, T.; Sciacca, R.R.; Jin, Z.; Sacco, R.L.; Homma, S.; Di Tullio, M.R. Ultrasound assessment of subclinical cardiovascular disease in a community-based multiethnic population and comparison to the Framingham score. Am. J. Cardiol., 2006, 98(10), 1374-1378.
[http://dx.doi.org/10.1016/j.amjcard.2006.06.034] [PMID: 17134632]
[18]
Hollander, M.; Bots, M.L.; Del Sol, A.I.; Koudstaal, P.J.; Witteman, J.C.; Grobbee, D.E.; Hofman, A.; Breteler, M.M. Carotid plaques increase the risk of stroke and subtypes of cerebral infarction in asymptomatic elderly: The Rotterdam study. Circulation, 2002, 105(24), 2872-2877.
[http://dx.doi.org/10.1161/01.CIR.0000018650.58984.75] [PMID: 12070116]
[19]
Hunt, K.J.; Evans, G.W.; Folsom, A.R.; Sharrett, A.R.; Chambless, L.E.; Tegeler, C.H.; Heiss, G. Acoustic shadowing on B-mode ultrasound of the carotid artery predicts ischemic stroke: The Atherosclerosis Risk in Communities (ARIC) study. Stroke, 2001, 32(5), 1120-1126.
[http://dx.doi.org/10.1161/01.STR.32.5.1120] [PMID: 11340220]
[20]
Rundek, T.; Arif, H.; Boden-Albala, B.; Elkind, M.S.; Paik, M.C.; Sacco, R.L. Carotid plaque, a subclinical precursor of vascular events: The Northern Manhattan Study. Neurology, 2008, 70(14), 1200-1207.
[http://dx.doi.org/10.1212/01.wnl.0000303969.63165.34] [PMID: 18354078]
[21]
Mathiesen, E.B.; Johnsen, S.H.; Wilsgaard, T.; Bønaa, K.H.; Løchen, M.L.; Njølstad, I. Carotid plaque area and intima-media thickness in prediction of first-ever ischemic stroke: A 10-year follow-up of 6584 men and women: The Tromso Study. Stroke, 2011, 42(4), 972-978.
[22]
Pollex, R.L.; Hegele, R. Genetic determinants of carotid ultrasound traits. Curr. Atheroscler. Rep., 2006, 8(3), 206-215.
[http://dx.doi.org/10.1007/s11883-006-0075-z] [PMID: 16640957]
[23]
Spence, J.D.; Eliasziw, M.; DiCicco, M.; Hackam, D.G.; Galil, R.; Lohmann, T. Carotid plaque area: A tool for targeting and evaluating vascular preventive therapy. Stroke, 2002, 33(12), 2916-2922.
[http://dx.doi.org/10.1161/01.STR.0000042207.16156.B9] [PMID: 12468791]
[24]
Touboul, P.J.; Hennerici, M.G.; Meairs, S.; Adams, H.; Amarenco, P.; Desvarieux, M.; Ebrahim, S.; Fatar, M.; Hernandez Hernandez, R.; Kownator, S.; Prati, P.; Rundek, T.; Taylor, A.; Bornstein, N.; Csiba, L.; Vicaut, E.; Woo, K.S.; Zannad, F. Mannheim intima-media thickness consensus. Cerebrovasc. Dis., 2004, 18(4), 346-349.
[http://dx.doi.org/10.1159/000081812] [PMID: 15523176]
[25]
O’Leary, D.H.; Polak, J.F.; Kronmal, R.A.; Savage, P.J.; Borhani, N.O.; Kittner, S.J.; Tracy, R.; Gardin, J.M.; Price, T.R.; Furberg, C.D. Thickening of the carotid wall. A marker for atherosclerosis in the elderly? Cardiovascular Health Study Collaborative Research Group. Stroke, 1996, 27(2), 224-231.
[http://dx.doi.org/10.1161/01.STR.27.2.224] [PMID: 8571414]
[26]
Al-Shali, K.; House, A.A.; Hanley, A.J.; Khan, H.M.; Harris, S.B.; Mamakeesick, M.; Zinman, B.; Fenster, A.; Spence, J.D.; Hegele, R.A. Differences between carotid wall morphological phenotypes measured by ultrasound in one, two and three dimensions. Atherosclerosis, 2005, 178(2), 319-325.
[http://dx.doi.org/10.1016/j.atherosclerosis.2004.08.016] [PMID: 15694940]
[27]
Raeth, U.; Schlaps, D.; Limberg, B.; Zuna, I.; Lorenz, A.; van Kaick, G.; Lorenz, W.J.; Kommerell, B. Diagnostic accuracy of computerized B-scan texture analysis and conventional ultrasonography in diffuse parenchymal and malignant liver disease. J. Clin. Ultrasound, 1985, 13(2), 87-99.
[http://dx.doi.org/10.1002/jcu.1870130203] [PMID: 3920275]
[28]
Baud, J.M.; Dauzat, M. Consensus concerning the morphology and the risk of carotid plaques. Cerebrovasc. Dis., 1997, 7, 289-296.
[http://dx.doi.org/10.1159/000108415]
[29]
Leahy, A.L.; McCollum, P.T.; Feeley, T.M.; Sugrue, M.; Grouden, M.C.; O’Connell, D.J.; Moore, D.J.; Shanik, G.D. Duplex ultrasonography and selection of patients for carotid endarterectomy: Plaque morphology or luminal narrowing? J. Vasc. Surg., 1988, 8(5), 558-562.
[http://dx.doi.org/10.1016/0741-5214(88)90305-9] [PMID: 3054171]
[30]
Polak, J.F.; O’Leary, D.H.; Kronmal, R.A.; Wolfson, S.K.; Bond, M.G.; Tracy, R.P.; Gardin, J.M.; Kittner, S.J.; Price, T.R.; Savage, P.J. Sonographic evaluation of carotid artery atherosclerosis in the elderly: Relationship of disease severity to stroke and transient ischemic attack. Radiology, 1993, 188(2), 363-370.
[http://dx.doi.org/10.1148/radiology.188.2.8327679] [PMID: 8327679]
[31]
Gray-Weale, A.C.; Graham, J.C.; Burnett, J.R.; Byrne, K.; Lusby, R.J. Carotid artery atheroma: Comparison of preoperative B-mode ultrasound appearance with carotid endarterectomy specimen pathology. J. Cardiovasc. Surg. (Torino), 1988, 29(6), 676-681.
[PMID: 3062007]
[32]
Langsfeld, M.; Lusby, R.J. The spectrum of carotid artery disease in asymptomatic patients. J. Cardiovasc. Surg. (Torino), 1988, 29(6), 687-691.
[PMID: 3062008]
[33]
Steffen, C.M.; Gray-Weale, A.C.; Byrne, K.E.; Lusby, R.J. Carotid artery atheroma: Ultrasound appearance in symptomatic and asymptomatic vessels. Aust. N. Z. J. Surg., 1989, 59(7), 529-534.
[http://dx.doi.org/10.1111/j.1445-2197.1989.tb01625.x] [PMID: 2665710]
[34]
Geroulakos, G.; Ramaswami, G.; Nicolaides, A.; James, K.; Labropoulos, N.; Belcaro, G.; Holloway, M. Characterization of symptomatic and asymptomatic carotid plaques using high-resolution real-time ultrasonography. Br. J. Surg., 1993, 80(10), 1274-1277.
[http://dx.doi.org/10.1002/bjs.1800801016] [PMID: 8242296]
[35]
Holdsworth, R.J.; McCollum, P.T.; Bryce, J.S.; Harrison, D.K. Symptoms, stenosis and carotid plaque morphology. Is plaque morphology relevant? Eur. J. Vasc. Endovasc. Surg., 1995, 9(1), 80-85.
[http://dx.doi.org/10.1016/S1078-5884(05)80229-1] [PMID: 7664018]
[36]
El-barghouty, N.E.; Nicolaides, A.; Bahal, V.; Geroulakos, G.; Androulakis, A. The identification of high risk carotid plaque. Eur. J. Vasc. Endovasc. Surg., 1996, 11, 470-478.
[http://dx.doi.org/10.1016/S1078-5884(96)80184-5]
[37]
Johnson, J.M.; Kennelly, M.M.; Decessare, D.; Morgan, S.; Sparrow, A. Natural history of asymptomatic carotid plaque. Arch. Surg., 1985, 120, 1010-1012.
[http://dx.doi.org/10.1001/archsurg.1985.01390330022004]
[38]
Langsfeld, M.; Gray-Weale, A.C.; Lusby, R.J. The role of plaque morphology and diameter reduction in the development of new symptoms in asymptomatic carotid arteries. J. Vasc. Surg., 1989, 9(4), 548-557.
[http://dx.doi.org/10.1016/0741-5214(89)90471-0] [PMID: 2651727]
[39]
Belcaro, G.; Laurora, G.; Cesarone, M.R.; De Sanctis, M.T.; Incandela, L.; Fascetti, E.; Geroulakos, G.; Ramaswami, G.; Pierangeli, A.; Nicolaides, A.N. Ultrasonic classification of carotid plaques causing less than 60% stenosis according to ultrasound morphology and events. J. Cardiovasc. Surg. (Torino), 1993, 34(4), 287-294.
[PMID: 8227107]
[40]
Polak, J.F.; Shemanski, L.; O’Leary, D.H.; Lefkowitz, D.; Price, T.R.; Savage, P.J.; Brant, W.E.; Reid, C. Hypoechoic plaque on US of the carotid artery: An independent risk factor for incident stroke in adults 65 years or older. Radiology, 1998, 208, 649-654.
[http://dx.doi.org/10.1148/radiology.208.3.9722841] [PMID: 9722841]
[41]
Sterpetti, A.V.; Schultz, R.D.; Feldhaus, R.J.; Davenport, K.L.; Richardson, M.; Farina, C.; Hunter, W.J. Ultrasonographic features of carotid plaque and the risk of subsequent neurologic deficits. Surgery, 1988, 104(4), 652-660.
[PMID: 3051473]
[42]
Reilly, L.M.; Lusby, R.J.; Hunter, W.J.; Hughes, L.; Ferrell, L.D.; Stoney, R.J.; Ehrenfeld, W.K. Carotid plaque histology using a real time ultrasonography. Am. J. Surg., 1983, 146, 188-193.
[http://dx.doi.org/10.1016/0002-9610(83)90370-7]
[43]
Goes, E.; Janssens, W.; Maillet, B.; Freson, M.; Steyaert, L.; Osteaux, M. Tissue characterisation of atheromatous plaques: Correlation between ultrasound image and histological findings. J. Clin. Ultrasound, 1990, 18, 611-617.
[http://dx.doi.org/10.1002/jcu.1990.18.8.611] [PMID: 2172307]
[44]
Golledge, J.; Cuming, R.; Ellis, M.; Davies, A.H.; Greenhalgh, R.M. Carotid plaque characteristics and presenting symptom. Br. J. Surg., 1997, 84, 1697-1701.
[http://dx.doi.org/10.1002/bjs.1800841214]
[45]
Fisher, C.M.; Ojemann, R.G. A clinico-pathologic study of carotid endarterectomy plaques. Rev. Neurol. (Paris), 1986, 142(6-7), 573-589.
[PMID: 3797929]
[46]
Fryer, J.A.; Myers, P.C.; Appleberg, M. Carotid intraplaque hemorrhage: The significance of neovascularity. J. Vasc. Surg., 1987, 6(4), 341-349.
[http://dx.doi.org/10.1016/0741-5214(87)90004-8] [PMID: 2443731]
[47]
Sterpetti, A.V.; Hunter, W.J.; Schultz, R.D. Importance of ulceration of carotid plaque in determining symptoms of cerebral ischemia. J. Cardiovasc. Surg. (Torino), 1991, 32(2), 154-158.
[PMID: 2019615]
[48]
Park, A.E.; Mccarthy, W.J.; Pearce, W.H.; Matsumura, J.S.; Yao, J.S.T. Carotid plaque morphology correlates with presenting symptomatology. J. Vasc. Surg., 1998, 27, 872-879.
[http://dx.doi.org/10.1016/S0741-5214(98)70267-8]
[49]
Tegos, T.J.; Sabetai, M.M.; Nicolaides, A.N.; Robless, P.; Kalodiki, E.; Elatrozy, T.S.; Ramaswami, G.; Dhanjil, S. Correlates of embolic events detected on transcranial doppler in patients with carotid atheroma. J. Vasc Surg., 2001, 33(1), 131-138.
[50]
Norris, J.M.; Zhu, C.Z.; Bornstein, N.M.; Chambers, B.R. Vascular risks of asymptomatic carotid stenosis. Stroke, 1991, 22, 1485-1490.
[http://dx.doi.org/10.1161/01.STR.22.12.1485]
[51]
Barnett, H.J.; Taylor, D.W.; Eliasziw, M.; Fox, A.J.; Ferguson, G.G.; Haynes, R.B.; Rankin, R.N.; Clagett, G.P.; Hachinski, V.C.; Sackett, D.L.; Thorpe, K.E.; Meldrum, H.E.; Spence, J.D. Benefit of carotid endarterectomy in patients with symptomatic moderate or severe stenosis. N. Engl. J. Med., 1998, 339(20), 1415-1425.
[http://dx.doi.org/10.1056/NEJM199811123392002] [PMID: 9811916]
[52]
Gorelick, P.B.; Wong, K.S.; Bae, H.J.; Pandey, D.K. Large artery intracranial occlusive disease: A large worldwide burden but a relatively neglected frontier. Stroke, 2008, 39(8), 2396-2399.
[http://dx.doi.org/10.1161/STROKEAHA.107.505776] [PMID: 18535283]
[53]
Gupta, A.; Chazen, J.L.; Hartman, M.; Delgado, D.; Anumula, N.; Shao, H.; Mazumdar, M.; Segal, A.Z.; Kamel, H.; Leifer, D.; Sanelli, P.C. Cerebrovascular reserve and stroke risk in patients with carotid stenosis or occlusion: A systematic review and meta-analysis. Stroke, 2012, 43(11), 2884-2891. [Erratum in: Stroke. 2013 Oct;44]. [10]. [:e137. PMID: 23091119; PMCID: PMC3500140].
[http://dx.doi.org/10.1161/STROKEAHA.112.663716] [PMID: 23091119]
[54]
De Silva, D.A.; Woon, F.P.; Lee, M.P.; Chen, C.P.; Chang, H.M.; Wong, M.C. South Asian patients with ischemic stroke: Intracranial large arteries are the predominant site of disease. Stroke, 2007, 38(9), 2592-2594.
[http://dx.doi.org/10.1161/STROKEAHA.107.484584] [PMID: 17656660]
[55]
Wong, L.K.S. Global burden of intracranial atherosclerosis. Int. J. Stroke, 2006, 1(3), 158-159.
[http://dx.doi.org/10.1111/j.1747-4949.2006.00045.x] [PMID: 18706036]
[56]
Gorelick, P.B.; Caplan, L.R.; Hier, D.B.; Parker, S.L.; Patel, D. Racial differences in the distribution of anterior circulation occlusive disease. Neurology, 1984, 34(1), 54-59.
[http://dx.doi.org/10.1212/WNL.34.1.54] [PMID: 6537853]
[57]
Chimowitz, M.I.; Lynn, M.J.; Howlett-Smith, H.; Stern, B.J.; Hertzberg, V.S.; Frankel, M.R.; Levine, S.R.; Chaturvedi, S.; Kasner, S.E.; Benesch, C.G.; Sila, C.A.; Jovin, T.G.; Romano, J.G. Comparison of warfarin and aspirin for symptomatic intracranial arterial stenosis. N. Engl. J. Med., 2005, 352(13), 1305-1316.
[http://dx.doi.org/10.1056/NEJMoa043033] [PMID: 15800226]
[58]
Feldmann, E.; Wilterdink, J.L.; Kosinski, A.; Lynn, M.; Chimowitz, M.I.; Sarafin, J.; Smith, H.H.; Nichols, F.; Rogg, J.; Cloft, H.J.; Wechsler, L.; Saver, J.; Levine, S.R.; Tegeler, C.; Adams, R.; Sloan, M. The stroke outcomes and neuroimaging of intracranial atherosclerosis (SONIA) trial. Neurology, 2007, 68(24), 2099-2106.
[http://dx.doi.org/10.1212/01.wnl.0000261488.05906.c1] [PMID: 17409371]
[59]
Tsivgoulis, G.; Sharma, V.K.; Lao, A.Y.; Malkoff, M.D.; Alexandrov, A.V. Validation of transcranial Doppler with computed tomography angiography in acute cerebral ischemia. Stroke, 2007, 38(4), 1245-1249.
[http://dx.doi.org/10.1161/01.STR.0000259712.64772.85] [PMID: 17332465]
[60]
Tsivgoulis, G.; Sharma, V.K.; Hoover, S.L.; Lao, A.Y.; Ardelt, A.A.; Malkoff, M.D.; Alexandrov, A.V. Applications and advantages of power motion-mode Doppler in acute posterior circulation cerebral ischemia. Stroke, 2008, 39(4), 1197-1204.
[http://dx.doi.org/10.1161/STROKEAHA.107.499392] [PMID: 18323502]
[61]
Zhao, L.; Barlinn, K.; Sharma, V.K.; Tsivgoulis, G.; Cava, L.F.; Vasdekis, S.N.; Teoh, H.L.; Triantafyllou, N.; Chan, B.P.; Sharma, A.; Voumvourakis, K.; Stamboulis, E.; Saqqur, M.; Harrigan, M.R.; Albright, K.C.; Alexandrov, A.V. Velocity criteria for intracranial stenosis revisited: An international multicenter study of transcranial Doppler and digital subtraction angiography. Stroke, 2011, 42(12), 3429-3434.
[http://dx.doi.org/10.1161/STROKEAHA.111.621235] [PMID: 21960567]
[62]
Baumgartner, R.W.; Mattle, H.P.; Schroth, G. Assessment of >/=50% and <50% intracranial stenoses by transcranial color-coded duplex sonography. Stroke, 1999, 30(1), 87-92.
[http://dx.doi.org/10.1161/01.STR.30.1.87] [PMID: 9880394]
[63]
Becker, G.; Lindner, A.; Hofmann, E.; Bogdahn, U. Contribution of transcranial color-coded real-time sonography to the etiopathogenetic classification of middle cerebral artery stenosis. J. Clin. Ultrasound, 1994, 22(8), 471-477.
[http://dx.doi.org/10.1002/jcu.1870220803] [PMID: 7814651]
[64]
Alexandrov, A.V. Neurovascular Examination: The Rapid Evaluation of Stroke Patients Using Ultrasound Waveform Interpretation; Wiley Blackwell: Chichester, 2013.
[http://dx.doi.org/10.1002/9781118583906]
[65]
Mattle, H.; Grolimund, P.; Huber, P.; Sturzenegger, M.; Zurbrügg, H.R. Transcranial doppler sonographic findings in middle cerebral artery disease. Arch. Neurol., 1988, 45(3), 289-295.
[http://dx.doi.org/10.1001/archneur.1988.00520270067022] [PMID: 3277600]
[66]
Kaps, M.; Damian, M.S.; Teschendorf, U.; Dorndorf, W. Transcranial doppler ultrasound findings in middle cerebral artery occlusion. Stroke, 1990, 21(4), 532-537.
[http://dx.doi.org/10.1161/01.STR.21.4.532] [PMID: 2183404]
[67]
Kim, Y.S.; Meyer, J.S.; Garami, Z.; Molina, C.A.; Pavlovic, A.M.; Alexandrov, A.V. Flow diversion in transcranial Doppler ultrasound is associated with better improvement in patients with acute middle cerebral artery occlusion. Cerebrovasc. Dis., 2006, 21(1-2), 74-78.
[http://dx.doi.org/10.1159/000090006] [PMID: 16330867]
[68]
Sun, H-J.; Wu, Z-Y.; Nie, X-W.; Bian, J-S. Role of endothelial dysfunction in cardiovascular diseases: The link between inflammation and hydrogen sulfide. Front. Pharmacol., 2020, 10, 1568.
[http://dx.doi.org/10.3389/fphar.2019.01568] [PMID: 32038245]
[69]
Xu, S. Therapeutic potential of blood flow mimetic compounds in preventing endothelial dysfunction and atherosclerosis. Pharmacol. Res., 2020, 155, 104737.
[http://dx.doi.org/10.1016/j.phrs.2020.104737] [PMID: 32126273]
[70]
Tesauro, M.; Mauriello, A.; Rovella, V.; Annicchiarico-Petruzzelli, M.; Cardillo, C.; Melino, G.; Di Daniele, N. Arterial ageing: From endothelial dysfunction to vascular calcification. J. Intern. Med., 2017, 281(5), 471-482.
[http://dx.doi.org/10.1111/joim.12605] [PMID: 28345303]
[71]
Yang, M.; Pan, Y.; Li, Z.; Yan, H.; Zhao, X.; Liu, L.; Jing, J.; Meng, X.; Wang, Y.; Wang, Y. Platelet count predicts adverse clinical outcomes after ischemic stroke or TIA: Subgroup analysis of CNSR II. Front. Neurol., 2019, 10, 370.
[http://dx.doi.org/10.3389/fneur.2019.00370] [PMID: 31031698]
[72]
Tsai, N.W.; Chang, W.N.; Shaw, C.F.; Jan, C.R.; Chang, H.W.; Huang, C.R.; Chen, S.D.; Chuang, Y.C.; Lee, L.H.; Wang, H.C.; Lee, T.H.; Lu, C.H. Levels and value of platelet activation markers in different subtypes of acute non-cardio-embolic ischemic stroke. Thromb. Res., 2009, 124(2), 213-218.
[http://dx.doi.org/10.1016/j.thromres.2009.01.012] [PMID: 19233449]
[73]
Liu, J.Y.; Zhang, D.J. Effect of oral intervention on matrix metalloproteinase-2. 9 expression in carotid arteries and serum interleukin-6 in rats with chronic periodontitis. Planta Med., 2015, 81(3), 175-184.
[PMID: 25671384]
[74]
Lin, M.; Zhao, L.; Zhao, W.; Weng, J. Dissecting the mechanism of carotid atherosclerosis from the perspective of regulation. Int. J. Mol. Med., 2014, 34(6), 1458-1466.
[http://dx.doi.org/10.3892/ijmm.2014.1960] [PMID: 25318463]
[75]
Freise, C.; Querfeld, U. The lignan (+)-episesamin interferes with TNF-α-induced activation of VSMC via diminished activation of NF-ĸB, ERK1/2 and AKT and decreased activity of gelatinases. Acta Physiol. (Oxf.), 2015, 213(3), 642-652.
[http://dx.doi.org/10.1111/apha.12400] [PMID: 25267105]
[76]
Cachofeiro, V.; Goicochea, M.; de Vinuesa, S.G.; Oubiña, P.; Lahera, V.; Luño, J. Oxidative stress and inflammation, a link between chronic kidney disease and cardiovascular disease. Kidney Int. Suppl., 2008, 74(111), S4-S9.
[http://dx.doi.org/10.1038/ki.2008.516] [PMID: 19034325]
[77]
Isingrini, E.; Belzung, C.; d’Audiffret, A.; Camus, V. Early and late-onset effect of chronic stress on vascular function in mice: A possible model of the impact of depression on vascular disease in aging. Am. J. Geriatr. Psychiatry, 2011, 19(4), 335-346.
[http://dx.doi.org/10.1097/JGP.0b013e318202bc42] [PMID: 21427642]
[78]
Xue, J.; Hua, Y.N.; Xie, M.L.; Gu, Z.L. Aspirin inhibits MMP-9 mRNA expression and release via the PPARalpha/gamma and COX-2/mPGES-1-mediated pathways in macrophages derived from THP-1 cells. Biomed. Pharmacother., 2010, 64(2), 118-123.
[http://dx.doi.org/10.1016/j.biopha.2009.04.033] [PMID: 19880272]
[79]
Buccitelli, C.; Selbach, M. mRNAs, proteins and the emerging principles of gene expression control. Nat. Rev. Genet., 2020, 21(10), 630-644.
[http://dx.doi.org/10.1038/s41576-020-0258-4] [PMID: 32709985]
[80]
Kim, Y.H.; Lee, S.J.; Seo, K.W.; Bae, J.U.; Park, S.Y.; Kim, E.K.; Bae, S.S.; Kim, J.H.; Kim, C.D. PAF enhances MMP-2 production in rat aortic VSMCs via a β-arrestin2-dependent ERK signaling pathway. J. Lipid Res., 2013, 54(10), 2678-2686.
[http://dx.doi.org/10.1194/jlr.M037176] [PMID: 23911909]
[81]
Baroncini, L.A.; Nakao, L.S.; Ramos, S.G.; Filho, A.P.; Murta, L.O.; Ingberman, M.; Tefé-Silva, C.; Précoma, D.B. Assessement of MMP-9, TIMP-1 and cox-2 in normal tissue and in advanced symptomatic and asymptomatic carotid plaques. Thromb. J., 2011, 9, 6.
[http://dx.doi.org/10.1186/1477-9560-9-6]
[82]
Tan, C.; Liu, Y.; Li, W.; Deng, F.; Liu, X.; Wang, X.; Gui, Y.; Qin, L.; Hu, C.; Chen, L. Associations of matrix metalloproteinase-9 and monocyte chemoattractant protein-1 concentrations with carotid atherosclerosis, based on measuurements of plaque and intima-media thickness. Atherosclerosis, 2012, 220(1), 128-133.
[PMID: 21764060]
[83]
Newby, A.C. Metalloproteinases promote plaque rupture and myocardial infarction: A persuasive concept waiting for clinical translation. Matrix Biol., 2015, 44-46, 157-166.
[http://dx.doi.org/10.1016/j.matbio.2015.01.015] [PMID: 25636537]
[84]
Bauvois, B.; Mothu, N.; Nguyen, J.; Nguyen-Khoa, T.; Nöel, L.H.; Jungers, P. Specific changes in plasma concentrations of MMP-2, -9, TIMP-1 and TGF-b1 in patients with distinct types of primary glomerulonephritis. Nephrol. Dial. Transplant., 2007, 22, 1115-1122.
[http://dx.doi.org/10.1093/ndt/gfl743] [PMID: 17205957]
[85]
Ziyadeh, F.N. Different roles for TGF-β and VEGF in the pathogenesis of the cardinal features of diabetic nephropathy. Diabetes Res. Clin. Pract., 2008, 82(Suppl. 1), S38-S41.
[http://dx.doi.org/10.1016/j.diabres.2008.09.016] [PMID: 18842317]
[86]
Tsai, S.; Hollenbeck, S.T.; Ryer, E.J.; Edlin, R.; Yamanouchi, D.; Kundi, R.; Wang, C.; Liu, B.; Kent, K.C. TGF-β through Smad3 signaling stimulates vascular smooth muscle cell proliferation and neointimal formation. Am. J. Physiol. Heart Circ. Physiol., 2009, 297(2), H540-H549.
[http://dx.doi.org/10.1152/ajpheart.91478.2007] [PMID: 19525370]
[87]
Pandey, A.K.; Singhi, E.K.; Arroyo, J.P.; Ikizler, T.A.; Gould, E.R.; Brown, J.; Beckman, J.A.; Harrison, D.G.; Moslehi, J. Mechanisms of VEGF (Vascular Endothelial Growth Factor) inhibitor-associated hypertension and vascular disease. Hypertension, 2018, 71(2), e1-e8.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.117.10271] [PMID: 29279311]
[88]
Dimas, G.; Iliadis, F.; Grekas, D. Matrix metalloproteinases, atherosclerosis, proteinuria and kidney disease: Linkage-based approaches. Hippokratia, 2013, 17(4), 292-297.
[PMID: 25031504]
[89]
Dimas, G.; Iliadis, F.; Tegos, T.; Spiroglou, S.; Kanellos, I.; Karamouzis, I.; Savopoulos, C.; Hatzitolios, A.; Grekas, D. Serum levels of TIMP-1 and IL-6 are associated with hypertension and atherosclerosis in patients with early stages of chronic kidney disease and type 2 diabetic nephropathy. J. Hypertens., 2015, 33(Suppl. 1), e55.
[http://dx.doi.org/10.1097/01.hjh.0000467492.91729.d5]
[90]
Zhao, Y.; Singh, R.P. The role of anti-vascular endothelial growth factor (anti-VEGF) in the management of proliferative diabetic retinopathy. Drugs Context, 2018, 7, 212532.
[http://dx.doi.org/10.7573/dic.212532]
[91]
Dimas, G.G.; Didangelos, T.P.; Grekas, D.M. Matrix gelatinases in atherosclerosis and diabetic nephropathy: Progress and challenges. Curr. Vasc. Pharmacol., 2017, 15(6), 557-565.
[http://dx.doi.org/10.2174/1570161115666170202162345] [PMID: 28155628]
[92]
Pawlak, K.; Mysliwiec, M.; Pawlak, D. Peripheral blood level alterations of MMP-2 and MMP-9 in patients with chronic kidney disease on conservative treatment and on hemodialysis. Clin. Biochem., 2011, 44(10-11), 838-843.
[http://dx.doi.org/10.1016/j.clinbiochem.2011.03.143] [PMID: 21515251]
[93]
Hansson, J.; Vasan, R.S.; Ärnlöv, J.; Ingelsson, E.; Lind, L.; Larsson, A.; Michaëlsson, K.; Sundström, J. Biomarkers of extracellular matrix metabolism (MMP-9 and TIMP-1) and risk of stroke, myocardial infarction, and cause-specific mortality: Cohort study. PLoS One, 2011, 6(1), e16185.
[http://dx.doi.org/10.1371/journal.pone.0016185] [PMID: 21283828]
[94]
Donnelly, R.; Collinson, D.J.; Manning, G. Hypertension, matrix metalloproteinases and target organ damage. J. Hypertens., 2003, 21(9), 1627-1630.
[http://dx.doi.org/10.1097/00004872-200309000-00009] [PMID: 12923392]
[95]
Ronco, P.; Lelongt, B.; Piedagnel, R.; Chatziantoniou, C. Matrix metalloproteinases in kidney disease progression and repair: A case of flipping the coin. Semin. Nephrol., 2007, 27(3), 352-362.
[http://dx.doi.org/10.1016/j.semnephrol.2007.02.006] [PMID: 17533011]
[96]
Pasterkamp, G.; Schoneveld, A.H.; Hijnen, D.J.; de Kleijn, D.P.; Teepen, H.; van der Wal, A.C.; Borst, C. Atherosclerotic arterial remodelling and the localization of macrophages and MMPs 1,2 and 9 in the human coronary artery. Atherosclerosis, 2000, 150, 245-253.
[http://dx.doi.org/10.1016/S0021-9150(99)00371-8] [PMID: 10856516]
[97]
Aoyama, T.; Yamamoto, S.; Kanematsu, A.; Ogawa, O.; Tabata, Y. Local delivery of matrix metalloproteinase gene prevents the onset of renal sclerosis in streptozotocin-induced diabetic mice. Tissue Eng., 2003, 9(6), 1289-1299.
[http://dx.doi.org/10.1089/10763270360728206] [PMID: 14674437]
[98]
Lenz, O.; Elliot, S.J.; Stetler-Stevenson, W.G. Matrix metalloproteinases in renal development and disease. J. Am. Soc. Nephrol., 2000, 11(3), 574-581.
[http://dx.doi.org/10.1681/ASN.V113574] [PMID: 10703682]
[99]
Lemaître, V.; D’Armiento, J. Matrix metalloproteinases in development and disease. Birth Defects Res. C Embryo Today, 2006, 78(1), 1-10.
[http://dx.doi.org/10.1002/bdrc.20065] [PMID: 16622845]
[100]
Abilleira, S.; Bevan, S.; Markus, H.S. The role of genetic variants of matrix metalloproteinases in coronary and carotid atherosclerosis. J. Med. Genet., 2006, 43(12), 897-901.
[http://dx.doi.org/10.1136/jmg.2006.040808] [PMID: 16905683]
[101]
Derosa, G.; Cicero, A.F.; Scalise, F.; Avanzini, M.A.; Tinelli, C.; Piccinni, M.N.; Peros, E.; Geroldi, D.; Fogari, E.; D’Angelo, A. Metalloproteinase-2 and -9 in diabetic and nondiabetic subjects during acute coronary syndromes. Endothelium, 2007, 14(1), 45-51.
[http://dx.doi.org/10.1080/10623320601177064] [PMID: 17364896]
[102]
Kai, H.; Ikeda, H.; Yasukawa, H.; Kai, M.; Seki, Y.; Kuwahara, F.; Ueno, T.; Sugi, K.; Imaizumi, T. Peripheral blood levels of MMP-2 and -9 are elevated in patients with acute coronary syndromes. J. Am. Coll. Cardiol., 1998, 32, 368-372.
[http://dx.doi.org/10.1016/S0735-1097(98)00250-2] [PMID: 9708462]
[103]
Zeng, B.; Prasan, A.; Fung, K.C.; Solanki, V.; Bruce, D.; Freedman, S.B.; Brieger, D. Elevated circulating levels of MMP-9 and -2 in patients with symptomatic coronary artery disease. J. Intern. Med., 2005, 35, 331-335.
[http://dx.doi.org/10.1111/j.1445-5994.2005.00822.x] [PMID: 15892761]
[104]
Rekhter, M.D.; Hicks, G.W.; Brammer, D.W.; Hallak, H.; Kindt, E.; Chen, J.; Rosebury, W.S.; Anderson, M.K.; Kuipers, P.J.; Ryan, M.J. Hypercholesterolemia causes mechanical weakening of rabbit atheroma: Local collagen loss as a prerequisite of plaque rupture. Circ. Res., 2000, 86(1), 101-108.
[http://dx.doi.org/10.1161/01.RES.86.1.101] [PMID: 10625311]
[105]
Southgate, K.M.; Mehta, D.; Izzat, M.B.; Newby, A.C.; Angelini, G.D. Increased secretion of basement membrane-degrading metalloproteinases in pig saphenous vein into carotid artery interposition grafts. Arterioscler. Thromb. Vasc. Biol., 1999, 19(7), 1640-1649.
[http://dx.doi.org/10.1161/01.ATV.19.7.1640] [PMID: 10397681]
[106]
Chesler, N.C.; Ku, D.N.; Galis, Z.S. Transmural pressure induces matrix-degrading activity in porcine arteries ex vivo. Am. J. Physiol., 1999, 277(5), H2002-H2009.
[PMID: 10564157]
[107]
Bassiouny, H.S.; Song, R.H.; Hong, X.F.; Singh, A.; Kocharyan, H.; Glagov, S. Flow regulation of 72-kD collagenase IV (MMP-2) after experimental arterial injury. Circulation, 1998, 98(2), 157-163.
[http://dx.doi.org/10.1161/01.CIR.98.2.157] [PMID: 9679722]
[108]
Godin, D.; Ivan, E.; Johnson, C.; Magid, R.; Galis, Z.S. Remodeling of carotid artery is associated with increased expression of matrix metalloproteinases in mouse blood flow cessation model. Circulation, 2000, 102(23), 2861-2866.
[http://dx.doi.org/10.1161/01.CIR.102.23.2861] [PMID: 11104745]
[109]
Xu, X.P.; Meisel, S.R.; Ong, J.M.; Kaul, S.; Cercek, B.; Rajavashisth, T.B.; Sharifi, B.; Shah, P.K. Oxidized low-density lipoprotein regulates MMP-9 and its tissue inhibitor in human monocyte-derived macrophages. Circulation, 1999, 99, 993-998.
[http://dx.doi.org/10.1161/01.CIR.99.8.993] [PMID: 10051290]
[110]
Ganné, F.; Vasse, M.; Beaudeux, J.L.; Peynet, J.; François, A.; Mishal, Z.; Chartier, A.; Tobelem, G.; Vannier, J.P.; Soria, J.; Soria, C. Cerivastatin, an inhibitor of HMG-CoA reductase, inhibits urokinase/urokinase-receptor expression and MMP-9 secretion by peripheral blood monocytes-a possible protective mechanism against atherothrombosis. Thromb. Haemost., 2000, 84(4), 680-688.
[http://dx.doi.org/10.1055/s-0037-1614087] [PMID: 11057870]
[111]
Hofmann, M.A.; Lalla, E.; Lu, Y.; Gleason, M.R.; Wolf, B.M.; Tanji, N.; Ferran, L.J., Jr.; Kohl, B.; Rao, V.; Kisiel, W.; Stern, D.M.; Schmidt, A.M. Hyperhomocysteinemia enhances vascular inflammation and accelerates atherosclerosis in a murine model. J. Clin. Invest., 2001, 107(6), 675-683.
[http://dx.doi.org/10.1172/JCI10588] [PMID: 11254667]
[112]
Xue, M.; Thompson, P.J.; Clifton-Bligh, R.; Fulcher, G.; Gallery, E.D.; Jackson, C. Leucocyte MMP -9 is evelated and contributes to lymphocyte activation of type I diabetes. Int. J. Biochem. Cell Biol., 2005, 37, 2406-2416.
[http://dx.doi.org/10.1016/j.biocel.2005.06.003] [PMID: 16054858]
[113]
Galis, Z.S.; Khatri, J.J. Matrix metalloproteinases in vascular remodeling and atherogenesis: The good, the bad, and the ugly. Circ. Res., 2002, 90(3), 251-262.
[http://dx.doi.org/10.1161/res.90.3.251] [PMID: 11861412]
[114]
Visse, R.; Nagase, H. Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ. Res., 2003, 92(8), 827-839.
[http://dx.doi.org/10.1161/01.RES.0000070112.80711.3D] [PMID: 12730128]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy