Review Article

磁性纳米颗粒辅助CRISPR诱变链式反应介导的非手术体内生殖细胞基因编辑

卷 30, 期 7, 2023

发表于: 16 September, 2022

页: [809 - 819] 页: 11

弟呕挨: 10.2174/0929867329666220722113832

价格: $65

Open Access Journals Promotions 2
摘要

通过生殖细胞进行的基因治疗会导致永久性的基因改造。这种方法的前景是由于它有可能为所有继承感兴趣的基因的人提供稳定的治疗效果。如果生发疗法成功实施,它可以从家庭和人口中消除某些疾病。在人类生殖系中进行基因改造的可行性引发了几个有争议的生物伦理问题。然而,最近在动物模型中探索了通过雄性和雌性生发细胞进行基因转移的方法。先前的研究表明,将DNA传递到睾丸,然后进行电穿孔,在产生种系介导的改变方面相对成功。由于这种方法包括外科手术,非手术,更安全,更省时的方法将是理想的。在此,我们讨论了在磁性纳米颗粒的帮助下,通过CRISPR诱变链式反应进行非手术体内生殖细胞介导的基因编辑的潜在方法。

关键词: 基因编辑,CRISPR,纳米颗粒,生殖细胞,电穿孔,磁性纳米颗粒。

[1]
Scherer, F.; Anton, M.; Schillinger, U.; Henke, J.; Bergemann, C.; Krüger, A.; Gänsbacher, B.; Plank, C. Magnetofection: Enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther., 2002, 9(2), 102-109.
[http://dx.doi.org/10.1038/sj.gt.3301624] [PMID: 11857068]
[2]
Mikhaylov, G.; Mikac, U.; Magaeva, A.A.; Itin, V.I.; Naiden, E.P.; Psakhye, I.; Babes, L.; Reinheckel, T.; Peters, C.; Zeiser, R.; Bogyo, M.; Turk, V.; Psakhye, S.G.; Turk, B.; Vasiljeva, O. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat. Nanotechnol., 2011, 6(9), 594-602.
[http://dx.doi.org/10.1038/nnano.2011.112] [PMID: 21822252]
[3]
Li, C.; Li, L.; Keates, A.C. Targeting cancer gene therapy with magnetic nanoparticles. Oncotarget, 2012, 3(4), 365-370.
[http://dx.doi.org/10.18632/oncotarget.490] [PMID: 22562943]
[4]
Majidi, S.; Sehrig, F.Z.; Samiei, M.; Milani, M.; Abbasi, E. Magnetic nanoparticles: Applications in gene delivery and gene therapy. 2015, 1-8.
[5]
Reimer, P.; Balzer, T. Ferucarbotran (Resovist): A new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: Properties, clinical development, and applications. Eur. Radiol., 2003, 13(6), 1266-1276.
[http://dx.doi.org/10.1007/s00330-002-1721-7] [PMID: 12764641]
[6]
McBain, S.C.; Yiu, H.H.; Dobson, J. Magnetic nanoparticles for gene and drug delivery. TL - 3. Int. J. Nanomedicine, 2007, 3(2), 169-180.
[7]
Fallahzadeh, S.; Bahrami, H.; Akbarzadeh, A.; Tayarani, M. High-isolation dual-frequency operation patch antenna using spiral defected microstrip structure. IEEE Antennas Wirel. Propag. Lett., 2010, 9, 122-124.
[http://dx.doi.org/10.1109/LAWP.2010.2043810]
[8]
Ebrahimnezhad, Z.; Zarghami, N.; Keyhani, M.; Amirsaadat, S.; Akbarzadeh, A.; Rahmati, M.; Taheri, Z.M.; Nejati-Koshki, K. Inhibition of hTERT gene expression by silibinin-loaded PLGA-PEG-Fe3O4 in T47D breast cancer cell line. Bioimpacts, 2013, 3(2), 67-74.
[PMID: 23878789]
[9]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[10]
Chen, L.; Liu, J.; Zhang, Y.; Zhang, G.; Kang, Y.; Chen, A.; Feng, X.; Shao, L. The toxicity of silica nanoparticles to the immune system. Nanomedicine (Lond.), 2018, 13(15), 1939-1962.
[http://dx.doi.org/10.2217/nnm-2018-0076] [PMID: 30152253]
[11]
Croissant, J.G.; Fatieiev, Y.; Khashab, N.M. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv. Mater., 2017, 29(9), 1604634.
[http://dx.doi.org/10.1002/adma.201604634] [PMID: 28084658]
[12]
Slowing, I.I.; Vivero-Escoto, J.L.; Wu, C.W.; Lin, V.S.Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev., 2008, 60(11), 1278-1288.
[http://dx.doi.org/10.1016/j.addr.2008.03.012] [PMID: 18514969]
[13]
Croissant, J.G.; Butler, K.S.; Zink, J.I.; Brinker, C.J. Synthetic amorphous silica nanoparticles: Toxicity, biomedical and environmental implications. Nat. Rev. Mater., 2020, 5(12), 886-909.
[http://dx.doi.org/10.1038/s41578-020-0230-0]
[14]
Pavan, C.; Santalucia, R.; Leinardi, R.; Fabbiani, M.; Yakoub, Y.; Uwambayinema, F.; Ugliengo, P.; Tomatis, M.; Martra, G.; Turci, F.; Lison, D.; Fubini, B. Nearly free surface silanols are the critical molecular moieties that initiate the toxicity of silica particles. Proc. Natl. Acad. Sci. USA, 2020, 117(45), 27836-27846.
[http://dx.doi.org/10.1073/pnas.2008006117] [PMID: 33097669]
[15]
Wang, T.; Jiang, H.; Zhao, Q.; Wang, S.; Zou, M.; Cheng, G. Enhanced mucosal and systemic immune responses obtained by porous silica nanoparticles used as an oral vaccine adjuvant: Effect of silica architecture on immunological properties. Int. J. Pharm., 2012, 436(1-2), 351-358.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.028] [PMID: 22721849]
[16]
Ghanbarlou, M.M. Delivery of dcas9 crispr system into the hard transfection cells by magnetofection approach delivery of dCas9 CRISPR system into the hard transfection cells by magnetofection approach evaluating magnetic nanoparticles and lipofectamine approaches for delivery of dCas9 CRISPR system into HEK-293 and HFF cells. Res. Square, 2021. Available from: https://assets.researchsquare.com/files/rs-999842/v1_covered.pdf?c=1635432201
[17]
Rohiwal, S.S. Polyethylenimine based magnetic nanoparticles mediated non-viral CRISPR/Cas9 system for genome editing. Sci. Reports, 2020, 10(1), 1-12.
[http://dx.doi.org/10.1038/s41598-020-61465-6]
[18]
Moraes Silva, S.; Tavallaie, R.; Sandiford, L.; Tilley, R.D.; Gooding, J.J. Gold coated magnetic nanoparticles: From preparation to surface modification for analytical and biomedical applications. Chem. Commun. (Camb.), 2016, 52(48), 7528-7540.
[http://dx.doi.org/10.1039/C6CC03225G] [PMID: 27182032]
[19]
Li, J.; Zou, S.; Gao, J.; Liang, J.; Zhou, H.; Liang, L.; Wu, W. Block copolymer conjugated Au-coated Fe3O4 nanoparticles as vectors for enhancing colloidal stability and cellular uptake. J. Nanobiotechnol., 2017, 15(1), 56.
[http://dx.doi.org/10.1186/s12951-017-0290-5] [PMID: 28743275]
[20]
Park, H.Y.; Schadt, M.J.; Wang, L.; Lim, I.I.; Njoki, P.N.; Kim, S.H.; Jang, M.Y.; Luo, J.; Zhong, C.J. Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation. Langmuir, 2007, 23(17), 9050-9056.
[http://dx.doi.org/10.1021/la701305f] [PMID: 17629315]
[21]
Lyon, J.L.; Fleming, D.A.; Stone, M.B.; Schiffer, P.; Williams, M.E. Synthesis of Fe oxide Core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett., 2004, 4(4), 719-723.
[http://dx.doi.org/10.1021/nl035253f]
[22]
Goon, I.Y.; Lai, L.M.H.; Lim, M.; Munroe, P.; Gooding, J.J.; Amal, R. Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: Systematic control using polyethyleneimine. Chem. Mater., 2009, 21(4), 673-681.
[http://dx.doi.org/10.1021/cm8025329]
[23]
Lin, J.; Zhou, W.; Kumbhar, A.; Wiemann, J.; Fang, J.; Carpenter, E.E.; O’Connor, C.J. Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly. J. Solid State Chem., 2001, 159(1), 26-31.
[http://dx.doi.org/10.1006/jssc.2001.9117]
[24]
Ferreira, D.; Fontinha, D.; Martins, C.; Pires, D.; Fernandes, A.R.; Baptista, P.V. Gold nanoparticles for vectorization of nucleic acids for cancer therapeutics. Molecules, 2020, 25(15), 3489.
[http://dx.doi.org/10.3390/molecules25153489]
[25]
Crețu, B.E.B.; Dodi, G.; Shavandi, A.; Gardikiotis, I.; Șerban, I.L.; Balan, V. Imaging constructs: The rise of Iron Oxide nanoparticles. Molecules, 2021, 26(11), 1-45.
[http://dx.doi.org/10.3390/molecules26113437] [PMID: 34198906]
[26]
Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett., 2008, 3(11), 397-415.
[http://dx.doi.org/10.1007/s11671-008-9174-9] [PMID: 21749733]
[27]
Hryhorowicz, M.; Grześkowiak, B.; Mazurkiewicz, N.; Śledziński, P.; Lipiński, D.; Słomski, R. Improved delivery of CRISPR/Cas9 system using magnetic nanoparticles into porcine fibroblast. Mol. Biotechnol., 2019, 61(3), 173-180.
[http://dx.doi.org/10.1007/s12033-018-0145-9] [PMID: 30560399]
[28]
Wu, Y.J.; Muldoon, L.L.; Varallyay, C.; Markwardt, S.; Jones, R.E.; Neuwelt, E.A. In vivo leukocyte labeling with intravenous ferumoxides/protamine sulfate complex and in vitro characterization for cellular magnetic resonance imaging. Am. J. Physiol. Cell Physiol., 2007, 293(5), C1698-C1708.
[http://dx.doi.org/10.1152/ajpcell.00215.2007] [PMID: 17898131]
[29]
Mahmoudi, M. Erratum: Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly(vinyl alcohol). J. Phys. Chem. C, 2009, 113(39), 17274.
[http://dx.doi.org/10.1021/jp904884y]
[30]
Mahmoudi, M.; Simchi, A.; Milani, A.S.; Stroeve, P. Cell toxicity of superparamagnetic iron oxide nanoparticles. J. Colloid Interface Sci., 2009, 336(2), 510-518.
[http://dx.doi.org/10.1016/j.jcis.2009.04.046] [PMID: 19476952]
[31]
Gupta, A.K.; Berry, C.; Gupta, M.; Curtis, A. Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis. IEEE Trans. Nanobioscience, 2003, 2(4), 255-261.
[http://dx.doi.org/10.1109/TNB.2003.820279] [PMID: 15376916]
[32]
Gupta, A.K.; Wells, S. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobiosci., 2004, 3(1), 66-73.
[http://dx.doi.org/10.1109/TNB.2003.820277] [PMID: 15382647]
[33]
Kim, J.S.; Yoon, T.J.; Yu, K.N.; Noh, M.S.; Woo, M.; Kim, B.G.; Lee, K.H.; Sohn, B.H.; Park, S.B.; Lee, J.K.; Cho, M.H. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J. Vet. Sci., 2006, 7(4), 321-326.
[http://dx.doi.org/10.4142/jvs.2006.7.4.321] [PMID: 17106221]
[34]
Müller, K.; Skepper, J.N.; Posfai, M.; Trivedi, R.; Howarth, S.; Corot, C.; Lancelot, E.; Thompson, P.W.; Brown, A.P.; Gillard, J.H. Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials, 2007, 28(9), 1629-1642.
[http://dx.doi.org/10.1016/j.biomaterials.2006.12.003] [PMID: 17178155]
[35]
Mykhaylyk, O.; Antequera, Y.S.; Vlaskou, D.; Plank, C. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat. Protoc., 2007, 2(10), 2391-2411.
[http://dx.doi.org/10.1038/nprot.2007.352] [PMID: 17947981]
[36]
Kamei, K.; Mukai, Y.; Kojima, H.; Yoshikawa, T.; Yoshikawa, M.; Kiyohara, G.; Yamamoto, T.A.; Yoshioka, Y.; Okada, N.; Seino, S.; Nakagawa, S. Direct cell entry of gold/iron-oxide magnetic nanoparticles in adenovirus mediated gene delivery. Biomaterials, 2009, 30(9), 1809-1814.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.015] [PMID: 19136151]
[37]
Svitashev, S.; Schwartz, C.; Lenderts, B.; Young, J.K.; Cigan, A.M. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun., 2016, 7(1), 13274.
[http://dx.doi.org/10.1038/ncomms13274] [PMID: 27848933]
[38]
Grayson, C.; Molday, R.S. Dominant negative mechanism underlies autosomal dominant Stargardt-like macular dystrophy linked to mutations in ELOVL4. J. Biol. Chem., 2005, 280(37), 32521-32530.
[http://dx.doi.org/10.1074/jbc.M503411200] [PMID: 16036915]
[39]
Cai, X.; Conley, S.M.; Nash, Z.; Fliesler, S.J.; Cooper, M.J.; Naash, M.I. Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa. FASEB J., 2010, 24(4), 1178-1191.
[http://dx.doi.org/10.1096/fj.09-139147] [PMID: 19952284]
[40]
Men, C.; Bujakowska, K.M.; Place, E.; Liu, Q.; Pierce, Q. Sequence-specific suppression of alleles causing dominantly inherited retinal degeneration using the RNA-Guided Nuclease. Invest. Ophthalmol. Visual Sci., 2016, 56, 1086.
[41]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science , 2012, 337(6096), 816-821.
[http://dx.doi.org/10.1126/science.1225829]
[42]
Paulsen, J.S.; Long, J.D.; Johnson, H.J.; Aylward, E.H.; Ross, C.A.; Williams, J.K.; Nance, M.A.; Erwin, C.J.; Westervelt, H.J.; Harrington, D.L.; Bockholt, H.J.; Zhang, Y.; McCusker, E.A.; Chiu, E.M.; Panegyres, P.K. Clinical and biomarker changes in premanifest Huntington disease show trial feasibility: A decade of the PREDICT-HD study. Front. Aging Neurosci., 2014, 6, 78.
[http://dx.doi.org/10.3389/fnagi.2014.00078] [PMID: 24795630]
[43]
Fink, K.D. Allele-specific reduction of the mutant huntingtin allele using transcription activator-like effectors in human Huntington’s disease allele-specific reduction of the mutant huntingtin allele using transcription activator- like effectors in human huntingt. Cell Transplant., 2016, 25(4), 677-686.
[44]
Kordasiewicz, H.B.; Stanek, L.M.; Wancewicz, E.V.; Mazur, C.; McAlonis, M.M.; Pytel, K.A.; Artates, J.W.; Weiss, A.; Cheng, S.H.; Shihabuddin, L.S.; Hung, G.; Bennett, C.F.; Cleveland, D.W. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron, 2012, 74(6), 1031-1044.
[http://dx.doi.org/10.1016/j.neuron.2012.05.009] [PMID: 22726834]
[45]
Olson, S.D.; Kambal, A.; Pollock, K.; Mitchell, G.M.; Stewart, H.; Kalomoiris, S.; Cary, W.; Nacey, C.; Pepper, K.; Nolta, J.A. Examination of mesenchymal stem cell-mediated RNAi transfer to Huntington’s disease affected neuronal cells for reduction of huntingtin. Mol. Cell. Neurosci., 2012, 49(3), 271-281.
[http://dx.doi.org/10.1016/j.mcn.2011.12.001] [PMID: 22198539]
[46]
Southwell, A.L.; Skotte, N.H.; Kordasiewicz, H.B.; Østergaard, M.E.; Watt, A.T.; Carroll, J.B.; Doty, C.N.; Villanueva, E.B.; Petoukhov, E.; Vaid, K.; Xie, Y.; Freier, S.M.; Swayze, E.E.; Seth, P.P.; Bennett, C.F.; Hayden, M.R. In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides. Mol. Ther., 2014, 22(12), 2093-2106.
[http://dx.doi.org/10.1038/mt.2014.153] [PMID: 25101598]
[47]
Warby, S.C.; Montpetit, A.; Hayden, A.R.; Carroll, J.B.; Butland, S.L.; Visscher, H.; Collins, J.A.; Semaka, A.; Hudson, T.J.; Hayden, M.R. CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup. Am. J. Hum. Genet., 2009, 84(3), 351-366.
[http://dx.doi.org/10.1016/j.ajhg.2009.02.003] [PMID: 19249009]
[48]
Guilinger, J.P.; Thompson, D.B.; Liu, D.R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol., 2014, 32(6), 577-582.
[http://dx.doi.org/10.1038/nbt.2909] [PMID: 24770324]
[49]
Gantz, V.M.; Bier, E. The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations. Science, 2015, 348(6233), 442-444.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy