Research Article

芦荟苷促进人骨髓间充质干细胞的成骨分化:参与Wnt/β-catenin信号通路

卷 29, 期 39, 2022

发表于: 05 August, 2022

页: [6100 - 6111] 页: 12

弟呕挨: 10.2174/0929867329666220629150656

价格: $65

conference banner
摘要

背景: 在芦荟中发现的芦荟苷具有广泛的药理活性,包括抗氧化、抗炎和抗癌。本研究旨在探讨芦荟苷对人骨髓间充质干细胞(hBMSC)成骨分化的影响。 方法: 在存在或不存在芦荟苷的情况下分别进行的 hBMSC的成骨诱导。使用CCK-8测定法测定细胞活力。采用流式细胞术鉴定hBMSC的特征。进行细胞内碱性磷酸酶(ALP)染色以评估hBMSC中的ALP活性。进行茜素红S染色以评估基质矿化。分别使用qRT-PCR和蛋白质印迹法测定靶基因的mRNA和蛋白质水平。 结果: 用芦荟苷(10和20μg/ mL)处理在72小时后显着提高了hBMSC的细胞活力。此外,芦荟苷处理增加了ALP的mRNA表达水平及其活性。Barbaloin处理还增加了hBMSC中晚期分化的成骨细胞标志基因BMP2、RUNX2和SP7的基质矿化以及mRNA和蛋白质水平。潜在机制表明,芦荟苷增加了Wnt/β-连环蛋白通路相关生物标志物的蛋白表达。 结论: 芦荟苷通过调节Wnt/β-连环蛋白信号通路促进hBMSC的成骨分化

关键词: 芦荟苷,成骨分化,人骨髓间充质干细胞,Wnt,β-连环蛋白,矿化

« Previous
[1]
Charbord, P. Bone marrow mesenchymal stem cells: Historical overview and concepts. Hum. Gene Ther., 2010, 21(9), 1045-1056.
[http://dx.doi.org/10.1089/hum.2010.115] [PMID: 20565251]
[2]
Ohishi, M.; Schipani, E. Bone marrow mesenchymal stem cells. J. Cell. Biochem., 2010, 109(2), 277-282.
[PMID: 19950205]
[3]
Xu, Z.; Liu, X.; Wei, Y.; Zhao, Z.; Cao, J.; Qiao, Y.; Yu, Y.; Zhong, J.; Suo, G. Mesenchymal stem cell spheroids: Potential cell materials for cell therapy. STE Med., 2020, 2(5), e67.
[http://dx.doi.org/10.37175/stemedicine.v2i5.67]
[4]
Bianco, P.; Robey, P.G.; Saggio, I.; Riminucci, M. “Mesenchymal” stem cells in human bone marrow (skeletal stem cells): A critical discussion of their nature, identity, and significance in incurable skeletal disease. Hum. Gene Ther., 2010, 21(9), 1057-1066.
[http://dx.doi.org/10.1089/hum.2010.136] [PMID: 20649485]
[5]
Hu, Y.; Tang, X.X.; He, H.Y. Gene expression during induced differentiation of sheep bone marrow mesenchymal stem cells into osteoblasts. Genet. Mol. Res., 2013, 12(4), 6527-6534.
[http://dx.doi.org/10.4238/2013.December.11.4] [PMID: 24390999]
[6]
Caetano-Lopes, J.; Canhão, H.; Fonseca, J.E. Osteoblasts and bone formation. Acta Reumatol. Port., 2007, 32(2), 103-110.
[PMID: 17572649]
[7]
Ottewell, P.D. The role of osteoblasts in bone metastasis. J. Bone Oncol., 2016, 5(3), 124-127.
[http://dx.doi.org/10.1016/j.jbo.2016.03.007] [PMID: 27761372]
[8]
Kim, H.J.; You, S.J.; Yang, D.H.; Eun, J.; Park, H.K.; Kim, M.S.; Chun, H.J. Injectable hydrogels based on MPEG–PCL–RGD and BMSCs for bone tissue engineering. Biomater. Sci., 2020, 8(15), 4334-4345.
[http://dx.doi.org/10.1039/D0BM00588F] [PMID: 32608413]
[9]
Lin, H.; Sohn, J.; Shen, H.; Langhans, M.T.; Tuan, R.S. Bone marrow mesenchymal stem cells: Aging and tissue engineering applications to enhance bone healing. Biomaterials, 2019, 203, 96-110.
[http://dx.doi.org/10.1016/j.biomaterials.2018.06.026] [PMID: 29980291]
[10]
Groom, Q.; Reynolds, T. Barbaloin in aloe species. Planta Med., 1987, 53(4), 345-348.
[http://dx.doi.org/10.1055/s-2006-962735] [PMID: 17269040]
[11]
Patel, D.K.; Patel, K.; Tahilyani, V. Barbaloin: A concise report of its pharmacological and analytical aspects. Asian Pac. J. Trop. Biomed., 2012, 2(10), 835-838.
[http://dx.doi.org/10.1016/S2221-1691(12)60239-1] [PMID: 23569857]
[12]
Singh, N.; Goyal, K.; Sondhi, S.; Jindal, S. Traditional and medicinal use of Barbaloin: Potential for the management of various diseases. J. Appl. Pharm. Res., 2020, 8(3), 21-30.
[http://dx.doi.org/10.18231/j.joapr.2020.v.8.i.3.21.30]
[13]
Yang, H.; Zhong, W.; Hamidi, M.R.; Zhou, G.; Liu, C. Functional improvement and maturation of human cardiomyocytes derived from human pluripotent stem cells by barbaloin preconditioning. Acta Biochim. Biophys. Sin. (Shanghai), 2019, 51(10), 1041-1048.
[http://dx.doi.org/10.1093/abbs/gmz090] [PMID: 31518384]
[14]
Peng, C.; Zhang, W.; Shen, X.; Yuan, Y.; Li, Y.; Zhang, W.; Yao, M. Post-transcriptional regulation activity through alternative splicing involved in the effects of Aloe vera on the Wnt/β-catenin and Notch pathways in colorectal cancer cells. J. Pharmacol. Sci., 2020, 143(3), 148-155.
[http://dx.doi.org/10.1016/j.jphs.2020.03.006] [PMID: 32268968]
[15]
Zhang, Y.; Wang, X. Targeting the Wnt/β-catenin signaling pathway in cancer. J. Hematol. Oncol., 2020, 13(1), 165.
[http://dx.doi.org/10.1186/s13045-020-00990-3] [PMID: 33276800]
[16]
Gao, J.; Liao, Y.; Qiu, M.; Shen, W. Wnt/β-catenin signaling in neural stem cell homeostasis and neurological diseases. Neuroscientist, 2021, 27(1), 58-72.
[http://dx.doi.org/10.1177/1073858420914509] [PMID: 32242761]
[17]
Wang, C.G.; Hu, Y.H.; Su, S.L.; Zhong, D. LncRNA DANCR and miR-320a suppressed osteogenic differentiation in osteoporosis by directly inhibiting the Wnt/β-catenin signaling pathway. Exp. Mol. Med., 2020, 52(8), 1310-1325.
[http://dx.doi.org/10.1038/s12276-020-0475-0] [PMID: 32778797]
[18]
Wu, W.; Xiao, Z.; Chen, Y.; Deng, Y.; Zeng, D.; Liu, Y.; Huang, F.; Wang, J.; Liu, Y.; Bellanti, J.A.; Rong, L.; Zheng, S.G. CD39 produced from human GMSCs regulates the balance of osteoclasts and osteoblasts through the Wnt/β-catenin pathway in osteoporosis. Mol. Ther., 2020, 28(6), 1518-1532.
[http://dx.doi.org/10.1016/j.ymthe.2020.04.003] [PMID: 32304668]
[19]
Fu, C.; Shi, R. Osteoclast biology in bone resorption: A review. STE Med., 2020, 1(4), e57.
[http://dx.doi.org/10.37175/stemedicine.v1i4.57]
[20]
Gao, Y.; Huang, E.; Zhang, H.; Wang, J.; Wu, N.; Chen, X.; Wang, N.; Wen, S.; Nan, G.; Deng, F.; Liao, Z.; Wu, D.; Zhang, B.; Zhang, J.; Haydon, R.C.; Luu, H.H.; Shi, L.L.; He, T.C. Crosstalk between Wnt/β-catenin and estrogen receptor signaling synergistically promotes osteogenic differentiation of mesenchymal progenitor cells. PLoS One, 2013, 8(12), e82436.
[http://dx.doi.org/10.1371/journal.pone.0082436] [PMID: 24340027]
[21]
Houschyar, K.S.; Tapking, C.; Borrelli, M.R.; Popp, D.; Duscher, D.; Maan, Z.N.; Chelliah, M.P.; Li, J.; Harati, K.; Wallner, C.; Rein, S.; Pförringer, D.; Reumuth, G.; Grieb, G.; Mouraret, S.; Dadras, M.; Wagner, J.M.; Cha, J.Y.; Siemers, F.; Lehnhardt, M.; Behr, B. Wnt pathway in bone repair and regeneration–what do we know so far. Front. Cell Dev. Biol., 2019, 6, 170.
[http://dx.doi.org/10.3389/fcell.2018.00170] [PMID: 30666305]
[22]
Chen, X.J.; Shen, Y.S.; He, M.C.; Yang, F.; Yang, P.; Pang, F.X.; He, W.; Cao, Y.; Wei, Q.S. Polydatin promotes the osteogenic differentiation of human bone mesenchymal stem cells by activating the BMP2-Wnt/β-catenin signaling pathway. Biomed. Pharmacother., 2019, 112, 108746.
[http://dx.doi.org/10.1016/j.biopha.2019.108746] [PMID: 30970530]
[23]
Hang, K.; Ye, C.; Xu, J.; Chen, E.; Wang, C.; Zhang, W.; Ni, L.; Kuang, Z.; Ying, L.; Xue, D.; Pan, Z. Apelin enhances the osteogenic differentiation of human bone marrow mesenchymal stem cells partly through Wnt/β-catenin signaling pathway. Stem Cell Res. Ther., 2019, 10(1), 189.
[http://dx.doi.org/10.1186/s13287-019-1286-x] [PMID: 31238979]
[24]
Chen, X.; Yan, J.; He, F.; Zhong, D.; Yang, H.; Pei, M.; Luo, Z.P. Mechanical stretch induces antioxidant responses and osteogenic differentiation in human mesenchymal stem cells through activation of the AMPK-SIRT1 signaling pathway. Free Radic. Biol. Med., 2018, 126, 187-201.
[http://dx.doi.org/10.1016/j.freeradbiomed.2018.08.001] [PMID: 30096433]
[25]
Liu, C.; Shen, Y.J.; Tu, Q.B.; Zhao, Y.R.; Guo, H.; Wang, J.; Zhang, L.; Shi, H.W.; Sun, Y. Pedunculoside, a novel triterpene saponin extracted from Ilex rotunda, ameliorates high-fat diet induced hyperlipidemia in rats. Biomed. Pharmacother., 2018, 101, 608-616.
[http://dx.doi.org/10.1016/j.biopha.2018.02.131] [PMID: 29518607]
[26]
Sun, W.; Liu, C.; Zhang, Y.; Qiu, X.; Zhang, L.; Zhao, H.; Rong, Y.; Sun, Y.; Ilexgenin, A. Ilexgenin A, a novel pentacyclic triterpenoid extracted from Aqui foliaceae shows reduction of LPS-induced peritonitis in mice. Eur. J. Pharmacol., 2017, 797, 94-105.
[http://dx.doi.org/10.1016/j.ejphar.2017.01.019] [PMID: 28104349]
[27]
Baker, N.; Boyette, L.B.; Tuan, R.S. Characterization of bone marrow-derived mesenchymal stem cells in aging. Bone, 2015, 70, 37-47.
[http://dx.doi.org/10.1016/j.bone.2014.10.014] [PMID: 25445445]
[28]
Zhu, H.; Mitsuhashi, N.; Klein, A.; Barsky, L.W.; Weinberg, K.; Barr, M.L.; Demetriou, A.; Wu, G.D. The role of the hyaluronan receptor CD44 in mesenchymal stem cell migration in the extracellular matrix. Stem Cells, 2006, 24(4), 928-935.
[http://dx.doi.org/10.1634/stemcells.2005-0186] [PMID: 16306150]
[29]
Cleary, M.A.; Narcisi, R.; Focke, K.; van der Linden, R.; Brama, P.A.J.; van Osch, G.J.V.M. Expression of CD105 on expanded mesenchymal stem cells does not predict their chondrogenic potential. Osteoarthritis Cartilage, 2016, 24(5), 868-872.
[http://dx.doi.org/10.1016/j.joca.2015.11.018] [PMID: 26687821]
[30]
Sikora, M.; Śmieszek, A.; Marycz, K. Bone marrow stromal cells (BMSCs CD45-/CD44+/CD73+/CD90+) isolated from osteoporotic mice SAM/P6 as a novel model for osteoporosis investigation. J. Cell. Mol. Med., 2021, 25(14), 6634-6651.
[http://dx.doi.org/10.1111/jcmm.16667] [PMID: 34075722]
[31]
Takemitsu, H.; Zhao, D.; Yamamoto, I.; Harada, Y.; Michishita, M.; Arai, T. Comparison of bone marrow and adipose tissue-derived canine mesenchymal stem cells. BMC Vet. Res., 2012, 8(1), 150.
[http://dx.doi.org/10.1186/1746-6148-8-150] [PMID: 22937862]
[32]
Zhou, Y.; Guan, X.; Zhu, Z.; Gao, S.; Zhang, C.; Li, C.; Zhou, K.; Hou, W.; Yu, H. Osteogenic differentiation of bone marrow-derived mesenchymal stromal cells on bone-derived scaffolds: Effect of microvibration and role of ERK1/2 activation. Eur. Cell. Mater., 2011, 22, 12-25.
[http://dx.doi.org/10.22203/eCM.v022a02] [PMID: 21732279]
[33]
de Girolamo, L.; Sartori, M.F.; Albisetti, W.; Brini, A.T. Osteogenic differentiation of human adipose-derived stem cells: Comparison of two different inductive media. J. Tissue Eng. Regen. Med., 2007, 1(2), 154-157.
[http://dx.doi.org/10.1002/term.12] [PMID: 18038404]
[34]
Leung, K.S.; Fung, K.P.; Sher, A.H.; Li, C.K.; Lee, K.M. Plasma bone-specific alkaline phosphatase as an indicator of osteoblastic activity. J. Bone Joint Surg. Br., 1993, 75-B(2), 288-292.
[http://dx.doi.org/10.1302/0301-620X.75B2.8444951] [PMID: 8444951]
[35]
Satsangi, N.; Satsangi, A.; Glover, R.; Ong, J.L.; Satsangi, R.K. Osteoblast response and calcium deposition on phospholipid modified surfaces. J. Mater. Sci. Mater. Med., 2004, 15(6), 693-697.
[http://dx.doi.org/10.1023/B:JMSM.0000030211.32655.80] [PMID: 15346737]
[36]
Martini, F.; Pellati, A.; Mazzoni, E.; Salati, S.; Caruso, G.; Contartese, D.; De Mattei, M. Bone morphogenetic protein-2 signaling in the osteogenic differentiation of human bone marrow mesenchymal stem cells induced by pulsed electromagnetic fields. Int. J. Mol. Sci., 2020, 21(6), 2104.
[http://dx.doi.org/10.3390/ijms21062104] [PMID: 32204349]
[37]
Zhu, F.; Friedman, M.S.; Luo, W.; Woolf, P.; Hankenson, K.D. The transcription factor osterix (SP7) regulates BMP6-induced human osteoblast differentiation. J. Cell. Physiol., 2012, 227(6), 2677-2685.
[http://dx.doi.org/10.1002/jcp.23010] [PMID: 21898406]
[38]
Cai, T.; Sun, D.; Duan, Y.; Wen, P.; Dai, C.; Yang, J.; He, W. WNT/β-catenin signaling promotes VSMCs to osteogenic transdifferentiation and calcification through directly modulating Runx2 gene expression. Exp. Cell Res., 2016, 345(2), 206-217.
[http://dx.doi.org/10.1016/j.yexcr.2016.06.007] [PMID: 27321958]
[39]
Gaur, T.; Lengner, C.J.; Hovhannisyan, H.; Bhat, R.A.; Bodine, P.V.N.; Komm, B.S.; Javed, A.; van Wijnen, A.J.; Stein, J.L.; Stein, G.S.; Lian, J.B. Canonical WNT signaling promotes osteogenesis by directly stimulating Runx2 gene expression. J. Biol. Chem., 2005, 280(39), 33132-33140.
[http://dx.doi.org/10.1074/jbc.M500608200] [PMID: 16043491]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy