Review Article

壳聚糖衍生物及其纳米复合材料的抗菌应用

卷 30, 期 15, 2023

发表于: 27 September, 2022

页: [1736 - 1755] 页: 20

弟呕挨: 10.2174/0929867329666220803114729

价格: $65

Open Access Journals Promotions 2
摘要

壳聚糖来源于甲壳类动物壳的主要成分甲壳素多糖。壳聚糖是一种生物兼容性、无毒且可生物降解的聚合物,可溶于酸性溶液。它广泛应用于医疗和制药领域。壳聚糖对不同细菌、真菌和病毒病原体的抗菌活性被认为是其吸引人的特性之一,这使得壳聚糖在生物学应用中具有重要价值,包括纺织、食品、组织工程、农业和环境保护。此外,壳聚糖对家畜、家禽、鱼类、甲壳类动物具有增强免疫力、提高饲料转化率、促进生长等作用。然而,壳聚糖的水溶性影响抗菌能力,限制了其应用。本文综述了壳聚糖衍生物的制备方法、影响抗菌活性的因素、形态结构、抗菌机制和应用,并指出了存在的问题和展望。总的来说,这篇综述提供了壳聚糖衍生物应用的最新情况及其在抗菌领域进一步应用的潜力。

关键词: 壳聚糖衍生物,可溶性壳聚糖衍生物,抗菌活性,结构形式,纳米材料,纳米复合材料。

[1]
Khan, A.; Salmieri, S.; Fraschini, C.; Bouchard, J.; Riedl, B.; Lacroix, M. Genipin cross-linked nanocomposite films for the immobilization of antimicrobial agent. ACS Appl. Mater. Interfaces, 2014, 6(17), 15232-15242.
[http://dx.doi.org/10.1021/am503564m] [PMID: 25140839]
[2]
Shariatinia, Z. Pharmaceutical applications of chitosan. Adv. Colloid Interface Sci., 2019, 263, 131-194.
[http://dx.doi.org/10.1016/j.cis.2018.11.008] [PMID: 30530176]
[3]
Bakshi, P.S.; Selvakumar, D.; Kadirvelu, K.; Kumar, N.S. Chitosan as an environment friendly biomaterial - A review on recent modifications and applications. Int. J. Biol. Macromol., 2020, 150, 1072-1083.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.10.113] [PMID: 31739057]
[4]
Wang, W.; Meng, Q.; Li, Q.; Liu, J.; Zhou, M.; Jin, Z.; Zhao, K. Chitosan derivatives and their application in biomedicine. Int. J. Mol. Sci., 2020, 21(2), 487.
[http://dx.doi.org/10.3390/ijms21020487] [PMID: 31940963]
[5]
Imam, S.S.; Alshehri, S.; Ghoneim, M.M.; Zafar, A.; Alsaidan, O.A.; Alruwaili, N.K.; Gilani, S.J.; Rizwanullah, M. Recent advancement in chitosan-based nanoparticles for improved oral bioavailability and bioactivity of phytochemicals: Challenges and perspectives. Polymers (Basel), 2021, 13(22), 4036.
[http://dx.doi.org/10.3390/polym13224036] [PMID: 34833334]
[6]
Ojagh, S.M.; Rezaei, M.S.H.; Razavi, S.M.H.; Hosseini, S. Effect of chitosan coatings enriched with cinnamon oil on the quality of refrigerated rainbow trout. Food Chem., 2010, 120(1), 193-198.
[http://dx.doi.org/10.1016/j.foodchem.2009.10.006]
[7]
Hüsnügül, Y.A.; Çelik, E. Investigations of antibacterial activity of chitosan in the polymeric composite coatings. Prog. Org. Coat., 2017, 102, 194-200.
[http://dx.doi.org/10.1016/j.porgcoat.2016.10.013]
[8]
Mohamed, N.A.; Mohamed, R.R.; Seoudi, R.S. Synthesis and characterization of some novel antimicrobial thiosemicarbazone O-carboxymethyl chitosan derivatives. Int. J. Biol. Macromol., 2014, 63, 163-169.
[http://dx.doi.org/10.1016/j.ijbiomac.2013.10.044] [PMID: 24211430]
[9]
Ngo, D.H.; Vo, T.S.; Ngo, D.N.; Kang, K.H.; Je, G.Y.; Pham, H.N.; Byun, T.S.; Kim, S.K. Biological effects of chitosan and its derivatives. Food Hydrocoll., 2015, 51, 200-216.
[http://dx.doi.org/10.1016/j.foodhyd.2015.05.023]
[10]
Nunes, Y.L.; de Menezes, F.L.; de Sousa, I.G.; Cavalcante, A.L.G.; Cavalcante, F.T.T.; da Silva Moreira, K.; de Oliveira, A.L.B.; Mota, G.F.; da Silva Souza, J.E.; de Aguiar Falcão, I.R.; Rocha, T.G.; Valério, R.B.R.; Fechine, P.B.A.; de Souza, M.C.M.; Dos Santos, J.C.S. Chemical and physical chitosan modification for designing enzymatic industrial biocatalysts: How to choose the best strategy? Int. J. Biol. Macromol., 2021, 181, 1124-1170.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.04.004] [PMID: 33864867]
[11]
Majid, P.; Ali, M.; Toktam, G. Chemical extraction and modification of chitin and chitosan from shrimp shells. Eur. Polym. J., 2021, 159, 110709.
[http://dx.doi.org/10.1016/j.eurpolymj.2021.110709]
[12]
Phuangkaew, T.; Booranabunyat, N.; Kiatkamjornwong, S.; Thanyasrisung, P.; Hoven, V.P. Amphiphilic quaternized chitosan: Synthesis, characterization, and anti-cariogenic biofilm property. Carbohydr. Polym., 2022, 277, 118882.
[http://dx.doi.org/10.1016/j.carbpol.2021.118882] [PMID: 34893285]
[13]
Sun, Y.B.; Kang, Y.X.; Zhong, W.H.; Liu, Y.H.; Dai, Y. A simple phosphorylation modification of hydrothermally cross-linked chitosan for selective and efficient removal of U(VI). J. Solid State Chem., 2020, 292, 121731.
[http://dx.doi.org/10.1016/j.jssc.2020.121731]
[14]
Kalaithong, W.; Molloy, R.; Nalampang, K.; Kanarat, N.; Runglawan, S. Design and optimization of polymerization parameters of carboxymethyl chitosan and sodium 2-acrylamido-2-methylpropane sulfonate hydrogels as wound dressing materials. Eur. Polym. J., 2021, 143, 110186.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.110186]
[15]
Lyu, R.; Li, Z.Q.; Liang, C.; Zhang, C.; Xia, T.; Wu, M.; Wang, Y.; Wang, L.C.; Luo, X.G.; Xu, C.L. Acylated carboxymethyl chitosan grafted with MPEG-1900 as a high- efficiency demulsifier for O/W crude oil emulsions. Carbohyd. Polym.Technol. Appl., 2021, 2, 100144.
[http://dx.doi.org/10.1016/j.carpta.2021.100144]
[16]
Sun, Z.; Yue, Y.; He, W.; Jiang, F.; Wang, J. The antibacterial performance of positively charged and chitosan dipped air filter media. Build. Environ., 2020, 180, 107020.
[http://dx.doi.org/10.1016/j.buildenv.2020.107020]
[17]
Ansari-Asl, Z.; Shahvali, Z.; Sacourbaravi, R.; Hoveizi, L.; Darabpour, E. Cu (II) metal-organic framework@polydimethylsiloxane nanocomposite sponges coated by chitosan for antibacterial and tissue engineering applications. Microporous Mesoporous Mater., 2022, 336, 111866.
[http://dx.doi.org/10.1016/j.micromeso.2022.111866]
[18]
Rahayu, D.P.; De Mori, A.; Yusuf, R.; Draheim, R.; Lalatsa, A.; Roldo, M. Enhancing the antibacterial effect of chitosan to combat orthopaedic implant-associated infections. Carbohydr. Polym., 2022, 289, 119385.
[http://dx.doi.org/10.1016/j.carbpol.2022.119385] [PMID: 35483866]
[19]
Wang, X.; Cheng, F.; Wang, X.; Feng, T.; Xia, S.; Zhang, X. Chitosan decoration improves the rapid and long-term antibacterial activities of cinnamaldehyde-loaded liposomes. Int. J. Biol. Macromol., 2021, 168, 59-66.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.12.003] [PMID: 33279567]
[20]
Verma, M.; Gahlot, N.; Singh, S.S.J.; Rose, N.M. UV protection and antibacterial treatment of cellulosic fibre (cotton) using chitosan and onion skin dye. Carbohydr. Polym., 2021, 257, 117612.
[http://dx.doi.org/10.1016/j.carbpol.2020.117612] [PMID: 33541643]
[21]
Jayakumar, R.; Nwe, N.; Tokura, S.; Tamura, H. Sulfated chitin and chitosan as novel biomaterials. Int. J. Biol. Macromol., 2007, 40(3), 175-181.
[http://dx.doi.org/10.1016/j.ijbiomac.2006.06.021] [PMID: 16893564]
[22]
Ying, H.; Du, Y.; Yang, J.; Tang, Y.; Jin, L.; Wang, X. Self-aggregation and antimicrobial activity of N-acylated Chitosan. Polym. J., 2007, 48(11), 3098-3106.
[http://dx.doi.org/10.1016/j.polymer.2007.03.063]
[23]
Fan, Z.; Qin, Y.; Liu, S.; Xing, R.; Yu, H.; Chen, X.; Li, K.; Li, P. Synthesis, characterization, and antifungal evaluation of diethoxyphosphoryl polyaminoethyl chitosan derivatives. Carbohydr. Polym., 2018, 190, 1-11.
[http://dx.doi.org/10.1016/j.carbpol.2018.02.056] [PMID: 29628225]
[24]
Yang, B.; Li, M.; Wu, Y. Synthesis and antimicrobial activities of a quaternary ammonium salt of chitosan. Asian J. Chem., 2012, 24(9), 4022-4924.
[25]
Zhang, J.; Tan, W.; Li, Q.; Dong, F.; Guo, Z. Synthesis and characterization of N, N, N-trimethyl-O-(ureidopyridinium)acetyl chitosan derivatives with antioxidant and antifungal activities. Mar. Drugs, 2020, 18(3), 163.
[http://dx.doi.org/10.3390/md18030163] [PMID: 32188033]
[26]
Jin, Z.; Li, W.; Cao, H.; Zhang, X.; Chen, G.; Wu, H.; Guo, C.; Zhang, Y.; Kang, H.; Wang, Y.F. Antimicrobial activity and cytotoxicity of N-2-HACC and characterization of nanoparticles with N-2-HACC and CMC as a vaccine carrier. Chem. Eng. J., 2013, 221, 331-341.
[http://dx.doi.org/10.1016/j.cej.2013.02.011]
[27]
Jin, Z.; Li, D.; Dai, C.; Cheng, G.; Wang, X.; Zhao, K. Response of live Newcastle disease virus encapsulated in N-2-hydroxypropyl dimethylethyl ammonium chloride chitosan nanoparticles. Carbohydr. Polym., 2017, 171, 267-280.
[http://dx.doi.org/10.1016/j.carbpol.2017.05.022] [PMID: 28578963]
[28]
Li, Z.; Yang, F.; Yang, R. Synthesis and characterization of chitosan derivatives with dual-antibacterial functional groups. Int. J. Biol. Macromol., 2015, 75, 378-387.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.01.056] [PMID: 25666853]
[29]
Wei, L.; Li, Q.; Chen, Y.; Zhang, J.; Mi, Y.; Dong, F.; Lei, C.; Guo, Z. Enhanced antioxidant and antifungal activity of chitosan derivatives bearing 6-O-imidazole-based quaternary ammonium salts. Carbohydr. Polym., 2019, 206, 493-503.
[http://dx.doi.org/10.1016/j.carbpol.2018.11.022] [PMID: 30553350]
[30]
Feng, Y.; Xia, W. Preparation, characterization and antimicrobial activity of water-soluble O-fumaryl-chitosan. Carbohydr. Polym., 2011, 83(3), 1169-1173.
[http://dx.doi.org/10.1016/j.carbpol.2010.09.026]
[31]
Wang, C.H.; Liu, W.S.; Sun, J.F.; Hou, G.G.; Chen, Q.; Cong, W.; Zhao, F. Non-toxic O-quaternized chitosan materials with better water solubility and antimicrobial function. Int. J. Biol. Macromol., 2016, 84, 418-427.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.12.047] [PMID: 26712700]
[32]
Dai, C.; Kang, H.; Yang, W.; Sun, J.; Liu, C.; Cheng, G.; Rong, G.; Wang, X.; Wang, X.; Jin, Z.; Zhao, K. O-2′-hydroxypropyltrimethyl ammonium chloride chitosan nanoparticles for the delivery of live Newcastle disease vaccine. Carbohydr. Polym., 2015, 130, 280-289.
[http://dx.doi.org/10.1016/j.carbpol.2015.05.008] [PMID: 26076628]
[33]
Dang, Q.; Liu, K.; Liu, C.; Xu, T.; Yan, J.; Yan, F.; Cha, D.; Zhang, Q.; Cao, Y. Preparation, characterization, and evaluation of 3,6-O-N-acetylethylenediamine modified chitosan as potential antimicrobial wound dressing material. Carbohydr. Polym., 2018, 180, 1-12.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.019] [PMID: 29103484]
[34]
Liu, Q.; Li, Y.; Yang, X.; Xing, S.; Qiao, C.; Wang, S.; Xu, C.; Li, T. O-Carboxymethyl chitosan-based pH-responsive amphiphilic chitosan derivatives: Characterization, aggregation behavior, and application. Carbohydr. Polym., 2020, 237, 116112.
[http://dx.doi.org/10.1016/j.carbpol.2020.116112] [PMID: 32241407]
[35]
Zhang, J.; Tan, W.; Luan, F.; Yin, X.; Dong, F.; Li, Q.; Guo, Z. Synthesis of quaternary ammonium salts of chitosan bearing halogenated acetate for antifungal and antimicrobial activities. Polymers (Basel), 2018, 10(5), 530.
[http://dx.doi.org/10.3390/polym10050530] [PMID: 30966564]
[36]
Cai, J.; Dang, Q.; Liu, C.; Fan, B.; Yan, J.; Xu, Y.; Li, J. Preparation and characterization of N-benzoyl-O-acetyl- chitosan. Int. J. Biol. Macromol., 2015, 77, 52-58.
[http://dx.doi.org/10.1016/j.ijbiomac.2015.03.007] [PMID: 25783016]
[37]
Kanmani, P.; Rhim, J.W. Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocoll., 2014, 35, 644-652.
[http://dx.doi.org/10.1016/j.foodhyd.2013.08.011]
[38]
Salari, M.; Khiabani, M.S.; Mokarram, R.R.; Ghanbarzadeh, B.; Kafil, H.S. Development and evaluation of chitosan based active nanocomposite films containing bacterial cellulose nanocrystals and silver nanoparticles. Food Hydrocoll., 2018, 84, 414-423.
[http://dx.doi.org/10.1016/j.foodhyd.2018.05.037]
[39]
Kong, M.; Chen, X.G.; Xing, K.; Park, H.J. Antimicrobial properties of chitosan and mode of action: A state of the art review. Int. J. Food Microbiol., 2010, 144(1), 51-63.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2010.09.012] [PMID: 20951455]
[40]
Sun, L.; Du, Y.; Fan, L.; Xiao, C.; Yang, J. Preparation, characterization and antimicrobial activity of quaternized carboxymethyl chitosan and application as pulp-cap. Polym. J., 2006, 47(6), 1796-1804.
[http://dx.doi.org/10.1016/j.polymer.2006.01.073]
[41]
Brayner, R.; Ferrari-Iliou, R.; Brivois, N.; Djediat, S.; Benedetti, M.F.; Fiévet, F. Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett., 2006, 6(4), 866-870.
[http://dx.doi.org/10.1021/nl052326h] [PMID: 16608300]
[42]
Patale, R.L.; Patravale, V.B.O. N-carboxymethyl chitosan–zinc complex: A novel chitosan complex with enhanced antimicrobial activity. Carbohydr. Polym., 2011, 85(1), 105-110.
[http://dx.doi.org/10.1016/j.carbpol.2011.02.001]
[43]
Regiel-Futyra, A.; Kus-Liśkiewicz, M.; Sebastian, V.; Irusta, S.; Arruebo, M.; Stochel, G.; Kyzioł, A. Development of noncytotoxic chitosan-gold nanocomposites as efficient antibacterial materials. ACS Appl. Mater. Interfaces, 2015, 7(2), 1087-1099.
[http://dx.doi.org/10.1021/am508094e] [PMID: 25522372]
[44]
Chen, S.; Wu, G.; Zeng, H. Preparation of high antimicrobial activity thiourea chitosan-Ag+ complex. Carbohydr. Polym., 2005, 60(1), 33-38.
[http://dx.doi.org/10.1016/j.carbpol.2004.11.020]
[45]
Hosseinnejad, M.; Jafari, S.M. Evaluation of different factors affecting antimicrobial properties of chitosan. Int. J. Biol. Macromol., 2016, 85, 467-475.
[http://dx.doi.org/10.1016/j.ijbiomac.2016.01.022] [PMID: 26780706]
[46]
Omura, Y.; Shigemoto, M.; Akiyama, T.; Saimoto, H.; Shigemasa, Y. Antimicrobial activity of chitosan with different degrees of acetylation and molecular weights. Biocontrol Sci., 2003, 8, 25-30.
[http://dx.doi.org/10.4265/bio.8.25]
[47]
Chung, Y.C.; Su, Y.P.; Chen, C.C.; Jia, G.; Wang, H.L.; Wu, J.C.; Lin, J.G. Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol. Sin., 2004, 25(7), 932-936.
[PMID: 15210068]
[48]
Mellegård, H.; Strand, S.P.; Christensen, B.E.; Granum, P.E.; Hardy, S.P. Antibacterial activity of chemically defined chitosans: Influence of molecular weight, degree of acetylation and test organism. Int. J. Food Microbiol., 2011, 148(1), 48-54.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2011.04.023] [PMID: 21605923]
[49]
Baĭtukalov, T.A.; Bogoslovskaia, O.A.; Ol’khovsakaia, I.P.; Glushchenko, N.N.; Ovsiannnikova, M.N.; Lopatin, S.A.; Varlamov, V.P.; Varlamov, V.P. Regenerating activity and antibacterial effect of low-molecular-weight chitosan. Izv. Akad. Nauk Ser. Biol., 2005, 6(6), 659-663.
[http://dx.doi.org/10.1007/s10525-005-0141-z] [PMID: 16535975]
[50]
Zheng, L.Y.; Zhu, J.F. Study on antimicrobial activity of chitosan with different molecular weights. Carbohydr. Polym., 2003, 54(4), 527.
[http://dx.doi.org/10.1016/j.carbpol.2003.07.009]
[51]
Elbarbary, A.M.; Mostafa, T.B. Effect of γ-rays on carboxymethyl chitosan for use as antioxidant and preservative coating for peach fruit. Carbohydr. Polym., 2014, 104, 109-117.
[http://dx.doi.org/10.1016/j.carbpol.2014.01.021] [PMID: 24607167]
[52]
No, H.K.; Park, N.Y.; Lee, S.H.; Meyers, S.P. Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. Int. J. Food Microbiol., 2002, 74(1-12), 65-72.
[http://dx.doi.org/10.1016/S0168-1605(01)00717-6]
[53]
Kulikov, S.N.; Lisovskaya, S.A.; Zelenikhin, P.V.; Bezrodnykh, E.A.; Shakirova, D.R.; Blagodatskikh, I.V.; Tikhonov, V.E. Antifungal activity of oligochitosans (short chain chitosans) against some Candida species and clinical isolates of Candida albicans: molecular weight-activity relationship. Eur. J. Med. Chem., 2014, 74, 169-178.
[http://dx.doi.org/10.1016/j.ejmech.2013.12.017] [PMID: 24462847]
[54]
Sahariah, P.; Cibor, D.; Zielińska, D.; Hjálmarsdóttir, M.A.; Stawski, D.; Másson, M. The effect of molecular weight on the antibacterial activity of N, N, N-Trimethyl Chitosan (TMC). Int. J. Mol. Sci., 2019, 20(7), 1743.
[http://dx.doi.org/10.3390/ijms20071743] [PMID: 30970552]
[55]
Tavares, L.; Flores, E.E.; Rodrigues, R.C.; Hertz, P.F.; Norea, C. Effect of deacetylation degree of chitosan on rheological properties and physical chemical characteristics of genipin-crosslinked chitosan beads. Food Hydrocoll., 2020, 106, 105876.
[http://dx.doi.org/10.1016/j.foodhyd.2020.105876]
[56]
Liu, X.F.; Guan, Y.L.; Yang, D.Z.; Li, Z.; Yao, K.D. Antibacterial action of chitosan and carboxymethylated chitosan. J. Appl. Polym. Sci., 2001, 79, 1324-1335.
[http://dx.doi.org/10.1002/1097-4628(20010214)79:7<1324::AID-APP210>3.0.CO;2-L]
[57]
Taşkın, P.; Canısağ, H.; Şen, M. The effect of degree of deacetylation on the radiation induced degradation of chitosan. Radiat. Phys. Chem., 2014, 94, 236-239.
[http://dx.doi.org/10.1016/j.radphyschem.2013.04.007]
[58]
Alagui, A.; Desbrieres, J.; Rhazi, M. Contribution to the preparation of chitins and chitosan with controlled physico-chemical properties. Polymers (Basel), 2003, 44(26), 7939-7952.
[59]
Kong, M.; Chen, X.G.; Liu, C.S.; Liu, C.G.; Meng, X.H.; Yu, L.J. Preparation and antimicrobial activity of chitosan microshperes in a solid dispersing system. Front. Mater., 2008, 65, 2214-2220.
[60]
Byun, S.M.; Hong, K.N.; Hong, J.H.; Sang, I.L.; Prinyawiwatkul, W. Comparison of physicochemical, binding, antioxidant and antimicrobial properties of chitosans prepared from ground and entire crab leg shells. Int. J. Food Sci. Technol., 2013, 48, 136-142.
[http://dx.doi.org/10.1111/j.1365-2621.2012.03169.x]
[61]
Bo, X.; Ying, W.; Zhao, M.; Liu, Y.; Zhang, S. Preparation and characterization of antimicrobial chitosan-N-arginine with different degrees of substitution. Carbohydr. Polym., 2011, 83(1), 144-150.
[http://dx.doi.org/10.1016/j.carbpol.2010.07.032]
[62]
Li, Y.; Li, B.; Wu, Y.; Zhao, Y.; Lei, S. Preparation of carboxymethyl chitosan/copper composites and their antibacterial properties. Mater. Res. Bull., 2013, 48(9), 3411-3419.
[http://dx.doi.org/10.1016/j.materresbull.2013.05.010]
[63]
Azmy, E.; Hashem, H.E.; Mohamed, E.A.; Negm, N.A. Synthesis, characterization, swelling and antimicrobial efficacies of chemically modified chitosan biopolymer. J. Mol. Liq., 2019, 284, 748-754.
[http://dx.doi.org/10.1016/j.molliq.2019.04.054]
[64]
Rathinam, S.; Solodova, S.; Kristjánsdóttir, I.; Hjálmarsdóttir, M.Á.; Másson, M. The antibacterial structure-activity relationship for common chitosan derivatives. Int. J. Biol. Macromol., 2020, 165(Pt B), 1686-1693.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.200]
[65]
Rúnarsson, V.Ö.; Holappa, J.; Nevalainen, T.; Hjálmarsdóttir, M.; Järvinen, T.; Loftsso, T.; Jónsdóttir, S.; Valdimarsdóttir, M.; Másson, M. Antibacterial activity of methylated chitosan and chitooligomer derivatives: Synthesis and structure activity relationships. Eur. Polym. J., 2007, 43(6), 2660-2671.
[http://dx.doi.org/10.1016/j.eurpolymj.2007.03.046]
[66]
Li, X.F.; Che, Y.; Yan, L.; Liu, F.; Wang, Y.; Zhao, C. Antimicrobial properties and applications of chitosan/inorganic nanocomposites: An overview. Int. Mater. Rev., 2018, 32, 3823-3830.
[67]
Liu, F.; Qin, B.; He, L.; Song, R. Novel starch/chitosan blending membrane: Antimicrobial, permeable and mechanical properties. Carbohydr. Polym., 2009, 78(1), 146-150.
[http://dx.doi.org/10.1016/j.carbpol.2009.03.021]
[68]
Trung, T.S.; Le, T.L.; Le, V.T.; Boi, V.N. Antifungal activity of water-soluble chitosan against Colletotrichum capsici in postharvest chili pepper. J. Food Process. Preserv., 2017, 42(1), e13339.
[69]
Lim, S.H.; Hudson, S.M. Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr. Res., 2004, 339(2), 313-319.
[http://dx.doi.org/10.1016/j.carres.2003.10.024] [PMID: 14698889]
[70]
Younes, I.; Sellimi, S.; Rinaudo, M.; Jellouli, K.; Nasri, M. Influence of acetylation degree and molecular weight of homogeneous chitosans on antibacterial and antifungal activities. Int. J. Food Microbiol., 2014, 185, 57-63.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2014.04.029] [PMID: 24929684]
[71]
Cho, Y.W.; Jang, J.; Park, C.R.; Ko, S.W. Preparation and solubility in acid and water of partially deacetylated chitins. Biomacromolecules, 2000, 1(4), 609-614.
[http://dx.doi.org/10.1021/bm000036j] [PMID: 11710189]
[72]
Pola, C.C.; Moraes, A.R.F.; Medeiros, E.A.A.; Teófilo, R.F.; Soares, N.F.F.; Gomes, C.L. Development and optimization of pH-responsive PLGA-chitosan nanoparticles for triggered release of antimicrobials. Food Chem., 2019, 295, 671-679.
[http://dx.doi.org/10.1016/j.foodchem.2019.05.165] [PMID: 31174811]
[73]
Holappa, J.; Hjálmarsdóttir, M.; Másson, M.; Rúnarsson, G.; Asplund, T.; Soininen, P.; Nevalainen, T. Antimicrobial activity of Chitosan N-betainates. Carbohydr. Polym., 2006, 65(1), 114-118.
[http://dx.doi.org/10.1016/j.carbpol.2005.11.041]
[74]
Qin, Y.; Zhu, C. Antimicrobial properties of silver-containing chitosan fibers. Med. Healthc. Technol., 2010, 2010, 7-13.
[75]
Wang, W.; Hao, X.; Chen, S.; Yang, Z.; Guo, Z. pH-responsive capsaicin@chitosan nanocapsules for antibiofouling in marine applications. Polymer (Guildf.), 2018, 158, 223-230.
[http://dx.doi.org/10.1016/j.polymer.2018.10.067]
[76]
Yuan, B.; Xu, P.Y.; Zhang, Y.J.; Wang, P.P.; Yu, H.; Jiang, J.H. Synthesis of biocontrol macromolecules by derivative of chitosan with surfactin and antifungal evaluation. Int. J. Biol. Macromol., 2014, 66, 7-14.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.02.011] [PMID: 24530369]
[77]
Már, M.; Jukka, H.; Martha, H.; Ögmundur, V. Antimicrobial activity of piperazine derivatives of chitosan. Carbohydr. Polym., 2008, 74(3), 566-571.
[http://dx.doi.org/10.1016/j.carbpol.2008.04.010]
[78]
Lic, K.; Guan, G.; Zhu, J.; Wu, H.; Sun, Q. Antibacterial activity and mechanism of a laccase-catalyzed chitosan-gallic acid derivative against Escherichia coli and Staphylococcus aureus. Food Control, 2019, 96, 234-243.
[http://dx.doi.org/10.1016/j.foodcont.2018.09.021]
[79]
Li, J.; Wu, X.; Shi, Q.; Li, C.; Chen, X. Effects of hydroxybutyl chitosan on improving immunocompetence and antibacterial activities. Mater. Sci. Eng. C, 2019, 105, 110086.
[http://dx.doi.org/10.1016/j.msec.2019.110086] [PMID: 31546413]
[80]
Sekiguchi, S.; Miura, Y.; Kaneko, H.; Nishimura, S.I.; Tokura, S. Molecular weight dependency of antimicrobial activity by chitosan oligmers. Food Hydrocoll., 1994, 2, 71-76.
[81]
Ing, L.Y.; Zin, N.M.; Sarwar, A.; Katas, H. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. Int. J. Biomater., 2012, 2012, 632698.
[http://dx.doi.org/10.1155/2012/632698] [PMID: 22829829]
[82]
Lopez-Moya, F.; Suarez-Fernandez, M.; Lopez-Llorca, L.V. Molecular mechanisms of chitosan interactions with fungi and plants. Int. J. Mol. Sci., 2019, 20(2), 332.
[http://dx.doi.org/10.3390/ijms20020332] [PMID: 30650540]
[83]
Cheung, R.C.; Ng, T.B.; Wong, J.H.; Chan, W.Y. Chitosan: An update on potential biomedical and pharmaceutical applications. Mar. Drugs, 2015, 13(8), 5156-5186.
[http://dx.doi.org/10.3390/md13085156] [PMID: 26287217]
[84]
Tayel, A.A.; Moussa, S.H.; Salem, M.F.; Mazrou, K.E.; El-Tras, W.F. Control of citrus molds using bioactive coatings incorporated with fungal chitosan/plant extracts composite. J. Sci. Food Agric., 2016, 96(4), 1306-1312.
[http://dx.doi.org/10.1002/jsfa.7223] [PMID: 25894505]
[85]
Khiareddine, H.J.; El-Mohamedy, R.S. Variation in Chitosan and salicylic acid efficacy towards soilborne and air-borne fungi and their suppressive effect of tomato wilt severity. J. Plant Pathol. Microbiol., 2016, 6, 1000325.
[86]
El-Mohamedy, R.S.; Abdallah, A.M.; Ghoname, A.A. Field application of chitosan and Moringa oleifera extracts as fungicides alternatives to control early blight and improvement growth and yield quality of potato. Plant Pathol. J., 2016, 15, 135-143.
[http://dx.doi.org/10.3923/ppj.2016.135.143]
[87]
Namangkalakul, W.; Benjavongkulchai, S.; Pochana, T.; Promchai, A.; Satitviboon, W.; Howattanapanich, S.; Phuprasong, R.; Ungvijanpunya, N.; Supakanjanakanti, D.; Chaitrakoonthong, T.; Muangsawat, S.; Thanyasrisung, P.; Matangkasombut, O. Activity of chitosan antifungal denture adhesive against common Candida species and Candida albicans adherence on denture base acrylic resin. J. Prosthet. Dent., 2020, 123(1), 181.e1-181.e7.
[http://dx.doi.org/10.1016/j.prosdent.2019.09.026] [PMID: 31813582]
[88]
Abu-Elala, N.M.; AbuBakr, H.O.; Khattab, M.S.; Mohamed, S.H.; El-Hady, M.A.; Ghandour, R.A.; Morsi, R.E. Aquatic environmental risk assessment of chitosan/silver, copper and carbon nanotube nanocomposites as antimicrobial agents. Int. J. Biol. Macromol., 2018, 113, 1105-1115.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.03.047] [PMID: 29545064]
[89]
Wongpreecha, J.; Polpanich, D.; Suteewong, T.; Kaewsaneha, C.; Tangboriboonrat, P. One-pot, large-scale green synthesis of silver nanoparticles-chitosan with enhanced antibacterial activity and low cytotoxicity. Carbohydr. Polym., 2018, 199, 641-648.
[http://dx.doi.org/10.1016/j.carbpol.2018.07.039] [PMID: 30143172]
[90]
Dai, F.; Huang, J.; Liao, W.; Li, D.; Wu, Y.; Huang, J.; Long, Y.; Yuan, M.; Xiang, W.; Tao, F.; Cheng, Y.; Deng, H. Chitosan-TiO2 microparticles LBL immobilized nanofibrous mats via electrospraying for antibacterial applications. Int. J. Biol. Macromol., 2019, 135, 233-239.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.05.145] [PMID: 31128182]
[91]
Gadkari, R.; Ali, W.; Das, A.; Alagirusamy, R. Scope of electrospun chitosan nanofibrous web for its potential application in water filtration. Chitosan, 2017, 16, 431-451.
[http://dx.doi.org/10.1002/9781119364849.ch16]
[92]
Gadkari, R.R.; Suwalka, S.; Yogi, M.R.; Ali, W.; Das, A.; Alagirusamy, R. Green synthesis of chitosan-cinnamaldehyde cross-linked nanoparticles: Characterization and antibacterial activity. Carbohydr. Polym., 2019, 226, 115298.
[http://dx.doi.org/10.1016/j.carbpol.2019.115298] [PMID: 31582068]
[93]
Sun, Y.; Kaplan, J.A.; Shieh, A.; Sun, H.L.; Croce, C.M.; Grinstaff, M.W.; Parquette, J.R. Self-assembly of a 5-fluorouracil-dipeptide hydrogel. Chem. Commun. (Camb.), 2016, 52(30), 5254-5257.
[http://dx.doi.org/10.1039/C6CC01195K] [PMID: 26996124]
[94]
Wei, S.; Liu, X.; Zhou, J.; Zhang, J.; Dong, A.; Huang, P.; Wang, W.; Deng, L. Dual-crosslinked nanocomposite hydrogels based on quaternized chitosan and clindamycin-loaded hyperbranched nanoparticles for potential antibacterial applications. Int. J. Biol. Macromol., 2020, 155, 153-162.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.182] [PMID: 32224179]
[95]
Villar-Chavero, M.M.; Domínguez, J.C.; Alonso, M.V.; Oliet, M.; Rodriguez, F. Chitosan-reinforced cellulosic bionogels: Viscoelastic and antibacterial properties. Carbohydr. Polym., 2020, 229, 115569.
[http://dx.doi.org/10.1016/j.carbpol.2019.115569] [PMID: 31826426]
[96]
Malhotra, K.; Shankar, S.; Chauhan, N.; Rai, R.; Singh, Y. Design, characterization, and evaluation of antibacterial gels, Boc-D-Phe-γ4-L-Phe-PEA/chitosan and Boc-L-Phe-γ4-L-Phe-PEA/chitosan, for biomaterial-related infections. Mater. Sci. Eng. C, 2020, 110, 110648.
[http://dx.doi.org/10.1016/j.msec.2020.110648] [PMID: 32204079]
[97]
Atarés, L.; Chiralt, A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. Technol., 2015, 48, 51-62.
[http://dx.doi.org/10.1016/j.tifs.2015.12.001]
[98]
Leceta, I.; Guerrero, P.; Ibarburu, I.; Duenas, M.T.; Caba, K. Characterization and antimicrobial analysis of chitosan-based films. J. Food Eng., 2013, 116(4), 889-899.
[http://dx.doi.org/10.1016/j.jfoodeng.2013.01.022]
[99]
Yang, K.; Dang, H.; Liu, L.; Hu, X.; Li, X.; Ma, Z.; Wang, X.; Ren, T. Effect of syringic acid incorporation on the physical, mechanical, structural and antibacterial properties of chitosan film for quail eggs preservation. Int. J. Biol. Macromol., 2019, 141, 876-884.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.045] [PMID: 31476399]
[100]
Sanchez-Gonzalez, L.; Gonzalez-Martinez, C.; Chiralt, A.; Chafer, M. Physical and antimicrobial properties of chitosan-tea tree essential oil composite films. J. Food Eng., 2010, 98(4), 443-452.
[http://dx.doi.org/10.1016/j.jfoodeng.2010.01.026]
[101]
Bi, F.; Zhang, X.; Liu, J.; Yong, H.; Gao, L. Development of antioxidant and antimicrobial packaging films based on chitosan, D-α-tocopheryl polyethylene glycol 1000 succinate and silicon dioxide nanoparticles. Food Packag. Shelf Life, 2020, 24, 100503.
[http://dx.doi.org/10.1016/j.fpsl.2020.100503]
[102]
Wu, C.; Sun, J.; Lu, Y.; Wu, T.; Pang, J.; Hu, Y. In situ self-assembly chitosan/ε-polylysine bionanocomposite film with enhanced antimicrobial properties for food packaging. Int. J. Biol. Macromol., 2019, 132, 385-392.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.03.133] [PMID: 30904525]
[103]
Kalia, S.; Thakur, K.; Celli, A.; Kiechel, M.A.; Schauer, C.L. Surface modification of plant fibers using environment friendly methods for their application in polymer. composites, textile industry and antimicrobial activities: A review. J. Environ. Chem. Eng., 2013, 1(3), 97-112.
[http://dx.doi.org/10.1016/j.jece.2013.04.009]
[104]
Zhu, X.; Hou, X.; Ma, B.; Xu, H.; Yang, Y. Chitosan/gallnut tannins composite fiber with improved tensile, antibacterial and fluorescence properties. Carbohydr. Polym., 2019, 226, 115311.
[http://dx.doi.org/10.1016/j.carbpol.2019.115311] [PMID: 31582080]
[105]
Verlee, A.; Mincke, S.; Stevens, C.V. Recent developments in antibacterial and antifungal chitosan and its derivatives. Carbohydr. Polym., 2017, 164, 268-283.
[http://dx.doi.org/10.1016/j.carbpol.2017.02.001] [PMID: 28325326]
[106]
Krajewska, B.; Wydro, P.; Jańczyk, A. Probing the modes of antibacterial activity of chitosan. Effects of pH and molecular weight on chitosan interactions with membrane lipids in Langmuir films. Biomacromolecules, 2011, 12(11), 4144-4152.
[http://dx.doi.org/10.1021/bm2012295] [PMID: 21936509]
[107]
Goy, R.C.; Britto, D.D.; Assis, O.B.G. A review of the antimicrobial activity of chitosan. Polímeros, 2009, 19, 241-247.
[http://dx.doi.org/10.1590/S0104-14282009000300013]
[108]
Galván Márquez, I.; Akuaku, J.; Cruz, I.; Cheetham, J.; Golshani, A.; Smith, M.L. Disruption of protein synthesis as antifungal mode of action by chitosan. Int. J. Food Microbiol., 2013, 164(1), 108-112.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2013.03.025] [PMID: 23624539]
[109]
Kou, S.G.; Peters, L.; Mucalo, M. Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms. Carbohydr. Polym., 2022, 282, 119132.
[http://dx.doi.org/10.1016/j.carbpol.2022.119132] [PMID: 35123764]
[110]
Palma-Guerrero, J.; Lopez-Jimenez, J.A.; Pérez-Berná, A.J.; Huang, I.C.; Jansson, H.B.; Salinas, J.; Villalaín, J.; Read, N.D.; Lopez-Llorca, L.V. Membrane fluidity determines sensitivity of filamentous fungi to chitosan. Mol. Microbiol., 2010, 75(4), 1021-1032.
[http://dx.doi.org/10.1111/j.1365-2958.2009.07039.x] [PMID: 20487294]
[111]
Helander, I.M.; Nurmiaho-Lassila, E.L.; Ahvenainen, R.; Rhoades, J.; Roller, S. Chitosan disrupts the barrier properties of the outer membrane of gram-negative bacteria. Int. J. Food Microbiol., 2001, 71(2-3), 235-244.
[http://dx.doi.org/10.1016/S0168-1605(01)00609-2] [PMID: 11789941]
[112]
Liu, H.; Du, Y.; Wang, X.; Sun, L. Chitosan kills bacteria through cell membrane damage. Int. J. Food Microbiol., 2004, 95(2), 147-155.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.01.022] [PMID: 15282127]
[113]
Je, J.Y.; Kim, S.K. Chitosan derivatives killed bacteria by disrupting the outer and inner membrane. J. Agric. Food Chem., 2006, 54(18), 6629-6633.
[http://dx.doi.org/10.1021/jf061310p] [PMID: 16939319]
[114]
Xu, J.G.; Zhao, X.M.; Wang, X.L.; Zhao, Z.B.; Du, Y.G. Oligochitosan inhibits Phytophthora capsici by penetrating the cell membrane and putative binding to intracellular targets. Pestic. Biochem. Physiol., 2007, 88(2), 167-175.
[http://dx.doi.org/10.1016/j.pestbp.2006.10.010]
[115]
Li, J.; Zhuang, S. Antibacterial activity of chitosan and its derivatives and their interaction mechanism with bacteria: current state and perspectives. Eur. Polym. J., 2020, 138(1), 109984.
[http://dx.doi.org/10.1016/j.eurpolymj.2020.109984]
[116]
Upadhyaya, L.; Singh, J.; Agarwal, V.; Tewari, R.P. Biomedical applications of carboxymethyl chitosans. Carbohydr. Polym., 2013, 91(1), 452-466.
[http://dx.doi.org/10.1016/j.carbpol.2012.07.076] [PMID: 23044156]
[117]
Elsabee, M.Z.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C, 2013, 33(4), 1819-1841.
[http://dx.doi.org/10.1016/j.msec.2013.01.010] [PMID: 23498203]
[118]
Devlieghere, F.; Vermeulen, A.; Debevere, J. Chitosan: Antimicrobial activity, interactions with food components and applicability as a coating on fruit and vegetables. Food Microbiol., 2004, 21(6), 703-714.
[http://dx.doi.org/10.1016/j.fm.2004.02.008]
[119]
Kumar, S.; Mukherjee, A.; Dutta, J. Chitosan based nanocomposite films and coatings: Emerging antimicrobial food packaging alternatives. Trends Food Sci. Technol., 2020, 97, 196-209.
[http://dx.doi.org/10.1016/j.tifs.2020.01.002]
[120]
Mujtaba, M.; Morsi, R.E.; Kerch, G.; Elsabee, M.Z.; Kaya, M.; Labidi, J.; Khawar, K.M. Current advancements in chitosan-based film production for food technology; A review. Int. J. Biol. Macromol., 2019, 121, 889-904.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.10.109] [PMID: 30340012]
[121]
Khan, F.; Pham, D.T.N.; Oloketuyi, S.F.; Manivasagan, P.; Oh, J.; Kim, Y.M. Chitosan and their derivatives: Antibiofilm drugs against pathogenic bacteria. Colloids Surf. B Biointerfaces, 2020, 185, 110627.
[http://dx.doi.org/10.1016/j.colsurfb.2019.110627] [PMID: 31732391]
[122]
Niu, X.; Zhu, L.; Xi, L.; Guo, L.; Wang, H. An antimicrobial agent prepared by N-succinyl chitosan immobilized lysozyme and its application in strawberry preservation. Food Control, 2020, 108, 106829.
[http://dx.doi.org/10.1016/j.foodcont.2019.106829]
[123]
Correa-Pacheco, Z.N.; Bautista-Baos, S.; Ramos-García, M.D.L.; Martínez-González, M.D.C.; Hernández-Romano, J. Physicochemical characterization and antimicrobial activity of edible propolis-chitosan nanoparticle films. Prog. Org. Coat., 2019, 137, 105-326.
[http://dx.doi.org/10.1016/j.porgcoat.2019.105326]
[124]
Li, H.; Peng, L. Antimicrobial and antioxidant surface modification of cellulose fibers using layer-by-layer deposition of chitosan and lignosulfonates. Carbohydr. Polym., 2015, 124, 35-42.
[http://dx.doi.org/10.1016/j.carbpol.2015.01.071] [PMID: 25839791]
[125]
Wang, K.; Lim, P.N.; Tong, S.Y.; Thian, E.S. Development of grapefruit seed extract-loaded poly(ε-caprolactone)/chitosan films for antimicrobial food packaging. Food Packag. Shelf Life, 2019, 22, 100396.
[http://dx.doi.org/10.1016/j.fpsl.2019.100396]
[126]
Kritchenkov, A.S.; Egorov, A.R.; Volkova, O.V.; Zabodalova, L.A.; Khrustale, V.V.N. Active antibacterial food coatings based on blends of succinyl chitosan and triazole betaine chitosan derivatives. Food Packag. Shelf Life, 2020, 25, 100534.
[http://dx.doi.org/10.1016/j.fpsl.2020.100534]
[127]
Niemczyk, A.; Goszczyńska, A.; Gołda-Cępa, M.; Kotarba, A.; Sobolewski, P.; El Fray, M. Biofunctional catheter coatings based on chitosan-fatty acids derivatives. Carbohydr. Polym., 2019, 225, 115263.
[http://dx.doi.org/10.1016/j.carbpol.2019.115263] [PMID: 31521311]
[128]
Follmann, H.D.; Naves, A.F.; Martins, A.F.; Félix, O.; Decher, G.; Muniz, E.C.; Silva, R. Advanced fibroblast proliferation inhibition for biocompatible coating by electrostatic layer-by-layer assemblies of heparin and chitosan derivatives. J. Colloid Interface Sci., 2016, 474, 9-17.
[http://dx.doi.org/10.1016/j.jcis.2016.04.008] [PMID: 27089015]
[129]
Bano, I.; Arshad, M.; Yasin, T.; Ghauri, M.A. Preparation, characterization and evaluation of glycerol plasticized chitosan/PVA blends for burn wounds. Int. J. Biol. Macromol., 2019, 124, 155-162.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.11.073] [PMID: 30439437]
[130]
Feng, C.; Wang, Z.; Jiang, C.; Kong, M.; Zhou, X.; Li, Y.; Cheng, X.; Chen, X. Chitosan/o-carboxymethyl chitosan nanoparticles for efficient and safe oral anticancer drug delivery: In vitro and in vivo evaluation. Int. J. Pharm., 2013, 457(1), 158-167.
[http://dx.doi.org/10.1016/j.ijpharm.2013.07.079] [PMID: 24029170]
[131]
Li, Q.; Mahendra, S.; Lyon, D.Y.; Brunet, L.; Liga, M.V.; Li, D.; Alvarez, P.J. Antimicrobial nanomaterials for water disinfection and microbial control: Potential applications and implications. Water Res., 2008, 42(18), 4591-4602.
[http://dx.doi.org/10.1016/j.watres.2008.08.015] [PMID: 18804836]
[132]
Yang, S.; Han, X.; Jia, Y.; Zhang, H.; Tang, T. Hydroxypropyl trimethyl ammonium chloride chitosan functionalized-PLGA electrospun fibrous membranes as antibacterial wound dressing: In vitro and in vivo evaluation. Polymers (Basel), 2017, 9(12), 697.
[http://dx.doi.org/10.3390/polym9120697]
[133]
Chanda, A.; Adhikari, J.; Ghosh, A.; Chowdhury, S.R.; Thomas, S.; Datta, P.; Saha, P. Electrospun chitosan/polycaprolactone-hyaluronic acid bilayered scaffold for potential wound healing applications. Int. J. Biol. Macromol., 2018, 116, 774-785.
[http://dx.doi.org/10.1016/j.ijbiomac.2018.05.099] [PMID: 29777811]
[134]
Sarhan, W.A.; Azzazy, H.M.; El-Sherbiny, I.M. Honey/chitosan nanofiber wound dressing enriched with Allium sativum and Cleome droserifolia: Enhanced antimicrobial and wound healing activity. ACS Appl. Mater. Interfaces, 2016, 8(10), 6379-6390.
[http://dx.doi.org/10.1021/acsami.6b00739] [PMID: 26909753]
[135]
Lu, Z.; Gao, J.; He, Q.; Wu, J.; Liang, D.; Yang, H.; Chen, R. Enhanced antibacterial and wound healing activities of microporous chitosan-Ag/ZnO composite dressing. Carbohydr. Polym., 2017, 156, 460-469.
[http://dx.doi.org/10.1016/j.carbpol.2016.09.051] [PMID: 27842847]
[136]
Abbas, M.; Hussain, T.; Arshad, M.; Ansari, A.R.; Irshad, A.; Nisar, J.; Hussain, F.; Masood, N.; Nazir, A.; Iqbal, M. Wound healing potential of curcumin cross-linked chitosan/polyvinyl alcohol. Int. J. Biol. Macromol., 2019, 140, 871-876.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.153] [PMID: 31437503]
[137]
Kalantari, K.; Afifi, A.M.; Jahangirian, H.; Webster, T.J. Biomedical applications of chitosan electrospun nanofibers as a green polymer - review. Carbohydr. Polym., 2019, 207, 588-600.
[http://dx.doi.org/10.1016/j.carbpol.2018.12.011] [PMID: 30600043]
[138]
Dragostin, O.M.; Samal, S.K.; Dash, M.; Lupascu, F.; Pânzariu, A.; Tuchilus, C.; Ghetu, N.; Danciu, M.; Dubruel, P.; Pieptu, D.; Vasile, C.; Tatia, R.; Profire, L. New antimicrobial chitosan derivatives for wound dressing applications. Carbohydr. Polym., 2016, 141, 28-40.
[http://dx.doi.org/10.1016/j.carbpol.2015.12.078] [PMID: 26876993]
[139]
El-Naby, A.; Al-Sagheer, A.A.; Negm, S.S.; Naiel, M. Dietary combination of chitosan nanoparticle and thymol affects feed utilization, digestive enzymes, antioxidant status, and intestinal morphology of Oreochromis niloticus. Aquaculture, 2020, 515, 734577.
[http://dx.doi.org/10.1016/j.aquaculture.2019.734577]
[140]
Jantarathin, S.; Borompichaichartkul, C.; Sanguandeekul, R. Microencapsulation of probiotic and prebiotic in alginate-chitosan capsules and its effect on viability under heat process in shrimp feeding. Mater. Today Proc., 2017, 4(5), 6166-6172.
[http://dx.doi.org/10.1016/j.matpr.2017.06.111]
[141]
Pan, M.; Liu, H.T.; Peng, W.; Xu, Q.S.; Bai, X.F.; Du, Y.G.; Chao, Y. Chitosan oligosaccharides inhibit LPS-induced over-expression of IL-6 and TNF-α in RAW264.7 macrophage cells through blockade of mitogen-activated protein kinase (MAPK) and PI3K/Akt signaling pathways. Carbohydr. Polym., 2011, 84(4), 1391-1398.
[http://dx.doi.org/10.1016/j.carbpol.2011.01.045]
[142]
Ho, T.; Jahan, M.; Haque, Z.; Kracht, S.; Wynn, P.C.; Du, Y.; Gunn, A.; Wang, B. Maternal chitosan oligosaccharide intervention optimizes the production performance and health status of gilts and their offspring. Anim. Nutr., 2020, 6(2), 134-142.
[http://dx.doi.org/10.1016/j.aninu.2020.02.001] [PMID: 32542193]
[143]
Dias, A.; Goes, R.; Gandra, J.R.; Takiya, C.S.; Branco, A.F.; Jacaúna, A.G.; Oliveira, R.T.; Souza, C.J.S.; Vaz, M.S.M. Increasing doses of chitosan to grazing beef steers: Nutrient intake and digestibility, ruminal fermentation, and nitrogen utilization. Anim. Feed Sci. Technol., 2017, 225, 73-80.
[http://dx.doi.org/10.1016/j.anifeedsci.2017.01.015]
[144]
Sun, B.; Yu, S.; Zhao, D.; Guo, S.; Wang, X.; Zhao, K. Polysaccharides as vaccine adjuvants. Vaccine, 2018, 36(35), 5226-5234.
[http://dx.doi.org/10.1016/j.vaccine.2018.07.040] [PMID: 30057282]
[145]
Huang, T.; Song, X.; Jing, J.; Zhao, K.; Shen, Y.; Zhang, X.; Yue, B. Chitosan-DNA nanoparticles enhanced the immunogenicity of multivalent DNA vaccination on mice against Trueperella pyogenes infection. J. Nanobiotechnology, 2018, 16(1), 8.
[http://dx.doi.org/10.1186/s12951-018-0337-2] [PMID: 29378591]
[146]
Zhao, K.; Shi, X.; Zhao, Y.; Wei, H.; Sun, Q.; Huang, T.; Zhang, X.; Wang, Y. Preparation and immunological effectiveness of a swine influenza DNA vaccine encapsulated in chitosan nanoparticles. Vaccine, 2011, 29(47), 8549-8556.
[http://dx.doi.org/10.1016/j.vaccine.2011.09.029] [PMID: 21945253]
[147]
Zhao, K.; Zhang, Y.; Zhang, X.; Li, W.; Shi, C.; Guo, C.; Dai, C.; Chen, Q.; Jin, Z.; Zhao, Y.; Cui, H.; Wang, Y. Preparation and efficacy of Newcastle disease virus DNA vaccine encapsulated in chitosan nanoparticles. Int. J. Nanomedicine, 2014, 9, 389-402.
[http://dx.doi.org/10.2147/IJN.S54226] [PMID: 24426783]
[148]
Zhao, K.; Han, J.; Zhang, Y.; Wei, L.; Yu, S.; Wang, X.; Jin, Z.; Wang, Y. Enhancing mucosal immune response of Newcastle disease virus DNA vaccine using N-2-Hydroxypropyl trimethyl ammonium chloride chitosan and N, O- carboxymethyl chitosan nanoparticles as delivery carrier. Mol. Pharm., 2018, 15(1), 226-237.
[http://dx.doi.org/10.1021/acs.molpharmaceut.7b00826] [PMID: 29172532]
[149]
El-Tahlawy, K.F.; El-Bendary, M.A.; Elhendawy, A.G.; Hudson, S.M. The antimicrobial activity of cotton fabrics treated with different crosslinking agents and chitosan. Carbohydr. Polym., 2005, 60(4), 421-430.
[http://dx.doi.org/10.1016/j.carbpol.2005.02.019]
[150]
Scacchetti, F.A.P.; Pinto, E.; Soares, G.M.B. Preparation and characterization of cotton fabrics with antimicrobial properties through the application of chitosan/silver-zeolite film. Proc. Eng., 2017, 200, 276-282.
[http://dx.doi.org/10.1016/j.proeng.2017.07.039]
[151]
Higazy, A.; Hashem, M.; Elshafei, A.; Shaker, N.; Hady, M.A. Development of antimicrobial jute packaging using chitosan and chitosan–metal complex. Carbohydr. Polym., 2010, 79(4), 867-874.
[http://dx.doi.org/10.1016/j.carbpol.2009.10.011]
[152]
Sathiyabama, M.; Muthukumar, S. Chitosan guar nanoparticle preparation and its in vitro antimicrobial activity towards phytopathogens of rice. Int. J. Biol. Macromol., 2020, 153, 297-304.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.03.001] [PMID: 32135260]
[153]
Entsar, I.R.; Badawy, M.; Steurbaut, W.; Stevens, C.V. In vitro assessment of N-(benzyl) chitosan derivatives against some plant pathogenic bacteria and fungi. Eur. Polym. J., 2009, 45(1), 237-245.
[http://dx.doi.org/10.1016/j.eurpolymj.2008.10.021]
[154]
Badawy, M.E.; Rabea, E.I.; Taktak, N.E. Antimicrobial and inhibitory enzyme activity of N-(benzyl) and quaternary N-(benzyl) chitosan derivatives on plant pathogens. Carbohydr. Polym., 2014, 111, 670-682.
[http://dx.doi.org/10.1016/j.carbpol.2014.04.098] [PMID: 25037402]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy