[6]
Pucci, C.; Martinelli, C.; Ciofani, G. Innovative approaches for cancer treatment: Current perspectives and new challenges. E Cancer Med. Sci., 2019, 13, 961.
[8]
Pavlović Mavić, M.; Šeparović, R.; Tečić Vuger, A.; Vazdar, L. Difference in estimation of side effects of chemotherapy between physicians and patients with early-stage breast cancer: The use of patient reported outcomes (PROs) in the evaluation of toxicity in everyday clinical practice. Cancers, 2021, 13(23), 5922.
[23]
Rahman, M.; Beg, S.; Ahmed, A.; Swain, S. Emergence of functionalized nanomedicines in cancer chemotherapy: Recent advancements, current challenges and toxicity considerations. Recent Pat. Nanomed., 2013, 2, 128-139.
[26]
Singh, V.; Sahebkar, A.; Kesharwani, P. Poly (propylene imine) dendrimer as an emerging polymeric nanocarrier for anticancer drug and gene delivery. Eur. Polym. J., 2021, 158, 110683.
[27]
Mittal, P.; Saharan, A.; Verma, R.; Altalbawy, F.M.A.; Alfaidi, M.A.; Batiha, G.E-S.; Akter, W.; Gautam, R.K.; Uddin, M.S.; Rahman, M.S. Dendrimers: A new race of pharmaceutical nanocarriers. BioMed Res. Int., 2021, 2021, e8844030.
[29]
Karimi, S.; Namazi, H. Fe3O4@PEG-coated dendrimer modified graphene oxide nanocomposite as a pH-sensitive drug carrier for targeted delivery of doxorubicin. J. Alloys Compd., 2021, 879, 160426.
[30]
Fatima, M.; Sheikh, A.; Hasan, N.; Sahebkar, A.; Riadi, Y.; Kesharwani, P. Folic acid conjugated poly(amidoamine) dendrimer as a smart nanocarriers for tracing, imaging, and treating cancers over-expressing folate receptors. Eur. Polym. J., 2022, 170, 111156.
[40]
Yafout, M.; Ousaid, A.; Khayati, Y.; El Otmani, I.S. Gold nanoparticles as a drug delivery system for standard chemotherapeutics: A new lead for targeted pharmacological cancer treatments. Sci. Am., 2021, 11, e00685.
[42]
Chen, T.C.; da Fonseca, C.O.; Levin, D.; Schönthal, A.H. The monoterpenoid perillyl alcohol: Anticancer agent and medium to overcome biological barriers. Pharmaceutics, 2021, 13(12), 2167.
[44]
Haranas, I.; Gkigkitzis, I.; Alexiou, A. Fractal Growth on the Surface of a Planet and in Orbit around it, Microgravity - Science and Technology; Springer, 2014.
[50]
Klonowski, W Signal and image analysis using chaos theory and fractal geometry. Machine Graph. Vision, 2001, 9(1), 31.
[53]
Smith, T.G.; Lange, G.D.; Marks, W.B. Fractal methods and results in cellular morphology- dimensions, lacunarity and multifractals. J. Neurosci. Methods, 1996, 69(2), 123-136.
[81]
Alexiou, A.; Rekkas, J. The quantum human central neural system. In: Advances in Experimental Medicine and Biology; Vlamos, P.; Alexiou, A., Eds.; Springer International Publishing: Switzerland, 2014; p. 821.
[82]
Alexiou, A.; Rekkas, J. Superconductivity in Human Body; Myth or Necessity In: Advances in Experimental Medicine and Biology; Vlamos, P.; Alexiou, A., Eds.; In: Advances in Experimental Medicine and Biology; Vlamos, P.; Alexiou, A., Eds.; Springer International Publishing: Switzerland, 2014; p. 821.
[89]
Römer, H. Weak quantum theory and the emergence of time. MindMatter, 2004, 2, p8.
[91]
Binnig, G.; Rohrer, H. Scanning tunneling microscopy. IBM J. Res. Develop., 1986, 30(4), 355-369.
[93]
de Broglie, L. The wave nature of the electron. Nobel Lecture., 1929, 12, 244-256.
[96]
Schrödinger, E. Quantisierung als Eigenwertproblem III. Ann. Phys., 1926, 80, 734-756.
[98]
Gneiting, T.; vSevvc’ikov’a, H.; Percival, D.B. Estimators of Fractal Dimension: Assessing the Roughness of Time Series and Spatial Data. 2012.
[99]
Milosevic, N.; Ristanovic, D. The box-counting method as an efficient tool for 2D fractal analysis of neuronal dendritic arbor. 5th International Symposium “Fractals in Biology and Medicine", March 2008 Locarno, Italy.
[105]
Sasaki, H.; Shibata, S.; Hatanaka, T. An evaluation method of ecotypes of japanese lawn grass for three different ecological functions. Bull. Natl. Grassl. Res. Inst., 1994, 49, 17-24.
[110]
Zmeškal, O.; Veselý, M.; Nežádal, M.; Buchníček, M. Fractal analysis of image structures. HarFA - Harmonic and Fractal Image Analysis, 2001, 3-5.
[111]
Hausdorff (Box-Counting) Fractal Dimension, Alceu Costa (2013) in MathWorks
[112]
Ruiz de Miras, J.; Navas, J.; Villoslada, P.; Esteban, F.J. UJA-3DFD: A program to compute the 3D fractal dimension from MRI data, Computer Methods and Programs in Biomedicine 2011, 104(3), 452-460.
[126]
Metze, K.; Castro de Mattos, A.; Adam, R. Fractal dimension of chromatin is an independent prognostic factor for survival in patients with small cell neuroendocrine carcinoma of the lung. Virchows Arch., 2018, 473, S114.
[136]
Metze, K.; Mello, M.R.B.; Albanez, K.B. Chromatin texture and molecular features in acute myeloid leukemia. Histopathology, 2012, 61(S1), 49-50.
[152]
Jelinek, H.F.; Fernandez, E. Neurons and fractals: How reliable and useful are calculations of fractal dimensions? J. Neurosci. Methods, 1998, 81(1-2), 9-18.
[154]
Ramya, R.; Shridhar, R.; Latha, K.C.; Balasubramanian, S. Endometrial cancer detection using fractal based texture analysis: A box counting Algorithm. IJAR, 2016, 2(7), 243-245.
[155]
Reza, S.M.; Mays, R.; Iftekharuddin, K.M. Multifractal detrended texture feature for brain tumor classification. Med. Imag., Comput.-Aided Diagn., 2015, 9414, 941410.
[163]
Demetzos, C.; Pippa, N. Fractal geometry as a new approach for proving nanosimilarity: A reflection note. Int. J. Pharm., 2015, 483(1-2), 1-5.
[164]
Pippa, N.; Dokoumetzidis, A.; Demetzos, C.; Macheras, P. On the ubiquitous presence of fractals and fractal concepts in pharmaceutical sciences: A review. Int. J. Pharm., 2013, 456(2), 340-352.
[174]
Yaffe, M.J.; Boyd, N.F. Quantitative image analysis for estimation of breast cancer risk. In: Handbook of Medical Image Processing and Analysis; Elsevier, 2009.
[178]
Hadzieva, E.; Bogatinoska, D.C.; Gjergjeska, L.; Shuminoska, M.; Petroski, R. Review of the software packages for estimation of the fractal dimension. Seman. Scholor, 2015, 2015, 53988051.