Review Article

心血管疾病中的铁死亡和硫化氢

卷 30, 期 16, 2023

发表于: 26 September, 2022

页: [1848 - 1859] 页: 12

弟呕挨: 10.2174/0929867329666220630144648

价格: $65

conference banner
摘要

铁死亡是一种依赖铁的细胞死亡,其特征是脂质活性氧的积累;各种调节机制影响铁死亡的过程。心血管疾病(CVD)的迅速增加是一个极其紧迫的问题。CVD的特点是心脏和血管逐渐恶化,最终导致循环系统紊乱。然而,越来越多的证据强调了铁死亡在CVD中的关键作用。硫化氢在抗氧化应激中起着重要作用,它可能参与铁死亡的一般机制,并通过一些信号分子对其进行调节。本文综述了硫化氢对铁死亡和心血管疾病的影响,特别是抗氧化应激的影响,为CVD的临床研究提供了更有效的方向。

关键词: 硫化氢,心血管疾病,铁死亡,氧化应激,信号分子,机制。

[1]
Wen, Y.D.; Wang, H.; Zhu, Y.Z. The drug developments of hydrogen sulfide on cardiovascular disease. Oxid. Med. Cell. Longev., 2018, 2018, 4010395.
[http://dx.doi.org/10.1155/2018/4010395] [PMID: 30151069]
[2]
Wang, R. Physiological implications of hydrogen sulfide: A whiff exploration that blossomed. Physiol. Rev., 2012, 92(2), 791-896.
[http://dx.doi.org/10.1152/physrev.00017.2011] [PMID: 22535897]
[3]
Renga, B. Hydrogen sulfide generation in mammals: The molecular biology of cystathionine-β- synthase (CBS) and cystathionine-γ-lyase (CSE). Inflamm. Allergy Drug Targets, 2011, 10(2), 85-91.
[http://dx.doi.org/10.2174/187152811794776286] [PMID: 21275900]
[4]
Meng, G.; Zhao, S.; Xie, L.; Han, Y.; Ji, Y. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br. J. Pharmacol., 2017, 175(8), 1146-1156.
[PMID: 28432761]
[5]
Powell, C.R.; Dillon, K.M.; Matson, J.B. A review of hydrogen sulfide (H2S) donors: Chemistry and potential therapeutic applications. Biochem. Pharmacol., 2018, 149, 110-123.
[http://dx.doi.org/10.1016/j.bcp.2017.11.014] [PMID: 29175421]
[6]
Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell, 2012, 149(5), 1060-1072.
[7]
Kobayashi, M.; Suhara, T.; Baba, Y.; Kawasaki, N.K.; Higa, J.K.; Matsui, T. Pathological roles of iron in cardiovascular disease. Curr. Drug Targets, 2018, 19(9), 1068-1076.
[http://dx.doi.org/10.2174/1389450119666180605112235] [PMID: 29874997]
[8]
WHO. Cardiovascular diseases (CVDs) factsheet. 2013. Available from: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)
[9]
Conrad, M.; Proneth, B. Broken hearts: Iron overload, ferroptosis and cardiomyopathy. Cell Res., 2019, 29(4), 263-264.
[http://dx.doi.org/10.1038/s41422-019-0150-y] [PMID: 30809018]
[10]
Wang, Y.; Yu, R.; Wu, L.; Yang, G. Hydrogen sulfide guards myoblasts from ferroptosis by inhibiting ALOX12 acetylation. Cell. Signal., 2021, 78, 109870.
[http://dx.doi.org/10.1016/j.cellsig.2020.109870] [PMID: 33290842]
[11]
Li, J.; Li, M.; Li, L.; Ma, J.; Yao, C.; Yao, S. Hydrogen sulfide attenuates ferroptosis and stimulates autophagy by blocking mTOR signaling in sepsis-induced acute lung injury. Mol. Immunol., 2022, 141, 318-327.
[http://dx.doi.org/10.1016/j.molimm.2021.12.003] [PMID: 34952420]
[12]
Wang, J.; Wu, D.; Wang, H. Hydrogen sulfide plays an important protective role by influencing autophagy in diseases. Physiol. Res., 2019, 68(3), 335-345.
[13]
Wang, Y.; Liu, Y.; Liu, J.; Kang, R.; Tang, D. NEDD4L-mediated LTF protein degradation limits ferroptosis. Biochem. Biophys. Res. Commun., 2020, 531(4), 581-587.
[http://dx.doi.org/10.1016/j.bbrc.2020.07.032] [PMID: 32811647]
[14]
Sumneang, N.; Siri-Angkul, N.; Kumfu, S.; Chattipakorn, S.C.; Chattipakorn, N. The effects of iron overload on mitochondrial function, mitochondrial dynamics, and ferroptosis in cardiomyocytes. Arch. Biochem. Biophys., 2020, 680, 108241.
[http://dx.doi.org/10.1016/j.abb.2019.108241] [PMID: 31891670]
[15]
Yang, J.; Minkler, P.; Grove, D.; Wang, R.; Willard, B.; Dweik, R.; Hine, C. Non-enzymatic hydrogen sulfide production from cysteine in blood is catalyzed by iron and vitamin B6. Commun. Biol., 2019, 2(1), 194.
[http://dx.doi.org/10.1038/s42003-019-0431-5] [PMID: 31123718]
[16]
Brown, C.W.; Amante, J.J.; Chhoy, P.; Elaimy, A.L.; Liu, H.; Zhu, L.J.; Baer, C.E.; Dixon, S.J.; Mercurio, A.M. Prominin2 drives ferroptosis resistance by stimulating iron export. Dev. Cell, 2019, 51(5), 575-586.e4.
[http://dx.doi.org/10.1016/j.devcel.2019.10.007] [PMID: 31735663]
[17]
Zhang, M.W.; Yang, G.; Zhou, Y.F.; Qian, C.; Mu, M.; Ke, Y.; Qian, Z.M. Regulating ferroportin-1 and transferrin receptor-1 expression: A novel function of hydrogen sulfide. J. Cell. Physiol., 2018, 234(4), 3158-3169.
[PMID: 30370692]
[18]
Doll, S.; Conrad, M. Iron and ferroptosis: A still ill-defined liaison. IUBMB Life, 2017, 69(6)(Suppl. 10), 423-434.
[http://dx.doi.org/10.1002/iub.1616] [PMID: 28276141]
[19]
Dada, L.; Gladys, O. Ferroptosis: Role of lipid peroxidation, iron and ferritinophagy. Biochim. Biophys. Acta, 2017, 1861(8), 1893-1900.
[20]
Cassanelli, S.; Moulis, J. Sulfide is an efficient iron releasing agent for mammalian ferritins. Biochim. Biophys. Acta, 2001, 1547(1), 174-182.
[http://dx.doi.org/10.1016/S0167-4838(01)00182-0] [PMID: 11343803]
[21]
Gao, M.; Monian, P.; Quadri, N.; Ramasamy, R.; Jiang, X. Glutaminolysis and transferrin regulate ferroptosis. Mol. Cell, 2015, 59(2), 298-308.
[http://dx.doi.org/10.1016/j.molcel.2015.06.011] [PMID: 26166707]
[22]
Vučković, A.M.; Venerando, R.; Tibaldi, E.; Bosello Travain, V.; Roveri, A.; Bordin, L.; Miotto, G.; Cozza, G.; Toppo, S.; Maiorino, M.; Ursini, F. Aerobic pyruvate metabolism sensitizes cells to ferroptosis primed by GSH depletion. Free Radic. Biol. Med., 2021, 167, 45-53.
[http://dx.doi.org/10.1016/j.freeradbiomed.2021.02.045] [PMID: 33711415]
[23]
Kimura, Y.; Goto, Y.; Kimura, H. Hydrogen sulfide increases glutathione production and suppresses oxidative stress in mitochondria. Antioxid. Redox Signal., 2010, 12(1), 1-13.
[http://dx.doi.org/10.1089/ars.2008.2282] [PMID: 19852698]
[24]
Jain, S.K.; Huning, L.; Micinski, D. Hydrogen sulfide upregulates glutamate-cysteine ligase catalytic subunit, glutamate-cysteine ligase modifier subunit, and glutathione and inhibits interleukin-1β secretion in monocytes exposed to high glucose levels. Metab. Syndr. Relat. Disord., 2014, 12(5), 299-302.
[http://dx.doi.org/10.1089/met.2014.0022] [PMID: 24665821]
[25]
Tobias, M. Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic. Biol. Med., 2018, 133, 144-152.
[26]
Dong, H.; Qiang, Z.; Chai, D.; Peng, J.; Xia, Y.; Hu, R.; Jiang, H. Nrf2 inhibits ferroptosis and protects against acute lung injury due to intestinal ischemia reperfusion via regulating SLC7A11 and HO-1. Aging (Albany NY), 2020, 12(13), 12943-12959.
[http://dx.doi.org/10.18632/aging.103378] [PMID: 32601262]
[27]
Regulation of ferroptotic cancer cell death by GPX4. Cell Cambridge Ma, 2014, 156(1-2), 317-329.
[28]
Bai, Y.; Meng, L.; Han, L.; Jia, Y.; Zhao, Y.; Gao, H.; Kang, R.; Wang, X.; Tang, D.; Dai, E. Lipid storage and lipophagy regulates ferroptosis. Biochem. Biophys. Res. Commun., 2019, 508(4), 997-1003.
[http://dx.doi.org/10.1016/j.bbrc.2018.12.039] [PMID: 30545638]
[29]
Ursini, F.; Maiorino, M. Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic. Biol. Med., 2020, 152, 175-185.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.02.027] [PMID: 32165281]
[30]
Doll, S.; Proneth, B.; Tyurina, Y.Y.; Panzilius, E.; Kobayashi, S.; Ingold, I.; Irmler, M.; Beckers, J.; Aichler, M.; Walch, A.; Prokisch, H.; Trümbach, D.; Mao, G.; Qu, F.; Bayir, H.; Füllekrug, J.; Scheel, C.H.; Wurst, W.; Schick, J.A.; Kagan, V.E.; Angeli, J.P.; Conrad, M. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol., 2017, 13(1), 91-98.
[http://dx.doi.org/10.1038/nchembio.2239] [PMID: 27842070]
[31]
Olas, B.; Kontek, B. Hydrogen sulfide decreases the plasma lipid peroxidation induced by homocysteine and its thiolactone. Mol. Cell. Biochem., 2015, 404(1-2), 39-43.
[http://dx.doi.org/10.1007/s11010-015-2364-8] [PMID: 25701360]
[32]
Wang, G.G.; Chen, Q.Y.; Li, W.; Lu, X.H.; Zhao, X. Ginkgolide B increases hydrogen sulfide and protects against endothelial dysfunction in diabetic rats. Croat. Med. J., 2015, 56(1), 4-13.
[http://dx.doi.org/10.3325/cmj.2015.56.4] [PMID: 25727037]
[33]
Chen, X.; Zhao, X.; Lan, F.; Zhou, T.; Cai, H.; Sun, H.; Kong, W.; Kong, W. Hydrogen sulphide treatment increases insulin sensitivity and improves oxidant metabolism through the CaMKKbeta-AMPK pathway in PA-induced IR C2C12 cells. Sci. Rep., 2017, 7(1), 13248.
[http://dx.doi.org/10.1038/s41598-017-13251-0] [PMID: 29038536]
[34]
Pan, Z.; Wang, J.; Xu, M.; Chen, S.; Li, X.; Sun, A.; Lou, N.; Ni, Y. Hydrogen sulfide protects against high glucose-induced lipid metabolic disturbances in 3T3-L1 adipocytes via the AMPK signaling pathway. Mol. Med. Rep., 2019, 20(5), 4119-4124.
[http://dx.doi.org/10.3892/mmr.2019.10685] [PMID: 31545435]
[35]
Shimizu, Y.; Polavarapu, P.; Eskla, K.-L.; Nicholson, C.K.; Koczor, C.A.; Wang, R.; Lewis, W.; Shiva, S.; Lefer, D.J.; Calvert, J.W. 6Hydrogen sulfide regulates cardiac mitochondrial biogenesis via the activation of AMPK. J. Mol. Cell. Cardiol., 2018, 116, 29-40.
[36]
Lee, H.; Zandkarimi, F.; Zhang, Y.; Meena, J.K.; Kim, J.; Zhuang, L.; Tyagi, S.; Ma, L.; Westbrook, T.F.; Steinberg, G.R.; Nakada, D.; Stockwell, B.R.; Gan, B. Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat. Cell Biol., 2020, 22(2), 225-234.
[http://dx.doi.org/10.1038/s41556-020-0461-8] [PMID: 32029897]
[37]
Gao, P. Recent Cardiovascular Research highlights from China. Cardiovasc. Res., 2019, 115(3), e37-e38.
[38]
Bai, T.; Li, M.; Liu, Y.; Qiao, Z.; Wang, Z. Inhibition of ferroptosis alleviates atherosclerosis through attenuating lipid peroxidation and endothelial dysfunction in mouse aortic endothelial cell. Free Radic. Biol. Med., 2020, 160, 92-102.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.07.026] [PMID: 32768568]
[39]
Mechanick, J.I.; Farkouh, M.E.; Newman, J.D.; Garvey, W.T. Cardiometabolic-based chronic disease, addressing knowledge and clinical practice gaps: JACC state-of-the-art review. J. Am. Coll. Cardiol., 2020, 75(5), 539-555.
[http://dx.doi.org/10.1016/j.jacc.2019.11.046] [PMID: 32029137]
[40]
Benjamin, E.J.; Muntner, P.; Alonso, A.; Bittencourt, M.S.; Callaway, C.W.; Carson, A.P.; Chamberlain, A.M.; Chang, A.R.; Cheng, S.; Das, S.R.; Delling, F.N.; Djousse, L.; Elkind, M.S.V.; Ferguson, J.F.; Fornage, M.; Jordan, L.C.; Khan, S.S.; Kissela, B.M.; Knutson, K.L.; Kwan, T.W.; Lackland, D.T.; Lewis, T.T.; Lichtman, J.H.; Longenecker, C.T.; Loop, M.S.; Lutsey, P.L.; Martin, S.S.; Matsushita, K.; Moran, A.E.; Mussolino, M.E.; O’Flaherty, M.; Pandey, A.; Perak, A.M.; Rosamond, W.D.; Roth, G.A.; Sampson, U.K.A.; Satou, G.M.; Schroeder, E.B.; Shah, S.H.; Spartano, N.L.; Stokes, A.; Tirschwell, D.L.; Tsao, C.W.; Turakhia, M.P.; VanWagner, L.B.; Wilkins, J.T.; Wong, S.S.; Virani, S.S. Heart Disease and Stroke Statistics-2019 Update: A Report From the American Heart Association. Circulation, 2019, 139(10), e56-e528.
[http://dx.doi.org/10.1161/CIR.0000000000000659] [PMID: 30700139]
[41]
Wågsäter, D.; Zhu, C.; Björkegren, J.; Skogsberg, J.; Eriksson, P. MMP-2 and MMP-9 are prominent matrix metalloproteinases during atherosclerosis development in the Ldlr(-/-)Apob(100/100) mouse. Int. J. Mol. Med., 2011, 28(2), 247-253.
[42]
Wunderer, F.; Traeger, L.; Sigurslid, H.H.; Meybohm, P.; Bloch, D.B.; Malhotra, R. The role of hepcidin and iron homeostasis in atherosclerosis. Pharmacol. Res., 2020, 153, 104664.
[http://dx.doi.org/10.1016/j.phrs.2020.104664] [PMID: 31991168]
[43]
Kroner, A.; Greenhalgh, A.D.; Zarruk, J.G.; Passos Dos Santos, R.; Gaestel, M.; David, S. TNF and increased intracellular iron alter macrophage polarization to a detrimental M1 phenotype in the injured spinal cord. Neuron, 2014, 83(5), 1098-1116.
[http://dx.doi.org/10.1016/j.neuron.2014.07.027] [PMID: 25132469]
[44]
Cortassa, S.; Juhaszova, M.; Aon, M.A.; Zorov, D.B.; Sollott, S.J. Mitochondrial Ca2+, redox environment and ROS emission in heart failure: Two sides of the same coin? J. Mol. Cell. Cardiol., 2021, 151(10), 113-125.
[http://dx.doi.org/10.1016/j.yjmcc.2020.11.013] [PMID: 33301801]
[45]
Ma, A.; Hong, J.; Shanks, J.; Rudebush, T.; Yu, L.; Hackfort, B.T.; Wang, H.; Zucker, I.H.; Gao, L. Upregulating Nrf2 in the RVLM ameliorates sympatho-excitation in mice with chronic heart failure. Free Radic. Biol. Med., 2019, 141, 84-92.
[http://dx.doi.org/10.1016/j.freeradbiomed.2019.06.002] [PMID: 31181253]
[46]
Liu, B.; Zhao, C.; Li, H.; Chen, X.; Ding, Y.; Xu, S. Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem. Biophys. Res. Commun., 2018, 497(1), 233-240.
[http://dx.doi.org/10.1016/j.bbrc.2018.02.061] [PMID: 29427658]
[47]
Fang, X.; Wang, H.; Han, D.; Xie, E.; Yang, X.; Wei, J.; Gu, S.; Gao, F.; Zhu, N.; Yin, X.; Cheng, Q.; Zhang, P.; Dai, W.; Chen, J.; Yang, F.; Yang, H.T.; Linkermann, A.; Gu, W.; Min, J.; Wang, F. Ferroptosis as a target for protection against cardiomyopathy. Proc. Natl. Acad. Sci. USA, 2019, 116(7), 2672-2680.
[http://dx.doi.org/10.1073/pnas.1821022116] [PMID: 30692261]
[48]
Chen, X.; Xu, S.; Zhao, C.; Liu, B. Role of TLR4/NADPH oxidase 4 pathway in promoting cell death through autophagy and ferroptosis during heart failure. Biochem. Biophys. Res. Commun., 2019, 516(1), 37-43.
[http://dx.doi.org/10.1016/j.bbrc.2019.06.015] [PMID: 31196626]
[49]
Shimizu, Y.; Nicholson, C.K.; Lambert, J.P.; Barr, L.A.; Kuek, N.; Herszenhaut, D.; Tan, L.; Murohara, T.; Hansen, J.M.; Husain, A.; Naqvi, N.; Calvert, J.W. Sodium sulfide attenuates ischemic-induced heart failure by enhancing proteasomal function in an Nrf2-dependent manner. Circ. Heart Fail., 2016, 9(4), e002368.
[http://dx.doi.org/10.1161/CIRCHEARTFAILURE.115.002368] [PMID: 27056879]
[50]
Zhao, C.; Yang, Y.; An, Y.; Yang, B.; Li, P. Cardioprotective role of phyllanthin against myocardial ischemia-reperfusion injury by alleviating oxidative stress and inflammation with increased adenosine triphosphate levels in the mice model. Environ. Toxicol., 2020.
[PMID: 32798296]
[51]
Tang, L.J.; Luo, X.J.; Tu, H.; Chen, H.; Xiong, X.M.; Li, N.S.; Peng, J. Ferroptosis occurs in phase of reperfusion but not ischemia in rat heart following ischemia or ischemia/reperfusion. Naunyn Schmiedebergs Arch. Pharmacol., 2021, 394(2), 401-410.
[http://dx.doi.org/10.1007/s00210-020-01932-z] [PMID: 32621060]
[52]
Howden, R. Nrf2 and cardiovascular defense. Oxid. Med. Cell. Longev., 2013, 2013, 104308.
[http://dx.doi.org/10.1155/2013/104308] [PMID: 23691261]
[53]
Tang, L.J.; Zhou, Y.J.; Xiong, X.M.; Li, N.S.; Zhang, J.J.; Luo, X.J.; Peng, J. Ubiquitin-specific protease 7 promotes ferroptosis via activation of the p53/TfR1 pathway in the rat hearts after ischemia/reperfusion. Free Radic. Biol. Med., 2021, 162, 339-352.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.10.307] [PMID: 33157209]
[54]
Li, W.; Feng, G.; Gauthier, J.M.; Lokshina, I.; Higashikubo, R.; Evans, S.; Liu, X.; Hassan, A.; Tanaka, S.; Cicka, M.; Hsiao, H.M.; Ruiz-Perez, D.; Bredemeyer, A.; Gross, R.W.; Mann, D.L.; Tyurina, Y.Y.; Gelman, A.E.; Kagan, V.E.; Linkermann, A.; Lavine, K.J.; Kreisel, D. Ferroptotic cell death and TLR4/Trif signaling initiate neutrophil recruitment after heart transplantation. J. Clin. Invest., 2019, 129(6), 2293-2304.
[http://dx.doi.org/10.1172/JCI126428] [PMID: 30830879]
[55]
Ma, S.; Sun, L.; Wu, W.; Wu, J.; Sun, Z.; Ren, J. USP22 protects against myocardial ischemia-reperfusion injury via the SIRT1-p53/SLC7A11-dependent inhibition of ferroptosis-induced cardiomyocyte death. Front. Physiol., 2020, 11, 551318.
[http://dx.doi.org/10.3389/fphys.2020.551318] [PMID: 33192549]
[56]
Johansen, D.; Ytrehus, K.; Baxter, G.F. Exogenous hydrogen sulfide (H2S) protects against regional myocardial ischemia-reperfusion injury-Evidence for a role of K ATP channels. Basic Res. Cardiol., 2006, 101(1), 53-60.
[http://dx.doi.org/10.1007/s00395-005-0569-9] [PMID: 16328106]
[57]
Liu, H.; Bai, X.B.; Song, S.; Cao, Y.X. Hydrogen sulfide protects from intestinal ischaemia-reperfusion injury in rats. J. Pharm. Pharmacol., 2009, 61(2), 207-12.
[http://dx.doi.org/10.1211/jpp.61.02.0010]
[58]
Kaludercic, N.; Di Lisa, F. Mitochondrial ROS formation in the pathogenesis of diabetic cardiomyopathy. Front. Cardiovasc. Med., 2020, 7, 12.
[http://dx.doi.org/10.3389/fcvm.2020.00012] [PMID: 32133373]
[59]
Luo, J.; Yan, D.; Li, S.; Liu, S.; Zeng, F.; Cheung, C.W.; Liu, H.; Irwin, M.G.; Huang, H.; Xia, Z. Allopurinol reduces oxidative stress and activates Nrf2/p62 to attenuate diabetic cardiomyopathy in rats. J. Cell. Mol. Med., 2020, 24(2), 1760-1773.
[http://dx.doi.org/10.1111/jcmm.14870] [PMID: 31856386]
[60]
Li, W.; Li, W.; Leng, Y.; Xiong, Y.; Xia, Z. Ferroptosis is involved in diabetes myocardial ischemia/reperfusion injury through endoplasmic reticulum stress. DNA Cell Biol., 2020, 39(2), 210-225.
[http://dx.doi.org/10.1089/dna.2019.5097] [PMID: 31809190]
[61]
Wang, C.; Zhu, L.; Yuan, W.; Sun, L.; Xia, Z.; Zhang, Z.; Yao, W. Diabetes aggravates myocardial ischaemia reperfusion injury via activating Nox2-related programmed cell death in an AMPK-dependent manner. J. Cell. Mol. Med., 2020, 24(12), 6670-6679.
[http://dx.doi.org/10.1111/jcmm.15318] [PMID: 32351005]
[62]
Ma, L.; Li, X.P.; Ji, H.S.; Liu, Y.F.; Li, E.Z. Baicalein protects rats with diabetic cardiomyopathy against oxidative stress and inflammation injury via phosphatidylinositol 3-kinase (PI3K)/AKT pathway. Med. Sci. Monit., 2018, 24, 5368-5375.
[http://dx.doi.org/10.12659/MSM.911455] [PMID: 30070262]
[63]
Xia, C.; Dong, R.; Chen, C.; Wang, H.; Wang, D.W. Cardiomyocyte specific expression of Acyl-coA thioesterase 1 attenuates sepsis induced cardiac dysfunction and mortality. Biochem. Biophys. Res. Commun., 2015, 468(4), 533-540.
[http://dx.doi.org/10.1016/j.bbrc.2015.10.078] [PMID: 26518651]
[64]
Zhang, M.; Mao, Y.E. Hydrogen sulfide attenuates high glucose-induced myocardial injury in rat cardiomyocytes by suppressing wnt/beta-catenin pathway. Contemp. Med. Sci., 2019, 39(6), 9.
[65]
Huang, Z.; Zhuang, X.; Xie, C.; Hu, X.; Dong, X.; Guo, Y.; Li, S.; Liao, X. Exogenous hydrogen sulfide attenuates high glucose-induced cardiotoxicity by inhibiting NLRP3 inflammasome activation by suppressing TLR4/NF-κB pathway in H9c2 cells. Cell. Physiol. Biochem., 2016, 40(6), 1578-1590.
[http://dx.doi.org/10.1159/000453208] [PMID: 27997926]
[66]
Ye, P.; Gu, Y.; Zhu, Y.R.; Chao, Y.L.; Kong, X.Q.; Luo, J.; Ren, X.M.; Zuo, G.F.; Zhang, D.M.; Chen, S.L. Exogenous hydrogen sulfide attenuates the development of diabetic cardiomyopathy via the FoxO1 pathway. J. Cell. Physiol., 2018, 233(12), 9786-9798.
[http://dx.doi.org/10.1002/jcp.26946] [PMID: 30078216]
[67]
Kar, S.; Kambis, T.N.; Mishra, P.K. Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. Am. J. Physiol. Heart Circ. Physiol., 2019, 316(6), H1237-H1252.
[http://dx.doi.org/10.1152/ajpheart.00004.2019] [PMID: 30925069]
[68]
Koppula, P.; Zhuang, L.; Gan, B. Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell, 2020, 12(8), 599-620.
[PMID: 33000412]
[69]
Xie, L.; Yue, G.; Wen, M.; Shuang, Z.; Wan, W.; Yan, M.; Meng, G.; Yi, H.; Wang, Y.; Liu, G. Hydrogen sulfide induces keap1 s-sulfhydration and suppresses diabetes-accelerated atherosclerosis via Nrf2 activation. Diabetes, 2017, 10(10), 3171.
[70]
Liu, N.; Lin, X.; Huang, C. Activation of the reverse transsulfuration pathway through NRF2/CBS confers erastin-induced ferroptosis resistance. Br. J. Cancer, 2020, 122(2), 279-292.
[http://dx.doi.org/10.1038/s41416-019-0660-x] [PMID: 31819185]
[71]
Zhao, X.; Gao, M.; Liang, J.; Chen, Y.; Wang, Y.; Wang, Y.; Xiao, Y.; Zhao, Z.; Wan, X.; Jiang, M.; Luo, X.; Wang, F.; Sun, X. SLC7A11 reduces laser-induced choroidal neovascularization by inhibiting RPE ferroptosis and VEGF production. Front. Cell Dev. Biol., 2021, 9, 639851.
[http://dx.doi.org/10.3389/fcell.2021.639851] [PMID: 33681224]
[72]
Zhou, X.; An, G.; Lu, X. Hydrogen sulfide attenuates the development of diabetic cardiomyopathy. Clin. Sci. (Lond.), 2015, 128(5), 325-335.
[http://dx.doi.org/10.1042/CS20140460] [PMID: 25394291]
[73]
Fan, Z.; Wirth, A.K.; Chen, D.; Wruck, C.J.; Rauh, M.; Buchfelder, M.; Savaskan, N. Nrf2-Keap1 pathway promotes cell proliferation and diminishes ferroptosis. Oncogenesis, 2017, 6(8), e371.
[http://dx.doi.org/10.1038/oncsis.2017.65] [PMID: 28805788]
[74]
Dodson, M.; Castro-Portuguez, R.; Zhang, D.D. NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol., 2019, 23, 101107.
[http://dx.doi.org/10.1016/j.redox.2019.101107]
[75]
Hydrogen sulfide alleviates liver injury via S:ulfhydratedkgeap1/Nrf2/LRP1 pathway. Hepatology, 2021, 73(1), 282-302.
[76]
Ling, K.; Zhou, W.; Guo, Y.; Hu, G.; Wang, W. H2S attenuates oxidative stress via Nrf2/NF-κB signaling to regulate restenosis after percutaneous transluminal angioplasty. Exp. Biol. Med., 2020, 246(2), 1535370220961038.
[77]
He, L.; Liu, Y.Y.; Wang, K.; Li, C.; Zhang, W.; Li, Z.Z.; Huang, X.Z.; Xiong, Y. Tanshinone IIA protects human coronary artery endothelial cells from ferroptosis by activating the NRF2 pathway. Biochem. Biophys. Res. Commun., 2021, 575, 1-7.
[http://dx.doi.org/10.1016/j.bbrc.2021.08.067] [PMID: 34454174]
[78]
Guan, Z.; Chen, J.; Li, X.; Dong, N. Tanshinone IIA induces ferroptosis in gastric cancer cells through p53-mediated SLC7A11 down-regulation. Biosci. Rep., 2020, 40(8), BSR20201807.
[http://dx.doi.org/10.1042/BSR20201807] [PMID: 32776119]
[79]
Kuganesan, N.; Dlamini, S.; Tillekeratne, L.; Taylor, W.R. Tumor suppressor p53 promotes ferroptosis in oxidative stress conditions independent of modulation of ferroptosis by p21, CDKs, RB, and E2F. J. Biol. Chem., 2021, 297(6), 101365.
[80]
Wang, J.; Deng, B.; Liu, Q.; Huang, Y.; Chen, W.; Li, J.; Zhou, Z.; Zhang, L.; Liang, B.; He, J.; Chen, Z.; Yan, C.; Yang, Z.; Xian, S.; Wang, L. Pyroptosis and ferroptosis induced by mixed lineage kinase 3 (MLK3) signaling in cardiomyocytes are essential for myocardial fibrosis in response to pressure overload. Cell Death Dis., 2020, 11(7), 574.
[http://dx.doi.org/10.1038/s41419-020-02777-3] [PMID: 32710001]
[81]
Jiang, T.; Yang, W.; Zhang, H.; Song, Z.; Liu, T.; Lv, X. Hydrogen sulfide ameliorates lung ischemia-reperfusion injury through SIRT1 signaling pathway in type 2 diabetic rats. Front. Physiol., 2020, 11, 596.
[http://dx.doi.org/10.3389/fphys.2020.00596] [PMID: 32695008]
[82]
Sun, J.; Li, X.; Gu, X.; Du, H.; Zhang, G.; Wu, J.; Wang, F. Neuroprotective effect of hydrogen sulfide against glutamate-induced oxidative stress is mediated via the p53/glutaminase 2 pathway after traumatic brain injury. Aging (Albany NY), 2021, 13(5), 7180-7189.
[http://dx.doi.org/10.18632/aging.202575] [PMID: 33640879]
[83]
Zheng, Y.; Lv, P.; Huang, J.; Ke, J.; Yan, J. GYY4137 exhibits anti-atherosclerosis effect in apolipoprotein E (-/-) mice via PI3K/Akt and TLR4 signalling. Clin. Exp. Pharmacol. Physiol., 2020, 47(7), 1231-1239.
[http://dx.doi.org/10.1111/1440-1681.13298] [PMID: 32144792]
[84]
Brandes, R.P. A radical adventure: The quest for specific functions and inhibitors of vascular NAPDH oxidases. Circ. Res., 2003, 92(6), 583-585.
[http://dx.doi.org/10.1161/01.RES.0000066880.62205.B0] [PMID: 12676809]
[85]
Wang, Z.; Ding, Y.; Wang, X.; Lu, S.; Wang, C.; He, C.; Wang, L.; Piao, M.; Chi, G.; Luo, Y.; Ge, P. Pseudolaric acid B triggers ferroptosis in glioma cells via activation of Nox4 and inhibition of xCT. Cancer Lett., 2018, 428, 21-33.
[http://dx.doi.org/10.1016/j.canlet.2018.04.021] [PMID: 29702192]
[86]
Park, M.W.; Cha, H.W.; Kim, J.; Kim, J.H.; Yang, H.; Yoon, S.; Boonpraman, N.; Yi, S.S.; Yoo, I.D.; Moon, J.S. NOX4 promotes ferroptosis of astrocytes by oxidative stress-induced lipid peroxidation via the impairment of mitochondrial metabolism in Alzheimer’s diseases. Redox Biol., 2021, 41(2), 101947.
[http://dx.doi.org/10.1016/j.redox.2021.101947] [PMID: 33774476]
[87]
Wang, X.L.; Pan, L.L.; Long, F.; Wu, W.J.; Yan, D.; Xu, P.; Liu, S.Y.; Qin, M.; Jia, W.W.; Liu, X.H.; Zu, Y.Z. Endogenous hydrogen sulfide ameliorates NOX4 induced oxidative stress in LPS-stimulated macrophages and mice. Cell. Physiol. Biochem., 2018, 47(2), 458-474.
[http://dx.doi.org/10.1159/000489980] [PMID: 29794432]
[88]
Wang, Y.; Shi, S.; Dong, S.; Wu, J.; Song, M.; Zhong, X.; Liu, Y. Sodium hydrosulfide attenuates hyperhomocysteinemia rat myocardial injury through cardiac mitochondrial protection. Mol. Cell Biochem., 2015, 399(1-2), 189-200.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy