Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Ethnobotanical Perspective in the Management of Obesity: An Updated Review

Author(s): Sakshi Sharma, Manjusha Choudhary*, Sunishtha Kalra, Divya Sharma, Anjna Rani and Vikas Budhwar

Volume 9, Issue 3, 2023

Published on: 30 August, 2022

Article ID: e150722206806 Pages: 22

DOI: 10.2174/2215083808666220715091954

Price: $65

conference banner
Abstract

Background: Obesity has been increasing very rapidly over the past few decades in various developed countries affecting human health and producing various chronic disorders like diabetes (type 2), fat deposition in the liver, coronary heart disease, and atherosclerosis.

Objective: Apart from the genetic and side effects of the drugs, nearly 80-90% of people become obese due to various behavioural factors, high caloric intake, and some physiological factors. Currently, 15- 20% of male adults are overweight and 20-25% of females come under the category of obese.

Methods: Obesity is calculated by the body mass index and can be determined by the percentage of body fat and total body fat. Orlistat and sibutramine are two anti-obesogenic drugs which are available on the market and are approved by the Food and Drug Administration. However, these drugs possess various side effects and are high in cost. Therefore, more attention goes towards the medicinal plants and their isolated compounds, which are low in cost and with few or no side effects.

Results: In this review, we give information about the anti-obesogenic effect of various medicinal plant compounds isolated from them, the extract dose, and the mechanism of action of in vivo and In vitro activity. During our literature work, we also found some of the plants with effective In vitro and in vivo activity against obesity.

Conclusion: Therefore, the government and scientific community and other pharmaceutical companies help to find and work on various medicinal plants not to determine their bioactive compounds but also to develop effective anti-obesity drugs.

Keywords: Obesity, orlistat, sibutramine, in-vitro, in-vivo, medicinal plants.

Graphical Abstract
[1]
Fussenegger D, Pietrobelli A, Widhalm K. Childhood obesity: Political developments in Europe and related perspectives for future action on prevention. Obes Rev 2008; 9(1): 76-82.
[PMID: 17727620]
[2]
Aitlhadj L, Avila DS, Benedetto A, Aschner M, Stürzenbaum SR. Environmental exposure, obesity, and Parkinson’s disease: Lessons from fat and old worms. Environ Health Perspect 2011; 119(1): 20-8.
[http://dx.doi.org/10.1289/ehp.1002522] [PMID: 20797931]
[3]
Weisell RC. Body mass index as an indicator of obesity. Asia Pac J Clin Nutr 2002; 11(8): 681-4.
[http://dx.doi.org/10.1046/j.1440-6047.11.s8.5.x]
[4]
Nuttall FQ. Body Mass Index: Obesity, BMI, and Health: A critical review. Nutr Today 2015; 50(3): 117-28.
[http://dx.doi.org/10.1097/NT.0000000000000092] [PMID: 27340299]
[5]
Maria P, Evagelia S. Obesity disease. Health Sci J 2009; 3(3): 132-8.
[6]
Sarnalli TT. Obesity and disease association: A review. AKMMC J 2010; 1(2): 21-4.
[7]
Apovian CM, Aronne LJ, Bessesen DH, et al. Pharmacological management of obesity: An endocrine Society clinical practice guideline. J Clin Endocrinol Metab 2015; 100(2): 342-62.
[http://dx.doi.org/10.1210/jc.2014-3415] [PMID: 25590212]
[8]
Popkin BM, Hawkes C. Sweetening of the global diet, particularly beverages: Patterns, trends, and policy responses. Lancet Diabetes Endocrinol 2016; 4(2): 174-86.
[http://dx.doi.org/10.1016/S2213-8587(15)00419-2] [PMID: 26654575]
[9]
Shimomura I, Hammer RE, Richardson JA, et al. Insulin resistance and diabetes mellitus in transgenic mice expressing nuclear SREBP-1c in adipose tissue: Model for congenital generalized lipodystrophy. Genes Dev 1998; 12(20): 3182-94.
[http://dx.doi.org/10.1101/gad.12.20.3182] [PMID: 9784493]
[10]
Ballinger A, Peikin SR. Orlistat: Its current status as an anti-obesity drug. Eur J Pharmacol 2002; 440(2-3): 109-17.
[http://dx.doi.org/10.1016/S0014-2999(02)01422-X] [PMID: 12007529]
[11]
Drew BS, Dixon AF, Dixon JB. Obesity management: Update on orlistat. Vasc Health Risk Manag 2007; 3(6): 817-21.
[PMID: 18200802]
[12]
Hutton B, Fergusson D. Changes in body weight and serum lipid profile in obese patients treated with orlistat in addition to a hypocaloric diet: A systematic review of randomized clinical trials. Am J Clin Nutr 2004; 80(6): 1461-8.
[http://dx.doi.org/10.1093/ajcn/80.6.1461] [PMID: 15585756]
[13]
Thurairajah PH, Syn WK, Neil DA, Stell D, Haydon G. Orlistat (Xenical)-induced subacute liver failure. Eur J Gastroenterol Hepatol 2005; 17(12): 1437-8.
[http://dx.doi.org/10.1097/01.meg.0000187680.53389.88] [PMID: 16292105]
[14]
Poston WS, Foreyt JP. Sibutramine and the management of obesity. Expert Opin Pharmacother 2004; 5(3): 633-42.
[http://dx.doi.org/10.1517/14656566.5.3.633] [PMID: 15013931]
[15]
Tziomalos K, Krassas GE, Tzotzas T. The use of sibutramine in the management of obesity and related disorders: An update. Vasc Health Risk Manag 2009; 5(1): 441-52.
[PMID: 19475780]
[16]
de Simone G, D’Addeo G. Sibutramine: Balancing weight loss benefit and possible cardiovascular risk. Nutr Metab Cardiovasc Dis 2008; 18(5): 337-41.
[http://dx.doi.org/10.1016/j.numecd.2008.03.008] [PMID: 18502626]
[17]
Karamadoukis L, Shivashankar GH, Ludeman L, Williams AJ. An unusual complication of treatment with orlistat. Clin Nephrol 2009; 71(4): 430-2.
[http://dx.doi.org/10.5414/CNP71430] [PMID: 19356376]
[18]
Slovacek L, Pavlik V, Slovackova B. The effect of sibutramine therapy on occurrence of depression symptoms among obese patients. Nutr Metab Cardiovasc Dis 2008; 18(8): e43-4.
[http://dx.doi.org/10.1016/j.numecd.2008.04.002] [PMID: 18676135]
[19]
Ganjayi SM, Meriga B, Hari B, Oruganti L, Dasari S, Mopuri R. Polyphenolic rich fraction of Terminalia paniculata attenuates obesity through inhibition of pancreatic amylase, lipase and 3T3-L1 adipocyte differentiation. J Nutr Intermed Metab 2017; 10: 19-25.
[http://dx.doi.org/10.1016/j.jnim.2017.11.003]
[20]
Han LK, Zheng YN, Yoshikawa M, Okuda H, Kimura Y. Anti-obesity effects of chikusetsusaponins isolated from Panax japonicus rhizomes. BMC Complement Altern Med 2005; 5(9): 9.
[http://dx.doi.org/10.1186/1472-6882-5-9] [PMID: 15811191]
[21]
Kasabri V, Al-Hallaq EK, Bustanji YK, Abdul-Razzak KK, Abaza IF, Afifi FU. Antiobesity and antihyperglycaemic effects of Adiantum capillus-veneris extracts: In vitro and in vivo evaluations. Pharm Biol 2017; 55(1): 164-72.
[http://dx.doi.org/10.1080/13880209.2016.1233567] [PMID: 27663206]
[22]
Athesh K, Joshi G. Pharmacological screening of anti-obesity potential of Acorus calamus Linn. in a high fat cafeteria diet fed obese rats. Asian J Pharm Clin Res 2017; 1(4): 382-90.
[23]
Kumar S, Alagawadi KR. Anti-obesity effects of galangin, a pancreatic lipase inhibitor in cafeteria diet fed female rats. Pharm Biol 2013; 51(5): 607-13.
[http://dx.doi.org/10.3109/13880209.2012.757327] [PMID: 23363068]
[24]
Vadivelu B, Arumugam VA, Subbarayan S, Alshatwi AA, Krishnamoorthy R. Effect of Macrotyloma uniflorum on antiobesity in rats fed with a high fat diet. Saudi J Biol Sci 2019; 26(7): 1772-8.
[http://dx.doi.org/10.1016/j.sjbs.2018.05.003] [PMID: 31762657]
[25]
Lei F, Zhang XN, Wang W, et al. Evidence of anti-obesity effects of the pomegranate leaf extract in high-fat diet induced obese mice. Int J Obes 2007; 31(6): 1023-9.
[http://dx.doi.org/10.1038/sj.ijo.0803502] [PMID: 17299386]
[26]
Hazem MM. Inhibitory effects of red grape seed extracts on pancreatic -amylase and lipase. Global J Biotec & Biochem 2014; 9(4): 130-6.
[27]
Yuniarto A, Kurnia I, Ramadhan M. Anti-obesity effect of ethanolic extract of jasmine flowers (Jasminum sambac (L.)Ait) in high fat diet-induced mice: Potent inhibitor of pancreatic lipase enzyme. Int J Adv Pharm Bio Chem 2015; 4(1): 18-22.
[28]
Padmaja KT, Naidu BP, Kumar HN, Ganapathy S, Balaji M. Antiobesity activity of Bauhinia purpurea extract: Effect on hormone and lipid profile in high fat calorie diet induced. Adv Biosci Biotechnol 2014; 5: 861-73.
[http://dx.doi.org/10.4236/abb.2014.511101]
[29]
Velusami CC, Agarwal A, Mookambeswaran V. Effect of Nelumbo nucifera petal extracts on lipase, adipogenesis, adipolysis, and central receptors of obesity. Evid Based Complement Alternat Med 2013; 2013: 145925.
[http://dx.doi.org/10.1155/2013/145925] [PMID: 24348689]
[30]
Gwon SY, Ahn JY, Chung CH, Moon B, Ha TY. Lithospermum erythrorhizon suppresses high-fat diet-induced obesity, and acetylshikonin, a main compound of Lithospermum erythrorhizon, inhibits adipocyte differentiation. J Agric Food Chem 2012; 60(36): 9089-96.
[http://dx.doi.org/10.1021/jf3017404] [PMID: 22900585]
[31]
Kumar D, Karmase A, Jagtap S, Shekhar R, Bhutani KK. Pancreatic lipase inhibitory activity of cassiamin A, a bianthraquinone from Cassia siamea. Nat Prod Commun 2013; 8(2): 195-8.
[http://dx.doi.org/10.1177/1934578X1300800216] [PMID: 23513727]
[32]
Xu BJ, Han LK, Zheng YN, Lee JH, Sung CK. In vitro inhibitory effect of triterpenoidal saponins from Platycodi Radix on pancreatic lipase. Arch Pharm Res 2005; 28(2): 180-5.
[http://dx.doi.org/10.1007/BF02977712] [PMID: 15789748]
[33]
Zhang J, Kang MJ, Kim MJ, et al. Pancreatic lipase inhibitory activity of Taraxacum officinale In vitro and in vivo. Nutr Res Pract 2008; 2(4): 200-3.
[http://dx.doi.org/10.4162/nrp.2008.2.4.200] [PMID: 20016719]
[34]
Martins F, Noso TM, Porto VB, et al. Maté tea inhibits In vitro pancreatic lipase activity and has hypolipidemic effect on high-fat diet-induced obese mice. Obesity (Silver Spring) 2010; 18(1): 42-7.
[http://dx.doi.org/10.1038/oby.2009.189] [PMID: 19543216]
[35]
Woo S, Yoon M, Kim J, et al. The anti-angiogenic herbal extract from Melissa officinalis inhibits adipogenesis in 3T3-L1 adipocytes and suppresses adipocyte hypertrophy in high fat diet-induced obese C57BL/6J mice. J Ethnopharmacol 2016; 178: 238-50.
[http://dx.doi.org/10.1016/j.jep.2015.12.015] [PMID: 26702505]
[36]
Ben Khedher RM, Mohamed H, Arch JSJ, et al. Preventive effects of Salvia officinalis leaf extract on insulin resistance and inflammation in a model of high fat diet induced obesity in mice that responds to rosiglitazone. PeerJ 2018; 6: e4166.
[37]
Birari R, Roy SK, Singh A, Bhutani KK. Pancreatic lipase inhibitory alkaloids of Murraya koenigii leaves. Nat Prod Commun 2009; 4(8): 1089-92.
[http://dx.doi.org/10.1177/1934578X0900400814] [PMID: 19768989]
[38]
Morikawa T, Chaipech S, Matsuda H, et al. Anti-hyperlipidemic constituents from the bark of Shorea roxburghii. J Nat Med 2012; 66(3): 516-24.
[http://dx.doi.org/10.1007/s11418-011-0619-6] [PMID: 22261856]
[39]
Lee JK, Jang JH, Lee JT, Lee JS. Extraction and characteristics of anti-obesity lipase inhibitor from Phellius linteus. Mycobiology 2010; 38(1): 52-7.
[http://dx.doi.org/10.4489/MYCO.2010.38.1.052] [PMID: 23956625]
[40]
Itoh K, Murata K, Nakagaki Y, et al. A pancreatic lipase inhibitory activity of mango (Mangifera indica) leaf methanolic extract. J Plant Stud 2016; 5(2): 72.
[http://dx.doi.org/10.5539/jps.v5n2p72]
[41]
Deshpande SM, Shengule S, Apte GK, Wani M, Piprode V, Parab BP. Anti-obesity activity of Ziziphus Mauritiana: A potent pancreatic lipase inhibitor. Asian J Pharm Clin Res 2013; 6(2): 168-73.
[42]
Loizzo MR, Tundis R, Menichini F, Statti GA, Menichini F. Influence of ripening stage on health benefits properties of Capsicum annuum var. acuminatum L.: In vitro studies. J Med Food 2008; 11(1): 184-9.
[http://dx.doi.org/10.1089/jmf.2007.638] [PMID: 18361755]
[43]
Kim SH, Jo SH, Kwon YI, Hwang JK. Effects of onion (Allium cepa L.) extract administration on intestinal α-glucosidases activities and spikes in postprandial blood glucose levels in SD rats model. Int J Mol Sci 2011; 12(6): 3757-69.
[http://dx.doi.org/10.3390/ijms12063757] [PMID: 21747704]
[44]
Thubthimthed S, Laovitthayanggoon S, Siriarchavatana P, Chaithongsri K, Banchonglikitkul C. Anti-lipase activity of Quercus infectoria G. olivier extract. Thaiphesatchasan 2013; 38: 106-8.
[45]
Jang DS, Lee GY, Kim J, et al. A new pancreatic lipase inhibitor isolated from the roots of Actinidia arguta. Arch Pharm Res 2008; 31(5): 666-70.
[http://dx.doi.org/10.1007/s12272-001-1210-9] [PMID: 18481026]
[46]
Kim DY, Kim MS, Sa BK, Kim MB, Hwang JK. Boesenbergia pandurata attenuates diet-induced obesity by activating AMP-activated protein kinase and regulating lipid metabolism. Int J Mol Sci 2012; 13(1): 994-1005.
[http://dx.doi.org/10.3390/ijms13010994] [PMID: 22312299]
[47]
Ong SL, Nalamolu KR, Lai HY. Potential lipid-lowering effects of Eleusine indica (L) Gaertn. extract on high-fat-diet-induced hyperlipidemic rats. Pharmacogn Mag 2017; 13(49) (Suppl. 1): S1-9.
[http://dx.doi.org/10.4103/0973-1296.203986] [PMID: 28479718]
[48]
Moreno DA, Ilic N, Poulev A, Raskin I. Effects of Arachis hypogaea nutshell extract on lipid metabolic enzymes and obesity parameters. Life Sci 2006; 78(24): 2797-803.
[http://dx.doi.org/10.1016/j.lfs.2005.11.012] [PMID: 16337240]
[49]
Miyata M, Koyama T, Yazawa K. Water extract of Houttuynia cordata Thunb. leaves exerts anti-obesity effects by inhibiting fatty acid and glycerol absorption. J Nutr Sci Vitaminol (Tokyo) 2010; 56(2): 150-6.
[http://dx.doi.org/10.3177/jnsv.56.150] [PMID: 20495298]
[50]
Gupta G, Sharma C, Verma A. Comparative analysis of antioxidant properties of water extract of Centepede grass and Festuca. Int J App Innov Eng Manag 2014; 11(3): 54-6.
[51]
Kim SY, Lee Y, Kim J, et al. Inhibitory activities of Cudrania tricuspidata leaves on pancreatic lipase In vitro and lipolysis in vivo. Evid Based Complement Alternat Med 2012; 2012: 878365.
[52]
Chen YT, Wang MC, Hsieh KS, Hsieh HM, Chen YW. Pancreatic lipase inhibitor of strictinin isolated from pu’er te (Cammelia sinensis) and it anti-obesity effect in C57BL6 mice. J Funct Foods 2019; 48(7): 1-8.
[53]
Kwon CS, Sohn HY, Kim SH, et al. Anti-obesity effect of Dioscorea nipponica Makino with lipase-inhibitory activity in rodents. Biosci Biotechnol Biochem 2003; 67(7): 1451-6.
[http://dx.doi.org/10.1271/bbb.67.1451] [PMID: 12913286]
[54]
Kumar P, Suba V, Reddy R, Babu PS. Inhibitory effects of Oncoba spinosa on key enzymes related to diabetes mellitus (α-Amylase and α-Glucosidase) and obesity (pancreatic lipase) In vitro. J Diabetes Metab 2017; 8(12): 2-5.
[http://dx.doi.org/10.4172/2155-6156.1000781]
[55]
Chanmee W, Chaicharoenpong C, Petsom A. Lipase inhibitor from fruits of Solanum stramonifolium Jacq. Food Sci Nutr 2013; 4: 554-8.
[56]
Teixeira LS, Lima AS, Boleti AP, et al. Effects of Passiflora nitida Kunth leaf extract on digestive enzymes and high caloric diet in rats. J Nat Med 2014; 68(2): 316-25.
[http://dx.doi.org/10.1007/s11418-013-0800-1] [PMID: 24078292]
[57]
Souza PS, Pereira S, Luciana SA, Santos DS. Inhibition of pancreatic lipase by extracts of Baccharis trimera: Evaluation of antinutrients and effect on glycosidases. Rev Bras Farmacogn 2011; 21(3): 450-5.
[http://dx.doi.org/10.1590/S0102-695X2011005000049]
[58]
Oliveira RF, Gonçalves GA, Inácio FD, et al. Inhibition of pancreatic lipase and triacylglycerol intestinal absorption by a pinhão coat (Araucaria angustifolia) extract rich in condensed tannin. Nutrients 2015; 7(7): 5601-14.
[http://dx.doi.org/10.3390/nu7075242] [PMID: 26184295]
[59]
Shivanna R, Parizadeh H, Garampalli HR. In vitro antiobesity effect of macrolichens Heterodermia leucomelos and Ramalina celastri by pancreatic lipase inhibitory assay. Int J Pharma Sci 2017; 9(5): 137-40.
[60]
Kumar Anil HS, Kekuda Prashith TR, Vinayaka KS, Swathi D, Venugopal TM. Anti-obesity (pancreatic lipase inhibitory) activity of Everniastrum cirrhatum (Fr.) Hale (Parmeliaceae). Pharmacogn J 2011; 3(19): 65-8.
[http://dx.doi.org/10.5530/pj.2011.19.12]
[61]
Jung CH, Ahn J, Jeon TI, Kim TW, Ha TY. Syzygium aromaticum ethanol extract reduces high-fat diet-induced obesity in mice through downregulation of adipogenic and lipogenic gene expression. Exp Ther Med 2012; 4(3): 409-14.
[http://dx.doi.org/10.3892/etm.2012.609] [PMID: 23181109]
[62]
Kekuda TR. Elemental composition, anticariogenic, pancreatic lipase inhibitory and cytotoxic activity of Artocarpus lakoocha Roxb pericarp. Int J Drug Dev Res 2012; 4(1): 331-6.
[63]
Katoch M, Paul A, Singh G, Sridhar SNC. Fungal endophytes associated with Viola odorata Linn. as bioresource for pancreatic lipase inhibitors. BMC Complement Altern Med 2017; 17(1): 385.
[http://dx.doi.org/10.1186/s12906-017-1893-y] [PMID: 28774309]
[64]
Bustanji Y, Al-Masri IM, Mohammad M, et al. Pancreatic lipase inhibition activity of trilactone terpenes of Ginkgo biloba. J Enzyme Inhib Med Chem 2011; 26(4): 453-9.
[http://dx.doi.org/10.3109/14756366.2010.525509] [PMID: 21028941]
[65]
Habtemariam S. The anti-obesity potential of sigmoidin A. Pharm Biol 2012; 50(12): 1519-22.
[http://dx.doi.org/10.3109/13880209.2012.688838] [PMID: 22978690]
[66]
Ha MT, Tran MH, Ah KJ, et al. Potential pancreatic lipase inhibitory activity of phenolic constituents from the root bark of Morus alba L. Bioorg Med Chem Lett 2016; 26(12): 2788-94.
[http://dx.doi.org/10.1016/j.bmcl.2016.04.066] [PMID: 27156775]
[67]
Toma A, Makonnen E, Mekonnen Y, Debella A, Addisakwattana S. Intestinal α-glucosidase and some pancreatic enzyme inhibitory effect of hydroalcoholic extract of Moringo stenopetela leaves. BMC Complement Altern Med 2014; 14: 180.
[68]
Yousef HM, Alqahtani AS, Hassan WS, Alzoubi A, Abdelaziz S. Chemical profile, In vitro antioxidant, pancreatic lipase, and alpha-amylase inhibition assays of the aqueous extract of Elettaria cardamomum L. fruits. J Chem 2021; 2021: 5583001.
[69]
Abbas MA, Boby N, Lee EB, Hong JH, Park SC. Anti-obesity effect of Ecklonia cava extract in high fat diet- induced obese rats. Antioxidants 2022; 11(2): 310.
[http://dx.doi.org/10.3390/antiox11020310] [PMID: 35204193]
[70]
Swaraz AM, Sultana F, Bari MW, et al. Phytochemical profiling of Blumea laciniata (Roxb.) DC. and its phytopharmaceutical potential against diabetic, obesity, and Alzheimer’s. Biomed Pharmacother 2021; 141: 111859.
[http://dx.doi.org/10.1016/j.biopha.2021.111859] [PMID: 34246953]
[71]
Kim DH, Park YH, Lee JS, Jeong HI, Lee KW, Kang TH. Antiobesity effect of DKB-117 through the inhibition of pancreatic lipase and alpha-amylase activity. Nutrients 2020; 12(10): E3053.
[http://dx.doi.org/10.3390/nu12103053] [PMID: 33036193]
[72]
Casacchia T, Scavello F, Rocca C, et al. Leopoldia comosa prevents metabolic disorders in rats with high-fat diet-induced obesity. Eur J Nutr 2019; 58(3): 965-79.
[http://dx.doi.org/10.1007/s00394-018-1609-1] [PMID: 29327229]
[73]
Shi Z, Zhu Y, Teng C, Yao Y, Ren G, Richel A. Anti-obesity effects of α-amylase inhibitor enriched-extract from white common beans (Phaseolus vulgaris L.) associated with the modulation of gut microbiota composition in high-fat diet-induced obese rats. Food Funct 2020; 11(2): 1624-34.
[http://dx.doi.org/10.1039/C9FO01813A] [PMID: 32022058]
[74]
Bastías-Montes JM, Monterrosa K, Muñoz-Fariña O, et al. Chemoprotective and antiobesity effects of tocols from seed oil of Maqui-berry: Their antioxidative and digestive enzyme inhibition potential. Food Chem Toxicol 2020; 136: 111036.
[http://dx.doi.org/10.1016/j.fct.2019.111036] [PMID: 31862287]
[75]
Gök HN, Orhan N, Özüpek B, Pekacar S. Selvi ŞN, Orhan DD. Standardization of Juniperus macrocarpa Sibt. Sm. and Juniperus Excelsa M. Bieb. extracts with carbohydrae digestive enzyme inhibitory and antioxidant activities. Iran J Pharm Res 2021; 20(3): 441-55.
[PMID: 34904000]
[76]
Nadeem S, Dhore P, Quazi M, Pawar S, Raj N. Lagenaria siceraria fruit extract ameliorate fat amassment and serum TNF-α in high-fat diet-induced obese rats. Asian Pac J Trop Med 2012; 5(9): 698-702.
[http://dx.doi.org/10.1016/S1995-7645(12)60109-6] [PMID: 22805720]
[77]
Azman KF, Amom Z, Azlan A, et al. Antiobesity effect of Tamarindus indica L. pulp aqueous extract in high-fat diet-induced obese rats. J Nat Med 2012; 66(2): 333-42.
[http://dx.doi.org/10.1007/s11418-011-0597-8] [PMID: 21989999]
[78]
Lee JJ, Lee HJ, Oh SW. Antiobesity effects of sansa (Crataegi fructus) on 3T3-L1 cells and on high-fat-high-cholesterol diet-induced obese rats. J Med Food 2017; 20(1): 19-29.
[http://dx.doi.org/10.1089/jmf.2016.3791] [PMID: 28098517]
[79]
Khalid M, Siddiqui HH. Evaluation of weight reduction and anti-cholesterol activity of Punarnava root extract on high fat diet induced obesity in experimental rodents. Asian Pac J Trop Biomed 2012; 2(3): 1323-8.
[http://dx.doi.org/10.1016/S2221-1691(12)60409-2]
[80]
Tembhurne VS, Sakarkar MD. Anti-obesity and hypoglycemic effect of ethanolic extract of Murraya koenigii (L) leaves in high fatty diet rats. Asian Pac J Trop Dis 2012; 2(1): 166-8.
[http://dx.doi.org/10.1016/S2222-1808(12)60145-5]
[81]
Karmase A, Birari R, Bhutani KK. Evaluation of anti-obesity effect of Aegle marmelos leaves. Phytomedicine 2013; 20(10): 805-12.
[http://dx.doi.org/10.1016/j.phymed.2013.03.014] [PMID: 23632084]
[82]
Bais S, Singh SG, Sharma R. Antiobesity and hypolipidemic activity of Moringa oleifera leaves against high fat diet-induced obesity in rats. Adv Biol 2014; 2014: 1-9.
[http://dx.doi.org/10.1155/2014/162914]
[83]
Das SM, Devi G. Antiobesity activity of ethanolic extract of fruits of Terminalia bellirica on atherogenic diet-induced obesity in experimental rats. J Chem Pharm Res 2016; 8(3): 191-7.
[84]
Neyrinck AM, Bindels LB, Geurts L, Van Hul M, Cani PD, Delzenne NM. A polyphenolic extract from green tea leaves activates fat browning in high-fat-diet-induced obese mice. J Nutr Biochem 2017; 49: 15-21.
[http://dx.doi.org/10.1016/j.jnutbio.2017.07.008] [PMID: 28863365]
[85]
Manjula J, Mangilal T, Kishore NR. Investigation of antiobesity activity of alcoholic extract of roots of Carica papaya on obesity-induced animal model. World J Pharmaceut Sci 2014; 3(9): 295-301.
[86]
Athesh K, Kartiga D, Brindha P. Antiobesity effect of aqueous extract of Carica papaya in rats fed on high fat cafeteria diet. Int J Pharm Pharm Sci 2012; 4(5): 327-30.
[87]
Mohan K, Gayathri C. Effect of ethanolic extract of Hibiscus cannabinicus leaves on high cholesterol diet induced obesity in female albino rats. Asian J Pharm Clin Res 2013; 6(4): 65-7.
[88]
Gupta P, Goyal R, Chauhan Y, Sharma PL. Possible modulation of FAS and PTP-1B signaling in ameliorative potential of Bombax ceiba against high fat diet induced obesity. BMC Complement Altern Med 2013; 13(281): 281.
[http://dx.doi.org/10.1186/1472-6882-13-281] [PMID: 24160453]
[89]
Jung SA, Choi M, Kim S, Yu R, Park T. Cinchonine prevents high-fat-diet-induced obesity through downregulation of adipogenesis and adipose inflammation. PPAR Res 2012; 2012: 541204.
[http://dx.doi.org/10.1155/2012/541204] [PMID: 22675336]
[90]
Khalid M, Siddiqui HH. Lipid lowering and hypoglycaemic potential of dried Dalbergia latifolia Roxb. Bark extract in Sprague-Dawley rats induced with high fat diet. Int J of Nat Products Res 2011; 1(4): 49-54.
[91]
Kim HJ, Kim KO, Yoon GH, et al. Anti-obesity effect of extract from fermented Curcuma longa L. through regulation of adipogenesis and lipolysis pathway in high-fat diet-induced obese rats. Food Nutr Res 2016; 60: 30428.
[PMID: 26822962]
[92]
Amin R, Islam ZZ, Sen M. Anti-obesity effect of mushroom (Ganoderma lucidum) on experimentally induced obese rats. AKMMC J 2012; 3(2): 11-4.
[http://dx.doi.org/10.3329/akmmcj.v3i2.11687]
[93]
Dhingra D, Jindal V, Sharma S, Kumar RH. Evaluation of antiobesity activity of Tinospora cardifolia stems in rats. Int J Res Ayurveda Pharm 2011; 2(1): 306-11.
[94]
Kaveripakam SS, Adikay S, Retnasamy G. Anti-obesity efficacy of roots of Stereospermum suaveolens in high fat-induced obese rats. J Young Pharm 2017; 9(2): 234-8.
[http://dx.doi.org/10.5530/jyp.2017.9.46]
[95]
Azeem ME, Alaa B, Zakaria Z. Anti-obesity and anti-fatty liver effects of Cynara scolymus L. leaf extract in mice under diet-induced obesity. Int J Biochem Res Rev 2016; 11(1): 1-11.
[http://dx.doi.org/10.9734/IJBCRR/2016/23807]
[96]
Yang Q, Qi M, Tong R, et al. Plantago asiatica L. seed extract improves lipid accumulation and hyperglycemia in high-fat diet-induced obese mice. Int J Mol Sci 2017; 18(7): 2-14.
[http://dx.doi.org/10.3390/ijms18071393] [PMID: 28665305]
[97]
Nukitrangsan N, Okabe T, Toda T, Inafuku M, Iwasaki H, Oku H. Effect of Peucedanum japonicum Thunb extract on high-fat diet-induced obesity and gene expression in mice. J Oleo Sci 2012; 61(2): 89-101.
[http://dx.doi.org/10.5650/jos.61.89] [PMID: 22277893]
[98]
Sharma B, Salunke R, Srivastava S, Majumder C, Roy P. Effects of guggulsterone isolated from Commiphora mukul in high fat diet induced diabetic rats. Food Chem Toxicol 2009; 47(10): 2631-9.
[http://dx.doi.org/10.1016/j.fct.2009.07.021] [PMID: 19635521]
[99]
Misawa E, Tanaka M, Nabeshima K, et al. Administration of dried Aloe vera gel powder reduced body fat mass in Diet-Induced Obesity (DIO) rats. J Nutr Sci Vitaminol (Tokyo) 2012; 58(3): 195-201.
[http://dx.doi.org/10.3177/jnsv.58.195] [PMID: 22878390]
[100]
Rahman HA, Sahib NG, Saari N, et al. Anti-obesity effect of ethanolic extract from Cosmos caudatus Kunth leaf in lean rats fed a high fat diet. BMC Complement Altern Med 2017; 17(1): 122.
[http://dx.doi.org/10.1186/s12906-017-1640-4] [PMID: 28228098]
[101]
Selvakumar M, Vijaylakshmi C, Kumar TV. Antiobesity activity of Ficus religiosa with high fat diet induced model. Res J Pharm and Tech 2015; 8(6): 679-82.
[http://dx.doi.org/10.5958/0974-360X.2015.00107.9]
[102]
Garg A, Singh R. Anti-obesity activity of aqueous and ethanol extract of Enicostemma littorale in high fat diet-induced rats. Int J Phytomed 2014; 6: 433-43.
[103]
Wang J, Ryu HK. The effects of Momordica charantia on obesity and lipid profiles of mice fed a high-fat diet. Nutr Res Pract 2015; 9(5): 489-95.
[http://dx.doi.org/10.4162/nrp.2015.9.5.489] [PMID: 26425278]
[104]
Rehman M, Tiwari SB. Antiobesity effect of Terminalia chebula fruit extract on high fat diet-induced obese animal model. IOSR J Pharm 2017; 7(11): 43-51.
[105]
An S, Han JI, Kim MJ, et al. Ethanolic extracts of Brassica campestris spp. rapa roots prevent high-fat diet-induced obesity via β(3)-adrenergic regulation of white adipocyte lipolytic activity. J Med Food 2010; 13(2): 406-14.
[http://dx.doi.org/10.1089/jmf.2009.1295] [PMID: 20132043]
[106]
Inafuku M, Nugara RN, Kamiyama Y, Futenma I, Inafuku A, Oku H. Cirsium brevicaule A. GRAY leaf inhibits adipogenesis in 3T3-L1 cells and C57BL/6 mice. Lipids Health Dis 2013; 12(124): 124.
[http://dx.doi.org/10.1186/1476-511X-12-124] [PMID: 23945333]
[107]
Avci G, Küçükkurt I, Küpeli Akkol E. Yeşilada E. Effects of escin mixture from the seeds of Aesculus hippocastanum on obesity in mice fed a high fat diet. Pharm Biol 2010; 48(3): 247-52.
[http://dx.doi.org/10.3109/13880200903085466] [PMID: 20645808]
[108]
Ko SH, Park JH, Kim SY, Lee SW, Chun SS, Park E. Antioxidant effects of spinach (Spinacia oleracea L.) supplementation in hyperlipidemic rats. Prev Nutr Food Sci 2014; 19(1): 19-26.
[http://dx.doi.org/10.3746/pnf.2014.19.1.019] [PMID: 24772405]
[109]
Brai BIC, Odetola AA, Agomo PU. Effects of Persea americana leaf extracts on body weight and liver lipids in rats fed hyperlipidaemic diet. Afr J Biotechnol 2007; 6(8): 1007-11.
[110]
Shikov AN, Pozharitskaya ON, Makarova MN, et al. Effect of Bergenia crassifolia L. extracts on weight gain and feeding behavior of rats with high-caloric diet-induced obesity. Phytomedicine 2012; 19(14): 1250-5.
[http://dx.doi.org/10.1016/j.phymed.2012.09.019] [PMID: 23079230]
[111]
Jang SW, Choung SY. Antiobesity effects of the ethanol extract of Laminaria japonica areshoung in high-fat-diet-induced obese rats. Evid Based Complem Altern M 2013; 2013: 492807.
[112]
Hirata T, Kobayashi T, Wada A, et al. Anti-obesity compounds in green leaves of Eucommia ulmoides. Bioorg Med Chem Lett 2011; 21(6): 1786-91.
[http://dx.doi.org/10.1016/j.bmcl.2011.01.060] [PMID: 21324693]
[113]
Athesh K, Divakar M, Barindha P. Antiobesity activity of Cyperus rotundus L. aqueous tuber extract in rats fed with high fat cafeteria diet. Asian J Pharm Clin Res 2014; 7(2): 88-92.
[114]
Jambocus NG, Saari N, Ismail A, Khatib A, Mahomoodally FM, Hamid AA. An investigation into the antiobesity effects of Morinda citrifolia L. leaf extract in high fat diet induced obese rats using a 1H NMR metabolomics approach. J Diabetes Res 2016; 2016: 1-14.
[http://dx.doi.org/10.1155/2016/2391592]
[115]
Pichiah PB, Moon HJ, Park JE, Moon YJ, Cha YS. Ethanolic extract of seabuckthorn (Hippophae rhamnoides L.) prevents high-fat diet-induced obesity in mice through down-regulation of adipogenic and lipogenic gene expression. Nutr Res 2012; 32(11): 856-64.
[http://dx.doi.org/10.1016/j.nutres.2012.09.015] [PMID: 23176796]
[116]
Hou B, Wang W, Gao H, Cai S, Wang C. Effects of aqueous extract of Arctium lappa L. roots on serum lipid metabolism. J Int Med Res 2018; 46(1): 158-67.
[http://dx.doi.org/10.1177/0300060517716341] [PMID: 28758851]
[117]
Bhandari U, Chaudhari HS, Bisnoi AN, Kumar V, Khanna G, Javed K. Anti-obesity effect of standardized ethanol extract of Embelia ribes in murine model of high fat diet induced obesity. PharmaNutrition 2013; 1(2): 50-7.
[http://dx.doi.org/10.1016/j.phanu.2013.01.001]
[118]
Chinnala MN, Elsani MM, Mekala KS. Evaluation of anti-obesity activity of Sesamum indicum Linn. In high fat diet induced obesity rats. Int. J Phytopharmacol 2014; 5(3): 179-82.
[119]
Yao X, Lin Z, Jiang C, et al. Cyclocarya paliurus prevents high fat diet induced hyperlipidemia and obesity in Sprague-Dawley rats. Can J Physiol Pharmacol 2015; 93(8): 677-86.
[http://dx.doi.org/10.1139/cjpp-2014-0477] [PMID: 26203820]
[120]
Jo YH, Choi KM, Liu Q, et al. Anti-obesity effect of 6,8-diprenylgenistein, an isoflavonoid of Cudrania tricuspidata fruits in high-fat diet-induced obese mice. Nutrients 2015; 7(12): 10480-90.
[http://dx.doi.org/10.3390/nu7125544] [PMID: 26694457]
[121]
You H, Hao R, Li R, Zhang L, Zhu Y, Luo Y. The effect of radish sourced 4-(Methylthio)-3-butenyl isothiocyanate on ameliorating the severity of high fat diet inducted nonalcoholic fatty liver disease in rats. Int J Clin Exp Med 2015; 8(9): 15910-9.
[PMID: 26629094]
[122]
Ezz M, Atef A, Hassanein N, Badr Z. Protective and curative antiobesity potential of lemon peel extract in rats fed on high fat diet: Mechanism of action. Int J Biochem Res Rev 2016; 12(4): 1-17.
[http://dx.doi.org/10.9734/IJBCRR/2016/26651]
[123]
Wu CC, Huang YW, Hou CY, et al. The antiobesity effects of lemon fermented products in 3T3-L1 preadipocytes and in a rat model with high- calorie diet- induced obesity. Nutrients 2021; 13(8): 1-16.
[http://dx.doi.org/10.3390/nu13082809] [PMID: 34444969]
[124]
Lamichhane G, Pandeya PR, Lamichhane R, Rhee SJ, Devkota HP, Jung HJ. Anti-obesity potential of Ponciri fructus: Effects of extracts, fractions and compounds on adipogenesis in 3T3-L1 preadipocytes. Molecules 2022; 27(3): 676-80.
[http://dx.doi.org/10.3390/molecules27030676] [PMID: 35163941]
[125]
Zhou G, Cui J, Xie S, Wan H, Luo Y, Guo G. Vitexin, a fenugreek glycoside, ameliorated obesity-induced diabetic nephropathy via modulation of NF-κB/IkBα and AMPK/ACC pathways in mice. Biosci Biotechnol Biochem 2021; 85(5): 1183-93.
[http://dx.doi.org/10.1093/bbb/zbab012] [PMID: 33704405]
[126]
Deora; Sunitha MM, Satyavani M, Harishanka N, Vijyalakshi MA, Krishan V, Venkateshan V. Alleviation o diabetes mellitus through the restortation of β-cell function and lipid metabolism by Aloe vera (L.) Burm. f. extract in obesopgenic WNIN/GR-Ob rats. J Ethnopharmacol 2021; 272: 113921.
[http://dx.doi.org/10.1016/j.jep.2021.113921]
[127]
Sanhueza S, Tobar N, Cifuentes M, et al. Lampaya medicinalis Phil. decreases lipid-induced triglyceride accumulation and proinflammatory markers in human hepatocytes and fat body of Drosophila melanogaster. Int J Obes 2021; 45(7): 1464-75.
[http://dx.doi.org/10.1038/s41366-021-00811-8] [PMID: 33895783]
[128]
Yang Y, Chang Y, Wu Y, Liu H, Liu Q. A homogeneous polysaccharide from Lycium barbarum: Structural characterizations, anti-obesity effects and impacts on gut microbiota. Int J Biol Macromol 2021; 183: 2074-87.
[129]
Mokwena MAM, Engwa GA, Nkeh-Chungag BN, Sewani-Rusike CR. Athrixia phylicoides tea infusion (bushman tea) improves adipokine balance, glucose homeostasis and lipid parameters in a diet-induced metabolic syndrome rat model. Med Ther 2021; 21(1): 292.
[http://dx.doi.org/10.1186/s12906-021-03459-z] [PMID: 34844584]
[130]
Ojulari OV, Lee SG, Nam JO. Beneficial effects of natural bioactive compounds from Hibiscus sabdariffa L. on obesity. Molecules 2019; 24(1): 2-14.
[http://dx.doi.org/10.3390/molecules24010210] [PMID: 30626104]
[131]
Lee HS, Lim SM, Jung JI, et al. Gynostemma pentaphyllum extract amelioraes high fat-diet induced obesity in C57BL/6N mice by unregulating IRT1. Nutrients 2019; 11(10): 2475-84.
[http://dx.doi.org/10.3390/nu11102475] [PMID: 31618980]
[132]
Shiekh RA, Mahdy AA, Moumeir SM, Hifesway MS, Sattar EA. Antiobesity effects of argel (Solenostemma argel) on obese rats fd a high fat diet. J Ethnapharmacol 2019; 238: 111893.
[133]
Song J, Kim YS, Kim L, Park HJ, Lee D, Kim H. Anti-obesity effects of the flower of Prunus persica in high-fat diet-induced obese mice. Nutrients 2019; 11(9): 2176-82.
[http://dx.doi.org/10.3390/nu11092176] [PMID: 31514294]
[134]
Lee HG, Lu YA, Li X, et al. Anti-obesity effects of Grateloupia elliptica, a red seaweed, in mice with high fat diet- induced obesity via suppression of adipogenic factors in white adipose tissue and increased thermogenic factors in brown adipose issue. Nutrients 2020; 12(2): 308-15.
[http://dx.doi.org/10.3390/nu12020308] [PMID: 31991562]
[135]
Zagayko AL, Kolisnyk TY, Chumak OL, Ruban OA, Kolisnyk OM. Evaluation of antiobesity and lipid lowering properties of Vaccinium myrtillus leaves powder extract in a hamster model. J Basic Clin Physiol Pharmacol 2018; 29(6): 697-703.
[136]
Casacchia T, Scavella F, Rocca C, et al. Lepoldia comosa prevents metabolic disorders in rats with high-fat diet induced obesity. Eur J Nutr 2019; 58(3): 965-79.
[137]
Choi JH, Noh JR, Kim YH, et al. Sicyos angulatus prevents high-fat diet-induced obesity and insulin resistance in mice. Int J Med Sci 2020; 17(6): 787-98.
[http://dx.doi.org/10.7150/ijms.42247] [PMID: 32218700]
[138]
Eom J, Thomas SS, Sung NY, Kim DS, Cha YS, Kim KA. Abeliophyllum distichum ameliorates high-fat diet-induced obesity in C57BL/6J mice by upregulating the AMPK pathway. Nutrients 2020; 12(11): 3320-9.
[http://dx.doi.org/10.3390/nu12113320] [PMID: 33138026]
[139]
Wu T, Gao Y, Hao J, et al. Capsanthin extract prevents obesity, reduces serum TMAO levels and modulates the gut microbiota composition in high-fat-diet induced obese C57BL/6J mice. Food Res Int 2020; 128: 108774.
[http://dx.doi.org/10.1016/j.foodres.2019.108774] [PMID: 31955744]
[140]
Gao L, Lin Z, Liu Y, et al. Hypolipidemic effect of Fragarianilgerrensis Schlecht. medicine compound on hyperlipidemic rats. Lipids Health Dis 2018; 17(1): 222-32.
[http://dx.doi.org/10.1186/s12944-018-0868-4] [PMID: 30231880]
[141]
Sharma V, Sharma R, Gautam DS, Kuca K, Nepovimova E, Martins N. Role of vacha (Acorus calamus Linn.) in neurological and metabolic disorders: Evidence from ethnopharmacology, phytochemistry, pharmacology and clinical study. J Clin Med 2020; 9(4): 2-46.
[http://dx.doi.org/10.3390/jcm9041176] [PMID: 32325895]
[142]
Otunola GA. Culinary spices in food and medicine: An overview of Syzygium aromaticum (L.) Merr. and L. M. Perry [Myrtaceae]. Front Pharmacol 2022; 12: 793200.
[http://dx.doi.org/10.3389/fphar.2021.793200] [PMID: 35111060]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy