Mini-Review Article

基于细菌多糖的先进材料的发展展望

卷 30, 期 17, 2023

发表于: 04 October, 2022

页: [1963 - 1970] 页: 8

弟呕挨: 10.2174/0929867329666220629152008

价格: $65

conference banner
摘要

细菌及其酶机制,也称为细菌细胞工厂,生产多种生物聚合物,如多核苷酸、多肽和多糖,具有不同的基本细胞功能。多糖是应用最广泛的生物聚合物,尤其是在生物技术中。这类生物聚合物由于其物理和化学财产,可用于制造各种先进的生物基材料、混合材料和纳米复合材料,用于各种令人兴奋的生物医学应用。与合成聚合物相比,细菌多糖具有生物相容性、生物降解性、低免疫原性和无毒性等优点。另一方面,与从其他天然来源提取的聚合物相比,细菌多糖的主要优势在于,它们的物理化学财产,例如纯度、孔隙度和延展性等,可以通过使用生物技术工具和/或化学改性来适应特定的应用。使用细菌多糖的另一个重要原因是,可以利用细菌工厂开发先进的材料,这些细菌工厂可以代谢容易获得的大量原材料(工业和农业废物的回收)。此外,通过这一战略,有可能遏制环境污染。在这篇文章中,我们考虑到用于医疗和制药目的的先进生物材料的开发的益处、缺点和近期前景,预测了迈向细菌多糖大规模生产的愿望。

关键词: 细菌多糖,先进生物基材料,细菌细胞工厂,水凝胶,薄膜,纳米颗粒,废料。

[1]
Varma, K.; Gopi, S. Biopolymers and their role in medicinal and pharmaceutical applications. Biopolym. Industrial Appl., 2021, 2021, 175-175.
[http://dx.doi.org/10.1016/B978-0-12-819240-5.00007-9]
[2]
Ivanov, V.; Stabnikov, V. 2-Basic concepts on biopolymers and biotechnological admixtures for eco-efficient construction materials. In: Biopolymers and biotech admixtures for eco-efficient construction materials; Pacheco-Torgal, F.; Ivanov, V.; Karak, N.; Jonkers, H., Eds.; Elsevier: Amsterdam, 2016; pp. 13-35.
[http://dx.doi.org/10.1016/B978-0-08-100214-8.00002-6]
[3]
Yadav, P.; Yadav, H.; Shah, V.G.; Shah, G.; Dhaka, G. Biomedical biopolymers, their origin and evolution in biomedical sciences: A systematic review. J. Clin. Diagn. Res., 2015, 9(9), ZE21-ZE25.
[http://dx.doi.org/10.7860/JCDR/2015/13907.6565] [PMID: 26501034]
[4]
Lee, K.S.; Kwon, T.H.; Park, T.; Jeong, M.S. Microbiology and microbial products for enhanced oil recovery. In: Theory and practice in microbial enhanced oil recovery; Lee, K.S.; Kwon, T.H.; Park, T.; Jeong, M.S., Eds.; Gulf Professional Publishing: Cambridge, MA, USA, 2020; pp. 27-65.
[http://dx.doi.org/10.1016/B978-0-12-819983-1.00002-8]
[5]
Schmid, J.; Sieber, V.; Rehm, B. Bacterial exopolysaccharides: Biosynthesis pathways and engineering strategies. Front. Microbiol., 2015, 6, 496.
[http://dx.doi.org/10.3389/fmicb.2015.00496] [PMID: 26074894]
[6]
Mohammed, A.S.A.; Naveed, M.; Jost, N. Polysaccharides; Classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities). J. Polym. Environ., 2021, 29(8), 2359-2371.
[http://dx.doi.org/10.1007/s10924-021-02052-2] [PMID: 33526994]
[7]
Mahmoud, Y.A.G.; El-Naggar, M.E.; Abdel-Megeed, A.; El-Newehy, M. Recent advancements in microbial polysaccharides: Synthesis and applications. Polymers (Basel), 2021, 13(23), 4136.
[http://dx.doi.org/10.3390/polym13234136] [PMID: 34883639]
[8]
Barclay, T.G.; Day, C.M.; Petrovsky, N.; Garg, S. Review of polysaccharide particle-based functional drug delivery. Carbohydr. Polym., 2019, 221, 94-112.
[http://dx.doi.org/10.1016/j.carbpol.2019.05.067] [PMID: 31227171]
[9]
Moradali, M.F.; Rehm, B.H.A. Bacterial biopolymers: From pathogenesis to advanced materials. Nat. Rev. Microbiol., 2020, 18(4), 195-210.
[http://dx.doi.org/10.1038/s41579-019-0313-3] [PMID: 31992873]
[10]
Pandit, A.; Kumar, R. A review on production, characterization and application of bacterial cellulose and its biocomposites. J. Polym. Environ., 2021, 29(9), 2738-2755.
[http://dx.doi.org/10.1007/s10924-021-02079-5]
[11]
Sharma, C.; Bhardwaj, N.K. Bacterial nanocellulose: Present status, biomedical applications and future perspectives. Mater. Sci. Eng. C, 2019, 104, 109963.
[http://dx.doi.org/10.1016/j.msec.2019.109963] [PMID: 31499992]
[12]
Mokhtarzadeh, A.; Alibakhshi, A.; Hejazi, M.; Omidi, Y.; Ezzati Nazhad Dolatabadi, J. Bacterial-derived biopolymers: Advanced natural nanomaterials for drug delivery and tissue engineering. Trends Analyt. Chem., 2016, 82, 367-384.
[http://dx.doi.org/10.1016/j.trac.2016.06.013]
[13]
Vandezande, P. Next-generation pervaporation membranes: Recent trends, challenges and perspectives. In: Pervaporation, Vapour Permeation and Membrane Distillation; Elsevier, 2015; pp. 107-141.
[http://dx.doi.org/10.1016/B978-1-78242-246-4.00005-2]
[14]
Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A comparative review of natural and synthetic biopolymer composite scaffolds. Polymers (Basel), 2021, 13(7), 1105.
[http://dx.doi.org/10.3390/polym13071105] [PMID: 33808492]
[15]
Garrison, T.; Murawski, A.; Quirino, R. Bio-based polymers with potential for biodegradability. Polymers (Basel), 2016, 8(7), 262.
[http://dx.doi.org/10.3390/polym8070262] [PMID: 30974537]
[16]
Amini, S.; Salehi, H.; Setayeshmehr, M.; Ghorbani, M. Natural and synthetic polymeric scaffolds used in peripheral nerve tissue engineering: Advantages and disadvantages. Polym. Adv. Technol., 2021, 32(6), 2267-2289.
[http://dx.doi.org/10.1002/pat.5263]
[17]
Baranov, N.; Popa, M.; Atanase, L.I.; Ichim, D.L. Polysaccharide-based drug delivery systems for the treatment of periodontitis. Molecules, 2021, 26(9), 2735.
[http://dx.doi.org/10.3390/molecules26092735] [PMID: 34066568]
[18]
Laubach, J.; Joseph, M.; Brenza, T.; Gadhamshetty, V.; Sani, R.K. Exopolysaccharide and biopolymer-derived films as tools for transdermal drug delivery. J. Control. Release, 2021, 329, 971-987.
[http://dx.doi.org/10.1016/j.jconrel.2020.10.027] [PMID: 33091530]
[19]
Blanco, F.G.; Hernández, N.; Rivero-Buceta, V.; Maestro, B.; Sanz, J.M.; Mato, A.; Hernández-Arriaga, A.M.; Prieto, M.A. From residues to added-value bacterial biopolymers as nanomaterials for biomedical applications. Nanomaterials (Basel), 2021, 11(6), 1492.
[http://dx.doi.org/10.3390/nano11061492] [PMID: 34200068]
[20]
Możejko-Ciesielska, J.; Kiewisz, R. Bacterial polyhydroxyalkanoates: Still fabulous? Microbiol. Res., 2016, 192, 271-282.
[http://dx.doi.org/10.1016/j.micres.2016.07.010] [PMID: 27664746]
[21]
Anton-Sales, I.; Beekmann, U.; Laromaine, A.; Roig, A.; Kralisch, D. Opportunities of bacterial cellulose to treat epithelial tissues. Curr. Drug Targets, 2019, 20(8), 808-822.
[http://dx.doi.org/10.2174/1389450120666181129092144] [PMID: 30488795]
[22]
Hernández-Arriaga, A.M.; Campano, C.; Rivero-Buceta, V.; Prieto, M.A. When microbial biotechnology meets material engineering. Microb. Biotechnol., 2022, 15(1), 149-163.
[http://dx.doi.org/10.1111/1751-7915.13975] [PMID: 34818460]
[23]
Kalyani, P.; Khandelwal, M. Modulation of morphology, water uptake/retention, and rheological properties by in situ modification of bacterial cellulose with the addition of biopolymers. Cellulose, 2021, 28(17), 11025-11036.
[http://dx.doi.org/10.1007/s10570-021-04256-0]
[24]
Naomi, R.; Bt Hj Idrus, R.; Fauzi, M.B. Plant vs. bacterial-derived cellulose for wound healing: A review. Int. J. Environ. Res. Public Health, 2020, 17(18), 6803.
[http://dx.doi.org/10.3390/ijerph17186803] [PMID: 32961877]
[25]
de Amorim, J.D.P.; de Souza, K.C.; Duarte, C.R.; da Silva Duarte, I.; de Assis Sales Ribeiro, F.; Silva, G.S.; de Farias, P.M.A.; Stingl, A.; Costa, A.F.S.; Vinhas, G.M.; Sarubbo, L.A. Plant and bacterial nanocellulose: Production, properties and applications in medicine, food, cosmetics, electronics and engineering. A review. Environ. Chem. Lett., 2020, 18(3), 851-869.
[http://dx.doi.org/10.1007/s10311-020-00989-9]
[26]
Shroff, P.; Parikh, S. Production and characterization of alginate extracted from Paenibacillus riograndensis. RJLBPCS, 2018, 4(6), 560-575.
[http://dx.doi.org/10.1026479/20180406]
[27]
Öner, E.T.; Hernández, L.; Combie, J. Review of Levan polysaccharide: From a century of past experiences to future prospects. Biotechnol. Adv., 2016, 34(5), 827-844.
[http://dx.doi.org/10.1016/j.biotechadv.2016.05.002] [PMID: 27178733]
[28]
Lahiri, D.; Nag, M.; Dutta, B.; Dey, A.; Sarkar, T.; Pati, S.; Edinur, H.A.; Abdul Kari, Z.; Mohd Noor, N.H.; Ray, R.R. Bacterial cellulose: Production, characterization, and application as antimicrobial agent. Int. J. Mol. Sci., 2021, 22(23), 12984.
[http://dx.doi.org/10.3390/ijms222312984] [PMID: 34884787]
[29]
Kaur, R.; Panwar, D.; Panesar, P.S. Biotechnological approach for valorization of whey for value-added products. In: Food Industry Wastes; Academic Press: Massachusetts, USA, 2020; pp. 275-302.
[http://dx.doi.org/10.1016/B978-0-12-817121-9.00013-9]
[30]
Roy, A.; Shrivastava, S.L.; Mandal, S.M. Self-assembled carbohydrate nanostructures: Synthesis strategies to functional application in food. In: Novel Approaches of Nanotechnology in Food; Academic Press: Massachusetts, USA, 2016; pp. 133-164.
[http://dx.doi.org/10.1016/B978-0-12-804308-0.00005-4]
[31]
Castro-Muñoz, R.; González-Valdez, J. New trends in biopolymer-based membranes for pervaporation. Molecules, 2019, 24(19), 3584.
[http://dx.doi.org/10.3390/molecules24193584] [PMID: 31590357]
[32]
Gonzalez-Miro, M.; Chen, S.; Gonzaga, Z.J.; Evert, B.; Wibowo, D.; Rehm, B.H.A. Polyester as antigen carrier toward particulate vaccines. Biomacromolecules, 2019, 20(9), 3213-3232.
[http://dx.doi.org/10.1021/acs.biomac.9b00509] [PMID: 31122016]
[33]
Horue, M.; Rivero Berti, I.; Cacicedo, M.L.; Castro, G.R. Microbial production and recovery of hybrid biopolymers from wastes for industrial applications- a review. Bioresour. Technol., 2021, 340, 125671.
[http://dx.doi.org/10.1016/j.biortech.2021.125671] [PMID: 34333348]
[34]
Mallakpour, S.; Azadi, E.; Hussain, C.M. Chitosan, alginate, hyaluronic acid, gums, and β-glucan as potent adjuvants and vaccine delivery systems for viral threats including SARS-CoV-2: A review. Int. J. Biol. Macromol., 2021, 182, 1931-1940.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.155] [PMID: 34048834]
[35]
Sukan, A.; Roy, I.; Keshavarz, T. Dual production of biopolymers from bacteria. Carbohydr. Polym., 2015, 126, 47-51.
[http://dx.doi.org/10.1016/j.carbpol.2015.03.001] [PMID: 25933521]
[36]
Forero-Doria, O.; Polo, E.; Marican, A.; Guzmán, L.; Venegas, B.; Vijayakumar, S.; Wehinger, S.; Guerrero, M.; Gallego, J.; Durán-Lara, E.F. Supramolecular hydrogels based on cellulose for sustained release of therapeutic substances with antimicrobial and wound healing properties. Carbohydr. Polym., 2020, 242, 116383.
[http://dx.doi.org/10.1016/j.carbpol.2020.116383] [PMID: 32564841]
[37]
Ghosh, S.; Lahiri, D.; Nag, M.; Dey, A.; Sarkar, T.; Pathak, S.K.; Atan Edinur, H.; Pati, S.; Ray, R.R. Bacterial biopolymer: Its role in pathogenesis to effective biomaterials. Polymers (Basel), 2021, 13(8), 1242.
[http://dx.doi.org/10.3390/polym13081242] [PMID: 33921239]
[38]
De Vuyst, L.; De Vin, F. Exopolysaccharides from lactic acid bacteria. In: Comprehensive Glycoscience. From Chemistry to Systems Biology; Elsevier Ltd, 2007; pp. 477-519.
[http://dx.doi.org/10.1016/B978-044451967-2/00129-X]
[39]
Rodríguez-Carmona, E.; Villaverde, A. Nanostructured bacterial materials for innovative medicines. Trends Microbiol., 2010, 18(9), 423-430.
[http://dx.doi.org/10.1016/j.tim.2010.06.007] [PMID: 20674365]
[40]
de Siqueira, E.C.; Rebouças, J.S.; Pinheiro, I.O.; Formiga, F.R. Levan-based nanostructured systems: An overview. Int. J. Pharm., 2020, 580, 119242.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119242] [PMID: 32199961]
[41]
Demirci, T.; Hasköylü, M.E.; Eroğlu, M.S.; Hemberger, J.; Toksoy Öner, E. Levan-based hydrogels for controlled release of Amphotericin B for dermal local antifungal therapy of Candidiasis. Eur. J. Pharm. Sci., 2020, 145, 105255.
[http://dx.doi.org/10.1016/j.ejps.2020.105255] [PMID: 32032777]
[42]
Ahmad Raus, R.; Wan Nawawi, W.M.F.; Nasaruddin, R.R. Alginate and alginate composites for biomedical applications. Asian J. Pharm. Sci., 2021, 16(3), 280-306.
[http://dx.doi.org/10.1016/j.ajps.2020.10.001] [PMID: 34276819]
[43]
Kumar, A.; Rao, K.M.; Han, S.S. Application of xanthan gum as polysaccharide in tissue engineering: A review. Carbohydr. Polym., 2018, 180, 128-144.
[http://dx.doi.org/10.1016/j.carbpol.2017.10.009] [PMID: 29103488]
[44]
Spera, R.; Nobile, S.; Trapani, L. Gellan gum for tissue engineering applications: A mini review. Biomed. J. Sci. Tech. Res., 2018, 7(2), 5785-5786.
[http://dx.doi.org/10.26717/BJSTR.2018.07.001474]
[45]
Carvalho, L.T.; Vieira, T.A.; Zhao, Y.; Celli, A.; Medeiros, S.F.; Lacerda, T.M. Recent advances in the production of biomedical systems based on polyhydroxyalkanoates and exopolysaccharides. Int. J. Biol. Macromol., 2021, 183, 1514-1539.
[http://dx.doi.org/10.1016/j.ijbiomac.2021.05.025] [PMID: 33989687]
[46]
de Oliveira, J.D.; Carvalho, L.S.; Gomes, A.M.V.; Queiroz, L.R.; Magalhães, B.S.; Parachin, N.S. Genetic basis for hyper production of hyaluronic acid in natural and engineered microorganisms. Microb. Cell Fact., 2016, 15(1), 119.
[http://dx.doi.org/10.1186/s12934-016-0517-4] [PMID: 27370777]
[47]
Kim, H.; Jeong, H.; Han, S.; Beack, S.; Hwang, B.W.; Shin, M.; Oh, S.S.; Hahn, S.K. Hyaluronate and its derivatives for customized biomedical applications. Biomaterials, 2017, 123, 155-171.
[http://dx.doi.org/10.1016/j.biomaterials.2017.01.029] [PMID: 28171824]
[48]
Pacheco-Leyva, I.; Guevara Pezoa, F.; Díaz-Barrera, A. Alginate biosynthesis in Azotobacter vinelandii: Overview of molecular mechanisms in connection with the oxygen availability. Int. J. Polym. Sci., 2016, 2016, 1-12.
[http://dx.doi.org/10.1155/2016/2062360]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy