Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Non-surgical In Vivo Germ Cell-mediated Gene Editing by CRISPR Mutagenic Chain Reaction with the Aid of Magnetic Nanoparticles

Author(s): Maryam Vahdat Lasemi and Amirhossein Sahebkar*

Volume 30, Issue 7, 2023

Published on: 16 September, 2022

Page: [809 - 819] Pages: 11

DOI: 10.2174/0929867329666220722113832

Price: $65

Open Access Journals Promotions 2
Abstract

Gene therapy via germline cells leads to a permanent genetic modification. The promise of this method is due to its potential for providing a stable therapeutic effect for all who inherit the gene of interest. If germinal therapy is successfully performed, it can eliminate certain diseases from the family and the population. The feasibility of genetic modification in the human germline raises several controversial and bioethical issues. However, gene transfer via male and female germinal cells has been recently explored in animal models. Previous studies have shown that delivering DNA to the testes followed by electroporation is relatively successful in producing germline-mediated alterations. Since this method includes surgical procedures, non-surgical, safer, and less timeconsuming methods would be ideal. Herein, we discuss a potential approach for nonsurgical in vivo germ cell-mediated gene editing by CRISPR mutagenic chain reaction with the aid of magnetic nanoparticles.

Keywords: Gene editing, CRISPR, nanoparticles, germ cell, electroporation , magnetic nanoparticles.

[1]
Scherer, F.; Anton, M.; Schillinger, U.; Henke, J.; Bergemann, C.; Krüger, A.; Gänsbacher, B.; Plank, C. Magnetofection: Enhancing and targeting gene delivery by magnetic force in vitro and in vivo. Gene Ther., 2002, 9(2), 102-109.
[http://dx.doi.org/10.1038/sj.gt.3301624] [PMID: 11857068]
[2]
Mikhaylov, G.; Mikac, U.; Magaeva, A.A.; Itin, V.I.; Naiden, E.P.; Psakhye, I.; Babes, L.; Reinheckel, T.; Peters, C.; Zeiser, R.; Bogyo, M.; Turk, V.; Psakhye, S.G.; Turk, B.; Vasiljeva, O. Ferri-liposomes as an MRI-visible drug-delivery system for targeting tumours and their microenvironment. Nat. Nanotechnol., 2011, 6(9), 594-602.
[http://dx.doi.org/10.1038/nnano.2011.112] [PMID: 21822252]
[3]
Li, C.; Li, L.; Keates, A.C. Targeting cancer gene therapy with magnetic nanoparticles. Oncotarget, 2012, 3(4), 365-370.
[http://dx.doi.org/10.18632/oncotarget.490] [PMID: 22562943]
[4]
Majidi, S.; Sehrig, F.Z.; Samiei, M.; Milani, M.; Abbasi, E. Magnetic nanoparticles: Applications in gene delivery and gene therapy. 2015, 1-8.
[5]
Reimer, P.; Balzer, T. Ferucarbotran (Resovist): A new clinically approved RES-specific contrast agent for contrast-enhanced MRI of the liver: Properties, clinical development, and applications. Eur. Radiol., 2003, 13(6), 1266-1276.
[http://dx.doi.org/10.1007/s00330-002-1721-7] [PMID: 12764641]
[6]
McBain, S.C.; Yiu, H.H.; Dobson, J. Magnetic nanoparticles for gene and drug delivery. TL - 3. Int. J. Nanomedicine, 2007, 3(2), 169-180.
[7]
Fallahzadeh, S.; Bahrami, H.; Akbarzadeh, A.; Tayarani, M. High-isolation dual-frequency operation patch antenna using spiral defected microstrip structure. IEEE Antennas Wirel. Propag. Lett., 2010, 9, 122-124.
[http://dx.doi.org/10.1109/LAWP.2010.2043810]
[8]
Ebrahimnezhad, Z.; Zarghami, N.; Keyhani, M.; Amirsaadat, S.; Akbarzadeh, A.; Rahmati, M.; Taheri, Z.M.; Nejati-Koshki, K. Inhibition of hTERT gene expression by silibinin-loaded PLGA-PEG-Fe3O4 in T47D breast cancer cell line. Bioimpacts, 2013, 3(2), 67-74.
[PMID: 23878789]
[9]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[10]
Chen, L.; Liu, J.; Zhang, Y.; Zhang, G.; Kang, Y.; Chen, A.; Feng, X.; Shao, L. The toxicity of silica nanoparticles to the immune system. Nanomedicine (Lond.), 2018, 13(15), 1939-1962.
[http://dx.doi.org/10.2217/nnm-2018-0076] [PMID: 30152253]
[11]
Croissant, J.G.; Fatieiev, Y.; Khashab, N.M. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv. Mater., 2017, 29(9), 1604634.
[http://dx.doi.org/10.1002/adma.201604634] [PMID: 28084658]
[12]
Slowing, I.I.; Vivero-Escoto, J.L.; Wu, C.W.; Lin, V.S.Y. Mesoporous silica nanoparticles as controlled release drug delivery and gene transfection carriers. Adv. Drug Deliv. Rev., 2008, 60(11), 1278-1288.
[http://dx.doi.org/10.1016/j.addr.2008.03.012] [PMID: 18514969]
[13]
Croissant, J.G.; Butler, K.S.; Zink, J.I.; Brinker, C.J. Synthetic amorphous silica nanoparticles: Toxicity, biomedical and environmental implications. Nat. Rev. Mater., 2020, 5(12), 886-909.
[http://dx.doi.org/10.1038/s41578-020-0230-0]
[14]
Pavan, C.; Santalucia, R.; Leinardi, R.; Fabbiani, M.; Yakoub, Y.; Uwambayinema, F.; Ugliengo, P.; Tomatis, M.; Martra, G.; Turci, F.; Lison, D.; Fubini, B. Nearly free surface silanols are the critical molecular moieties that initiate the toxicity of silica particles. Proc. Natl. Acad. Sci. USA, 2020, 117(45), 27836-27846.
[http://dx.doi.org/10.1073/pnas.2008006117] [PMID: 33097669]
[15]
Wang, T.; Jiang, H.; Zhao, Q.; Wang, S.; Zou, M.; Cheng, G. Enhanced mucosal and systemic immune responses obtained by porous silica nanoparticles used as an oral vaccine adjuvant: Effect of silica architecture on immunological properties. Int. J. Pharm., 2012, 436(1-2), 351-358.
[http://dx.doi.org/10.1016/j.ijpharm.2012.06.028] [PMID: 22721849]
[16]
Ghanbarlou, M.M. Delivery of dcas9 crispr system into the hard transfection cells by magnetofection approach delivery of dCas9 CRISPR system into the hard transfection cells by magnetofection approach evaluating magnetic nanoparticles and lipofectamine approaches for delivery of dCas9 CRISPR system into HEK-293 and HFF cells. Res. Square, 2021. Available from: https://assets.researchsquare.com/files/rs-999842/v1_covered.pdf?c=1635432201
[17]
Rohiwal, S.S. Polyethylenimine based magnetic nanoparticles mediated non-viral CRISPR/Cas9 system for genome editing. Sci. Reports, 2020, 10(1), 1-12.
[http://dx.doi.org/10.1038/s41598-020-61465-6]
[18]
Moraes Silva, S.; Tavallaie, R.; Sandiford, L.; Tilley, R.D.; Gooding, J.J. Gold coated magnetic nanoparticles: From preparation to surface modification for analytical and biomedical applications. Chem. Commun. (Camb.), 2016, 52(48), 7528-7540.
[http://dx.doi.org/10.1039/C6CC03225G] [PMID: 27182032]
[19]
Li, J.; Zou, S.; Gao, J.; Liang, J.; Zhou, H.; Liang, L.; Wu, W. Block copolymer conjugated Au-coated Fe3O4 nanoparticles as vectors for enhancing colloidal stability and cellular uptake. J. Nanobiotechnol., 2017, 15(1), 56.
[http://dx.doi.org/10.1186/s12951-017-0290-5] [PMID: 28743275]
[20]
Park, H.Y.; Schadt, M.J.; Wang, L.; Lim, I.I.; Njoki, P.N.; Kim, S.H.; Jang, M.Y.; Luo, J.; Zhong, C.J. Fabrication of magnetic core@shell Fe oxide@Au nanoparticles for interfacial bioactivity and bio-separation. Langmuir, 2007, 23(17), 9050-9056.
[http://dx.doi.org/10.1021/la701305f] [PMID: 17629315]
[21]
Lyon, J.L.; Fleming, D.A.; Stone, M.B.; Schiffer, P.; Williams, M.E. Synthesis of Fe oxide Core/Au shell nanoparticles by iterative hydroxylamine seeding. Nano Lett., 2004, 4(4), 719-723.
[http://dx.doi.org/10.1021/nl035253f]
[22]
Goon, I.Y.; Lai, L.M.H.; Lim, M.; Munroe, P.; Gooding, J.J.; Amal, R. Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: Systematic control using polyethyleneimine. Chem. Mater., 2009, 21(4), 673-681.
[http://dx.doi.org/10.1021/cm8025329]
[23]
Lin, J.; Zhou, W.; Kumbhar, A.; Wiemann, J.; Fang, J.; Carpenter, E.E.; O’Connor, C.J. Gold-coated iron (Fe@Au) nanoparticles: Synthesis, characterization, and magnetic field-induced self-assembly. J. Solid State Chem., 2001, 159(1), 26-31.
[http://dx.doi.org/10.1006/jssc.2001.9117]
[24]
Ferreira, D.; Fontinha, D.; Martins, C.; Pires, D.; Fernandes, A.R.; Baptista, P.V. Gold nanoparticles for vectorization of nucleic acids for cancer therapeutics. Molecules, 2020, 25(15), 3489.
[http://dx.doi.org/10.3390/molecules25153489]
[25]
Crețu, B.E.B.; Dodi, G.; Shavandi, A.; Gardikiotis, I.; Șerban, I.L.; Balan, V. Imaging constructs: The rise of Iron Oxide nanoparticles. Molecules, 2021, 26(11), 1-45.
[http://dx.doi.org/10.3390/molecules26113437] [PMID: 34198906]
[26]
Wu, W.; He, Q.; Jiang, C. Magnetic iron oxide nanoparticles: Synthesis and surface functionalization strategies. Nanoscale Res. Lett., 2008, 3(11), 397-415.
[http://dx.doi.org/10.1007/s11671-008-9174-9] [PMID: 21749733]
[27]
Hryhorowicz, M.; Grześkowiak, B.; Mazurkiewicz, N.; Śledziński, P.; Lipiński, D.; Słomski, R. Improved delivery of CRISPR/Cas9 system using magnetic nanoparticles into porcine fibroblast. Mol. Biotechnol., 2019, 61(3), 173-180.
[http://dx.doi.org/10.1007/s12033-018-0145-9] [PMID: 30560399]
[28]
Wu, Y.J.; Muldoon, L.L.; Varallyay, C.; Markwardt, S.; Jones, R.E.; Neuwelt, E.A. In vivo leukocyte labeling with intravenous ferumoxides/protamine sulfate complex and in vitro characterization for cellular magnetic resonance imaging. Am. J. Physiol. Cell Physiol., 2007, 293(5), C1698-C1708.
[http://dx.doi.org/10.1152/ajpcell.00215.2007] [PMID: 17898131]
[29]
Mahmoudi, M. Erratum: Multiphysics flow modeling and in vitro toxicity of iron oxide nanoparticles coated with poly(vinyl alcohol). J. Phys. Chem. C, 2009, 113(39), 17274.
[http://dx.doi.org/10.1021/jp904884y]
[30]
Mahmoudi, M.; Simchi, A.; Milani, A.S.; Stroeve, P. Cell toxicity of superparamagnetic iron oxide nanoparticles. J. Colloid Interface Sci., 2009, 336(2), 510-518.
[http://dx.doi.org/10.1016/j.jcis.2009.04.046] [PMID: 19476952]
[31]
Gupta, A.K.; Berry, C.; Gupta, M.; Curtis, A. Receptor-mediated targeting of magnetic nanoparticles using insulin as a surface ligand to prevent endocytosis. IEEE Trans. Nanobioscience, 2003, 2(4), 255-261.
[http://dx.doi.org/10.1109/TNB.2003.820279] [PMID: 15376916]
[32]
Gupta, A.K.; Wells, S. Surface-modified superparamagnetic nanoparticles for drug delivery: Preparation, characterization, and cytotoxicity studies. IEEE Trans. Nanobiosci., 2004, 3(1), 66-73.
[http://dx.doi.org/10.1109/TNB.2003.820277] [PMID: 15382647]
[33]
Kim, J.S.; Yoon, T.J.; Yu, K.N.; Noh, M.S.; Woo, M.; Kim, B.G.; Lee, K.H.; Sohn, B.H.; Park, S.B.; Lee, J.K.; Cho, M.H. Cellular uptake of magnetic nanoparticle is mediated through energy-dependent endocytosis in A549 cells. J. Vet. Sci., 2006, 7(4), 321-326.
[http://dx.doi.org/10.4142/jvs.2006.7.4.321] [PMID: 17106221]
[34]
Müller, K.; Skepper, J.N.; Posfai, M.; Trivedi, R.; Howarth, S.; Corot, C.; Lancelot, E.; Thompson, P.W.; Brown, A.P.; Gillard, J.H. Effect of ultrasmall superparamagnetic iron oxide nanoparticles (Ferumoxtran-10) on human monocyte-macrophages in vitro. Biomaterials, 2007, 28(9), 1629-1642.
[http://dx.doi.org/10.1016/j.biomaterials.2006.12.003] [PMID: 17178155]
[35]
Mykhaylyk, O.; Antequera, Y.S.; Vlaskou, D.; Plank, C. Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nat. Protoc., 2007, 2(10), 2391-2411.
[http://dx.doi.org/10.1038/nprot.2007.352] [PMID: 17947981]
[36]
Kamei, K.; Mukai, Y.; Kojima, H.; Yoshikawa, T.; Yoshikawa, M.; Kiyohara, G.; Yamamoto, T.A.; Yoshioka, Y.; Okada, N.; Seino, S.; Nakagawa, S. Direct cell entry of gold/iron-oxide magnetic nanoparticles in adenovirus mediated gene delivery. Biomaterials, 2009, 30(9), 1809-1814.
[http://dx.doi.org/10.1016/j.biomaterials.2008.12.015] [PMID: 19136151]
[37]
Svitashev, S.; Schwartz, C.; Lenderts, B.; Young, J.K.; Cigan, A.M. Genome editing in maize directed by CRISPR-Cas9 ribonucleoprotein complexes. Nat. Commun., 2016, 7(1), 13274.
[http://dx.doi.org/10.1038/ncomms13274] [PMID: 27848933]
[38]
Grayson, C.; Molday, R.S. Dominant negative mechanism underlies autosomal dominant Stargardt-like macular dystrophy linked to mutations in ELOVL4. J. Biol. Chem., 2005, 280(37), 32521-32530.
[http://dx.doi.org/10.1074/jbc.M503411200] [PMID: 16036915]
[39]
Cai, X.; Conley, S.M.; Nash, Z.; Fliesler, S.J.; Cooper, M.J.; Naash, M.I. Gene delivery to mitotic and postmitotic photoreceptors via compacted DNA nanoparticles results in improved phenotype in a mouse model of retinitis pigmentosa. FASEB J., 2010, 24(4), 1178-1191.
[http://dx.doi.org/10.1096/fj.09-139147] [PMID: 19952284]
[40]
Men, C.; Bujakowska, K.M.; Place, E.; Liu, Q.; Pierce, Q. Sequence-specific suppression of alleles causing dominantly inherited retinal degeneration using the RNA-Guided Nuclease. Invest. Ophthalmol. Visual Sci., 2016, 56, 1086.
[41]
Jinek, M.; Chylinski, K.; Fonfara, I.; Hauer, M.; Doudna, J. A.; Charpentier, E. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science , 2012, 337(6096), 816-821.
[http://dx.doi.org/10.1126/science.1225829]
[42]
Paulsen, J.S.; Long, J.D.; Johnson, H.J.; Aylward, E.H.; Ross, C.A.; Williams, J.K.; Nance, M.A.; Erwin, C.J.; Westervelt, H.J.; Harrington, D.L.; Bockholt, H.J.; Zhang, Y.; McCusker, E.A.; Chiu, E.M.; Panegyres, P.K. Clinical and biomarker changes in premanifest Huntington disease show trial feasibility: A decade of the PREDICT-HD study. Front. Aging Neurosci., 2014, 6, 78.
[http://dx.doi.org/10.3389/fnagi.2014.00078] [PMID: 24795630]
[43]
Fink, K.D. Allele-specific reduction of the mutant huntingtin allele using transcription activator-like effectors in human Huntington’s disease allele-specific reduction of the mutant huntingtin allele using transcription activator- like effectors in human huntingt. Cell Transplant., 2016, 25(4), 677-686.
[44]
Kordasiewicz, H.B.; Stanek, L.M.; Wancewicz, E.V.; Mazur, C.; McAlonis, M.M.; Pytel, K.A.; Artates, J.W.; Weiss, A.; Cheng, S.H.; Shihabuddin, L.S.; Hung, G.; Bennett, C.F.; Cleveland, D.W. Sustained therapeutic reversal of Huntington’s disease by transient repression of huntingtin synthesis. Neuron, 2012, 74(6), 1031-1044.
[http://dx.doi.org/10.1016/j.neuron.2012.05.009] [PMID: 22726834]
[45]
Olson, S.D.; Kambal, A.; Pollock, K.; Mitchell, G.M.; Stewart, H.; Kalomoiris, S.; Cary, W.; Nacey, C.; Pepper, K.; Nolta, J.A. Examination of mesenchymal stem cell-mediated RNAi transfer to Huntington’s disease affected neuronal cells for reduction of huntingtin. Mol. Cell. Neurosci., 2012, 49(3), 271-281.
[http://dx.doi.org/10.1016/j.mcn.2011.12.001] [PMID: 22198539]
[46]
Southwell, A.L.; Skotte, N.H.; Kordasiewicz, H.B.; Østergaard, M.E.; Watt, A.T.; Carroll, J.B.; Doty, C.N.; Villanueva, E.B.; Petoukhov, E.; Vaid, K.; Xie, Y.; Freier, S.M.; Swayze, E.E.; Seth, P.P.; Bennett, C.F.; Hayden, M.R. In vivo evaluation of candidate allele-specific mutant huntingtin gene silencing antisense oligonucleotides. Mol. Ther., 2014, 22(12), 2093-2106.
[http://dx.doi.org/10.1038/mt.2014.153] [PMID: 25101598]
[47]
Warby, S.C.; Montpetit, A.; Hayden, A.R.; Carroll, J.B.; Butland, S.L.; Visscher, H.; Collins, J.A.; Semaka, A.; Hudson, T.J.; Hayden, M.R. CAG expansion in the Huntington disease gene is associated with a specific and targetable predisposing haplogroup. Am. J. Hum. Genet., 2009, 84(3), 351-366.
[http://dx.doi.org/10.1016/j.ajhg.2009.02.003] [PMID: 19249009]
[48]
Guilinger, J.P.; Thompson, D.B.; Liu, D.R. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat. Biotechnol., 2014, 32(6), 577-582.
[http://dx.doi.org/10.1038/nbt.2909] [PMID: 24770324]
[49]
Gantz, V.M.; Bier, E. The mutagenic chain reaction: A method for converting heterozygous to homozygous mutations. Science, 2015, 348(6233), 442-444.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy