Review Article

微波诱导绿色合成:高效开发生物活性嘧啶支架的可持续技术

卷 30, 期 9, 2023

发表于: 23 September, 2022

页: [1029 - 1059] 页: 31

弟呕挨: 10.2174/0929867329666220622150013

价格: $65

conference banner
摘要

在杂环化合物的合成过程中,采用微波辐射作为加热源。微波诱导合成的加热机制包括偶极极化和离子传导。这种加热技术遵循绿色协议,因为它涉及到在合成过程中使用可回收的有机溶剂。微波加热方法具有反应速度快、反应过程简单、产品收率高、纯度高、减少环境污染等优点。因此,微波加热是一种可持续高效生产杂环类化合物嘧啶的技术。嘧啶是一种六元含氮杂环化合物,由于多种治疗应用而发挥着重要作用。这部分是产生具有不同生物活性的候选药物的基本组成部分,包括抗癌(卡培他滨)、抗甲状腺(丙基硫脲嘧啶)、抗组胺(培咪罗last)、抗疟疾(乙胺嘧啶)、抗糖尿病(四氧嘧啶)、抗高血压(米诺地尔)、抗炎(八氯替胺)、抗真菌(cyprodinil)、抗菌(磺胺甲嗪)等。本文就微波辐射技术下嘧啶类似物的合成及其治疗潜力进行了综述。

关键词: 生物活性,发展,绿色合成,微波,嘧啶,可持续。

[1]
Ravichandran, S.; Karthikeyan, E. Microwave synthesis-A potential tool for green chemistry. Int. J. Chemtech Res., 2011, 3(1), 466-470.
[2]
Sahoo, B.M.; Banik, B.K.; Panda, J. Microwave assisted green chemistry approach: A potential tool for drug synthesis in medicinal chemistry, 2nd ed; CRC Press: USA, 2018.
[http://dx.doi.org/10.1201/9781351240499-12]
[3]
Krstenansky, J.L.; Cotterill, I. Recent advances in microwave-assisted organic syntheses. Curr. Opin. Drug Discov. Devel., 2000, 3(4), 454-461.
[PMID: 19649876]
[4]
Sekhon, B.S. Microwave assisted pharmaceutical synthesis: An overview. Int. J. Pharm. Tech. Res., 2010, 2(1), 827-833.
[5]
Lidstrom, P.; Tierney, J.; Wathey, B.; Westman, J. Microwave assisted organic synthesis-A review. Tetrahedron, 2001, 57(45), 9225-9283.
[http://dx.doi.org/10.1016/S0040-4020(01)00906-1]
[6]
Varma, R.S. Solvent-free organic syntheses using supported reagents and microwave irradiation. Green Chem., 1999, 1(1), 43-55.
[http://dx.doi.org/10.1039/a808223e]
[7]
Sahoo, B.M.; Banik, B.K.; Panda, J. Microwave Synthetic Technology: An eco-friendly approach in organic synthesis, 2nd ed; CRC Press, 2018.
[http://dx.doi.org/10.1201/9781351240499-11]
[8]
Varma, R.S. Solvent-free syntheses of heterocycles using microwave irradiation. J. Heterocycl. Chem., 1999, 36, 1565-1571.
[http://dx.doi.org/10.1002/jhet.5570360617]
[9]
Polshettiwar, V.; Varma, R.S. Microwave-assisted organic synthesis and transformations using benign reaction media. Acc. Chem. Res., 2008, 41(5), 629-639.
[http://dx.doi.org/10.1021/ar700238s] [PMID: 18419142]
[10]
Strauss, C.R.; Trainor, R.W. Developments in microwave-assisted organic chemistry. Aust. J. Chem., 1995, 48(10), 1665-1692.
[http://dx.doi.org/10.1071/CH9951665]
[11]
Giguere, R.J.; Bray, T.L.; Duncan, S.M.; Majetich, G. Application of commercial microwave ovens to organic synthesis. Tetrahedron Lett., 1986, 27(41), 4945-4948.
[http://dx.doi.org/10.1016/S0040-4039(00)85103-5]
[12]
Varma, R.S. Solvent-free accelerated organic syntheses using microwaves. Pure Appl. Chem., 2001, 73(1), 193-198.
[http://dx.doi.org/10.1351/pac200173010193]
[13]
Sahoo, B.M.; Panda, J.; Banik, B.K. Thermal and non-thermal effects of microwaves in synthesis. J. Indian Chem. Soc., 2018, 95, 1-9.
[14]
Mahato, A.K.; Sahoo, B.M.; Banik, B.K. Microwave-assisted synthesis: Paradigm of Green Chemistry. J. Indian Chem. Soc., 2018, 95, 1-13.
[15]
Agarwal, O.P. Organic chemistry: Reaction and reagents.Krishna Prakashan Media (p) Ltd 2008, 735-738.
[16]
Verma, A.; Sahu, L.; Chaudhary, N.; Dutta, T.; Dewangan, D.; Tripathi, D.K.A. Review: Pyrimidine their chemistry and pharmacological potentials. Asian J. Biochem. Pharmaceut. Res., 2012, 1(2), 1-15.
[17]
Arikkatt, S.D.; Baldwin, M.V.; Joseph, J.; Chandran, M.; Bhat, A.R.; Kumar, K. Pyrimidine derivatives and its biological potential-A review. Int. J. Org. Bio. Org. Chem., 2014, 4(1), 1-5.
[18]
Taylor, A.P.; Robinson, R.P.; Fobian, Y.M.; Blakemore, D.C.; Jones, L.H.; Fadeyi, O. Modern advances in heterocyclic chemistry in drug discovery. Org. Biomol. Chem., 2016, 14(28), 6611-6637.
[http://dx.doi.org/10.1039/C6OB00936K] [PMID: 27282396]
[19]
Pratyusha, C.; Poornima, G.; Sandhyarani, K.; Krishnaveni, A.; Brahmaiah, B.; Sreekanth, N. An overview on synthesis and biological activity of pyrimidines. Int. J. Pharm. Sci. Rev. Res., 2013, 3(2), 86-90.
[20]
Dansena, H.; Dhongade, H.J.; Chandrakar, K. Pharmacological potentials of pyrimidine derivative: A review. Asian J. Pharm. Clin. Res., 2015, 8(4), 171-177.
[21]
Brown, D.J.; Mason, S.F. Chemistry of heterocyclic compounds: The pyrimidines. 2008, 6, 31-81.
[22]
Michael, B.S.; March, J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed; Wiley-Int, 2007, pp. 102-110.
[23]
Kaur, R.; Chaudhary, S.; Kumar, K.; Gupta, M.K.; Rawal, R.K. Recent synthetic and medicinal perspectives of dihydropyrimidinones: A review. Eur. J. Med. Chem., 2017, 132, 108-134.
[http://dx.doi.org/10.1016/j.ejmech.2017.03.025] [PMID: 28342939]
[24]
Mahfoudh, M.; Abderrahim, R.; Leclerc, E.; Campagne, J.M. Recent approaches to the synthesis of pyrimidine derivatives. Eur. J. Org. Chem., 2017, 20(20), 2856-2865.
[http://dx.doi.org/10.1002/ejoc.201700008]
[25]
Katritzky, A.R.; Rees, C.W. Comprehensive heterocyclic. Chemistry, 1984, 1984, 106.
[26]
Maji, P.K. Recent progress in the synthesis of pyrimidine heterocycles: A review. Curr. Org. Chem., 2020, 24(10), 1055-1096.
[http://dx.doi.org/10.2174/1385272824999200507123843]
[27]
Gore, R.P.; Rajput, A.P. A review on recent progress in multicomponent reactions of pyrimidine synthesis. Drug Invent. Today, 2013, 5, 148-152.
[28]
Bhat, A.R.; Dongre, R.S.; Naikoo, G.A.; Hassan, I.U.; Ara, T. Proficient synthesis of bioactive annulated pyrimidine derivatives: A review. J. Taibah Univ. Sci., 2017, 11(6), 1047-1069.
[http://dx.doi.org/10.1016/j.jtusci.2017.05.005]
[29]
Xin, X.; Wang, Y.; Kumar, S.; Liu, X.; Lin, Y.; Dong, D. Efficient one-pot synthesis of substituted pyridines through multicomponent reaction. Org. Biomol. Chem., 2010, 8(13), 3078-3082.
[http://dx.doi.org/10.1039/c001117g] [PMID: 20480101]
[30]
Madhvi, A.S.; Jauhar, S.; Desai, K.R. A brief review: Microwave assisted organic reaction. Arch. Appl. Sci. Res., 2012, 4(1), 645-661.
[31]
Qiya, Z.; Hong, X.H.; Suhui, W. Three-component reaction for the synthesis of 2-amine-4,6-diarylpyrimidine under solvent-free conditions. Synth. Commun., 2009, 39(3), 516-522.
[http://dx.doi.org/10.1080/00397910802399932]
[32]
Shujian, T.; Shanshan, W.U.; Zhengguo, H.; Wenjuan, H. An efficient microwave-assisted synthesis of pyrido[2,3-d]pyrimidine derivatives. Chin. J. Chem., 2009, 27(6), 1148-1152.
[http://dx.doi.org/10.1002/cjoc.200990192]
[33]
Caddick, S. Microwave assisted organic reactions. Tetrahedron, 1995, 51(38), 10403-10432.
[http://dx.doi.org/10.1016/0040-4020(95)00662-R]
[34]
Mobinikhaledi, A.; Forughifar, N. Microwave assisted synthesis of some pyrimidine derivatives. Phosphorus Sulfur Silicon Relat. Elem., 2006, 181(11), 2653-2658.
[http://dx.doi.org/10.1080/10426500600862977]
[35]
Quiroga, J.; Portilla, J.; Abonía, R.; Insuasty, B.; Nogueras, M.; Cobo, J. Regioselective synthesis of novel substituted pyrazolo[1,5-a]pyrimidines under solvent-free conditions. Tetrahedron Lett., 2008, 49(43), 6254-6256.
[http://dx.doi.org/10.1016/j.tetlet.2008.08.044]
[36]
Dabiri, M.; Arvin-Nezhad, H.; Khavasi, H.R.; Bazgir, A. A novel and efficient synthesis of pyrimido[4,5-d]pyrimidine-2,4,7-trione and pyrido[2,3-d:6,5-d] dipyrimidine-2,4,6,8-tetrone derivatives. Tetrahedron, 2007, 63(8), 1770-1774.
[http://dx.doi.org/10.1016/j.tet.2006.12.043]
[37]
Polshettiwar, V.; Varma, R.S. Biginelli reaction in aqueous medium: A greener and sustainable approach to substituted 3,4-dihydropyrimidin-2(1H)-ones. Tetrahedron Lett., 2007, 48(41), 7343-7346.
[http://dx.doi.org/10.1016/j.tetlet.2007.08.031]
[38]
Kategaonkar, A.H.; Sadaphal, S.A.; Shelke, K.F.; Shingate, B.B.; Shingare, M.S. Microwave assisted synthesis of pyrimido[4,5-d]pyrimidine derivatives in dry media. Ukr. Bioorg. Acta, 2009, 1, 1-7.
[39]
Mario, L.A.; Vargas, D.; Francisco, L.A.; Julio, G.M.A. Ethyl (S)-2-Benzamido-5-[(4,6-dimethylpyrimidin-2-yl) amino]pentanoate. Molbank, 2020, 4(M1166), 1-5.
[40]
Hassan, S.; Arman, S.S.; Ayoob, B. Three-component process for the synthesis of 4-amino-5-pyrimidinecarbonitriles under thermal aqueous conditions or microwave irradiation. ARKIVOC, 2008, (ii), 115-123.
[41]
Shi, F.; Ma, N.; Zhou, D.; Zhang, G.; Chen, R.; Zhang, Y.; Tu, S. Green approach to the Synthesis of polyfunctionalized pyrazolo[4′,3′:5,6] pyrido[2,3-d]pyrimidines via microwave-assisted multicomponent reactions in water without catalyst. Synth. Commun., 2010, 40(1), 135-143.
[http://dx.doi.org/10.1080/00397910902962860]
[42]
Jain, S.K.; Chaudhari, S.K.; More, N.S.; More, K.D.; Wakedkar, S.A.; Kathiravan, M.K. A facile synthesis of 2-amino-5-cyano-4,6-disubstituted-pyrimidines under MWI. Int. J. Org. Chem. (Irvine), 2011, 1(2), 47-52.
[http://dx.doi.org/10.4236/ijoc.2011.12009]
[43]
Borisagar, M.; Joshi, K.; Ram, H.; Vyas, K.; Nimavat, K. A one-pot microwave irradiation synthesis of 1,2,4-triazolo[1,5-a]pyrimidines. Acta Chim. Pharm. Indica, 2012, 2(2), 101-105.
[44]
Nandini, P.; Krishnakant, W.; Dileep, K. Microwave promoted solvent-free Biginelli reaction for the one pot synthesis of dihydropyrimidin-2-(1H)-ones catalyzed by sulfamic acid. Asian J. Chem., 2011, 23(12), 5217-5219.
[45]
Singhal, S.; Joseph, J.K.; Jain, S.L.; Sain, B. Synthesis of 3,4-dihydro-pyrimidinones in the presence of water under solvent free conditions using conventional heating, microwave irradiation/ultrasound. Green Chem. Lett. Rev., 2010, 3(1), 23-26.
[http://dx.doi.org/10.1080/17518250903490126]
[46]
Dehbi, O.; Ishak, E.A.; Bakht, M.A.; Geesi, M.H.; Alshammari, M.B.; Kaiba, V.C.A.; Lazar, S.; Riadi, Y. Water-mediated synthesis of disubstituted 5-aminopyrimidines from vinyl azides under microwave irradiation. Green Chem. Lett. Rev., 2018, 11(2), 62-66.
[http://dx.doi.org/10.1080/17518253.2018.1437225]
[47]
Yildirim, M.; Celikel, D.; Durust, Y.; Knight, D.W.; Kariuki, B.M. A rapid and efficient protocol for the synthesis of novel nitrothiazolo[3,2-c]pyrimidines via microwave-mediated Mannich cyclisation. Tetrahedron, 2014, 70(12), 2122-2128.
[http://dx.doi.org/10.1016/j.tet.2014.02.003]
[48]
Cudden, C.M. Analgesics and anti-inflammatory drugs; Toxicology Cases for the Clinical and Forensic Laboratory, 2020, pp. 67-74.
[49]
Chaudhary, A.; Sharma, P.K.; Verma, P.; Kumar, N.; Dudhe, R. Microwave assisted synthesis of novel pyrimidine derivatives and investigation of their analgesic and ulcerogenic activity. Med. Chem. Res., 2012, 21(11), 3629-3645.
[http://dx.doi.org/10.1007/s00044-011-9907-7]
[50]
Bhatewara, A.; Jetti, S.R.; Kadre, T.; Paliwal, P.; Jain, S. Microwave assisted synthesis and biological evaluation of dihydropyrimidinone derivatives as anti-inflammatory, antibacterial, and antifungal agents. Int. J. Med. Chem., 2013, 197612, 1-5.
[51]
Patil, P.A.; Bhole, R.P.; Chikhale, R.V.; Bhusari, K.P. Synthesis of 3,4-dihydropyrimidine-2(1H)-one derivatives using microwave for their biological screening. Int. J. Chemtech Res., 2009, 1(2), 373-384.
[52]
Inoyama, D.; Paget, S.D.; Russo, R.; Kandasamy, S.; Kumar, P.; Singleton, E.; Occi, J.; Tuckman, M.; Zimmerman, M.D.; Ho, H.P.; Perryman, A.L.; Dartois, V.; Connell, N.; Freundlich, J.S. Novel pyrimidines as antitubercular agents. Antimicrob. Agents Chemother., 2018, 62(3), e02063-e17.
[http://dx.doi.org/10.1128/AAC.02063-17] [PMID: 29311070]
[53]
Patel, N.; Pathan, S.; Soni, H.I. 3,4-dihydropyrimidin-2(1h)-one analogues: Microwave irradiated synthesis with antimicrobial and antituberculosis study. Curr. Microw. Chem., 2019, 6(1), 61-70.
[http://dx.doi.org/10.2174/2213335606666190724093305]
[54]
Liu, P.; Yang, Y.; Tang, Y.; Yang, T.; Sang, Z.; Liu, Z.; Zhang, T.; Luo, Y. Design and synthesis of novel pyrimidine derivatives as potent antitubercular agents. Eur. J. Med. Chem., 2019, 163, 169-182.
[http://dx.doi.org/10.1016/j.ejmech.2018.11.054] [PMID: 30508666]
[55]
Mohan, S.B.; Ravi Kumar, B.V.V.; Dinda, S.C.; Naik, D.; Prabu Seenivasan, S.; Kumar, V.; Rana, D.N.; Brahmkshatriya, P.S. Microwave-assisted synthesis, molecular docking and antitubercular activity of 1,2,3,4-tetrahydropyrimidine-5-carbonitrile derivatives. Bioorg. Med. Chem. Lett., 2012, 22(24), 7539-7542.
[http://dx.doi.org/10.1016/j.bmcl.2012.10.032] [PMID: 23122523]
[56]
Patil, D.R.; Salunkhe, S.M.; Deshmukh, M.B.; Anbhule, P.V. One step synthesis of 6-amino-5-cyano-4-phenyl-2- mercapto pyrimidine using phosphorus pentoxide. The Open Cat. J, 2010, 3, 83-86.
[57]
Zhuang, J.; Ma, S. Recent development of pyrimidine-containing antimicrobial agents. ChemMedChem, 2020, 15(20), 1875-1886.
[http://dx.doi.org/10.1002/cmdc.202000378] [PMID: 32797654]
[58]
Khatri, T.T.; Shah, V.H. Effective microwave synthesis of bioactive thieno[2,3-d]pyrimidines. J. Chil. Chem. Soc., 2017, 62(1), 3354-3358.
[http://dx.doi.org/10.4067/S0717-97072017000100010]
[59]
Youssef, A.M.S.; Fouda, A.M.; Faty, R.M. Microwave assisted synthesis of some new thiazolopyrimidine and pyrimidothiazolopyrimido-pyrimidine derivatives with potential antimicrobial activity. Chem. Cent. J., 2018, 2018, 2-14.
[60]
Sureja, D.K.; Dholakia, S.P.; Vadalia, K.R. Synthesis of some novel pyrazolo[3,4-d] pyrimidin-4(5H)-one derivatives as potential antimicrobial agent. J. Pharm. Bioallied Sci., 2016, 8(4), 321-326.
[http://dx.doi.org/10.4103/0975-7406.199337] [PMID: 28216957]
[61]
Panneerselvam, T.; Reddy, M.J. Microwave assisted synthesis and antimicrobial evaluation of novel substituted thiosemicarbazide derivatives of pyrimidine. J. Het. Chem., 2020, 2020, 1-7.
[62]
Esvet, A.; Ismet, B.; Inci, A.; Baris, A.; Ela, Y. Microwave assisted synthesis of tetrahydropyrimidines via multicomponent reactions and evaluation of biological activities. Lett. Org. Chem., 2011, 8(9), 663-667.
[http://dx.doi.org/10.2174/157017811799304287]
[63]
Karthic, R.; Andrews, B.; Subramani, K. Microwave assisted synthesis and antifungal studies of 5-amino thiadiazole substituted pyrimidine compounds. Asian J. Res. Chem, 2017, 10(2), 119-123.
[http://dx.doi.org/10.5958/0974-4150.2017.00018.9]
[64]
Chandrasekaran, S.; Nagarajan, S. Microwave-assisted synthesis and anti-bacterial activity of some 2-amino-6-aryl-4-(2-thienyl)pyrimidines. Farmaco, 2005, 60(4), 279-282.
[http://dx.doi.org/10.1016/j.farmac.2005.01.012] [PMID: 15848201]
[65]
Elkanzi, N.A.A.; Bakr, R.B. Microwave assisted, antimicrobial activity and molecular modeling of some synthesized newly pyrimidine derivatives using 1,4- diazabicyclo[2.2.2]octane as a catalyst. Lett. Drug Des. Discov., 2020, 17(12), 1538-1551.
[http://dx.doi.org/10.2174/1570180817999200802033351]
[66]
Bhat, A.R.; Shalla, A.H.; Dongre, R.S. Microwave assisted one-pot catalyst free green synthesis of new methyl-7-amino-4-oxo-5-phenyl-2-thioxo-2,3,4,5-tetrahydro-1H-pyra- no[2,3-d]pyrimidine-6-carboxylates as potent in vitro antibacterial and antifungal activity. J. Adv. Res., 2015, 6(6), 941-948.
[http://dx.doi.org/10.1016/j.jare.2014.10.007] [PMID: 26644932]
[67]
Bansal, S.; Chaudhary, A.N.; Kothiyal, P. Microwave assisted synthesis and antibacterial activity of pyrimidine derivatives. Int. J. Pharm. Pharm. Sci., 2013, 5(S1), 346-348.
[68]
Stahl, S.M. Stahl’s Essential Psychopharmacology: Neuroscientific Basis and Practical Applications, 3rd ed; Cambridge University Press: New York, 2008, pp. 327-451.
[69]
Sharma, C.; Yerande, S.; Chavan, R.; Bhosale, A.V. Synthesis of thienopyrimidines and their antipsychotic activity. E-J. Chem., 2010, 7(2), 655-664.
[http://dx.doi.org/10.1155/2010/369141]
[70]
Meegan, M.J.; O’Boyle, N.M. Anticancer drugs. Pharmaceuticals (Basel), 2019, 12(3), 134.
[http://dx.doi.org/10.3390/ph12030134] [PMID: 31527393]
[71]
Ahmad, M.R.; Sastry, V.G.; Prasad, Y.R.; Khan, M.H.R.; Bano, N.; Anwar, S. Conventional and microwave assisted synthesis of 2-amino-4,6-diarylpyrimidine derivatives and their cytotoxic, anti-oxidant activities. Eur. J. Chem., 2012, 3(1), 94-98.
[http://dx.doi.org/10.5155/eurjchem.3.1.94-98.523]
[72]
Jainey, P.J.; Ishwar, B.K. Microwave assisted synthesis of novel pyrimidines bearing benzene sulfonamides and evaluation of anticancer and antioxidant activities. Asian J. Pharm. Clin. Res., 2014, 7(S1), 111-114.
[73]
Hosamani, K.M.; Reddya, D.S.; Devarajegowda, H.C. Microwave-assisted synthesis of new fluorinated coumarin–pyrimidine hybrids as potent anticancer agents, their DNA cleavage and X-ray crystal studies. RSC Advances, 2015, 5(15), 11261-11271.
[http://dx.doi.org/10.1039/C4RA12222D]
[74]
Singh, N.; Kshirsagar, S.S.; Nimje, H.M.; Chaudhari, P.S. Microwave assisted synthesis of 4-substituted 1,2,3,4-tetrahydropyrimidine derivatives. Int. J. Pharm. Pharm. Sci., 2011, 3(1), 109-111.
[75]
Sandhu, J.S.; Dhruv, K. Microwave enhanced, solvent free green protocol for the production of 3,4-dihydropyrimidine-2-(1H)-ones using AlCl3.6H2O as a catalyst. Indian J. Chem., 2010, 49B, 360-363.
[76]
Aceves, J.; Erlij, D.; Martínez-Marañón, R. The mechanism of the paralysing action of tetramisole on Ascaris somatic muscle. Br. J. Pharmacol., 1970, 38(3), 602-607.
[http://dx.doi.org/10.1111/j.1476-5381.1970.tb10601.x] [PMID: 5445688]
[77]
Sahoo, B.M.; Rajeswari, M.; Panda, J.; Sahoo, B. Green Expedient Synthesis of Pyrimidine derivatives via chalcones and evaluation of their anthelmintic activity. Ind. J. Pharmac. Edu. Res., 2017, 51(4S), 136-143.
[http://dx.doi.org/10.5530/ijper.51.4s.101]
[78]
Brossi, A.; Venugopalan, B.; Dominguez Gerpe, L.; Yeh, H.J.; Flippen-Anderson, J.L.; Buchs, P.; Luo, X.D.; Milhous, W.; Peters, W. Arteether, a new antimalarial drug: Synthesis and antimalarial properties. J. Med. Chem., 1988, 31(3), 645-650.
[http://dx.doi.org/10.1021/jm00398a026] [PMID: 3279208]
[79]
Rathwa, S.K.; Bhoi, M.N.; Mayuri, A.; Borad, K.D.; Patel, D.P.; Rajani, S.D.; Patel, H.D. Microwave assisted synthesis, biological characterization and docking studies of pyrimidine derivatives. Curr. Microw. Chem., 2016, 3(3), 178-186.
[http://dx.doi.org/10.2174/2213335602666150728205457]
[80]
Prasad, P.; Kalola, A.G.; Patel, M.P. Microwave assisted one-pot synthetic route to imidazo[1,2-a]pyrimidine derivatives of imidazo/triazole clubbed pyrazole and their pharmacological screening. New J. Chem., 2018, 42(15), 12666-12676.
[http://dx.doi.org/10.1039/C8NJ00670A]
[81]
Hollander, P. Current and future therapeutic options for treating postprandial glucose. Curr. Opin. Endocrinol. Diabetes, 1998, 5(4), 268-274.
[http://dx.doi.org/10.1097/00060793-199811000-00006]
[82]
Lalpara, J.N.; Hadiyal, S.D.; Radia, A.J.; Dhalani, J.M.; Dubal, G.G. Design and rapid microwave irradiated one-pot synthesis of tetrahydropyrimidine derivatives and their screening in-vitro anti-diabetic activity. Polycycl. Aromat. Compd., 2020, 2020, 1-15.
[83]
Gejalakshmi, S.; Harikrishnan, N.; Thillai, G.G.E.; Divyasri, A. Microwave assisted synthesis of tetrahydropyrmidine and in-silico screening of antidiabetic drug. Int. J. Curr. Pharm. Res., 2020, 12(1), 10-13.
[84]
Leonetti, F.; Capaldi, C.; Carotti, A. Microwave-assisted solid phase synthesis of Imatinib, A blockbuster anticancer drug. Tetrahedron Lett., 2007, 48(19), 3455-3458.
[http://dx.doi.org/10.1016/j.tetlet.2007.03.033]
[85]
Baxendale, I.R.; Ley, S.V. Polymer-supported reagents for multi-step organic synthesis: Application to the synthesis of sildenafil. Bioorg. Med. Chem. Lett., 2000, 10(17), 1983-1986.
[http://dx.doi.org/10.1016/S0960-894X(00)00383-8] [PMID: 10987432]
[86]
Xu, L.; Zhang, Y.; Dai, W.; Wang, Y.; Jiang, D.; Wang, L.; Xiao, J.; Yang, X.; Li, S. Design, synthesis and SAR study of novel trisubstituted pyrimidine amide derivatives as CCR4 antagonists. Molecules, 2014, 19(3), 3539-3551.
[http://dx.doi.org/10.3390/molecules19033539] [PMID: 24662072]
[87]
Zhou, H.; Che, X.; Bao, G.; Na, W.; Xu, B. Design, synthesis and structure-activity relationship study of pyrimidine-fused diazepine derivatives as L3MBTL3 inhibitors. Youji Huaxue, 2016, 36(12), 2948-2959.
[http://dx.doi.org/10.6023/cjoc201607001]
[88]
Rajeev, K.; Tyagi, M.; Sharma, A.K. Current status and future scenario of pyrimidine derivatives having antimicrobial potential. Pharma Chem., 2014, 6(4), 298-320.
[89]
de la Hoz, A.; Díaz-Ortiz, A.; Prieto, P. Microwave assisted green organic synthesis, in alternative energy sources for green chemistry. In: Alternative Energy Sources for Green Chemistry; Royal Society of Chemistry: USA, 2016; pp. 1-33.
[http://dx.doi.org/10.1039/9781782623632-00001]
[90]
Then, R.L. History and future of antimicrobial diaminopyrimidines. J. Chemother., 1993, 5(6), 361-368.
[http://dx.doi.org/10.1080/1120009X.1993.11741082] [PMID: 8195827]
[91]
Yadav, P.; Shah, K. An overview on synthetic and pharmaceutical prospective of pyrido[2,3-d]pyrimidines scaffold. Chem. Biol. Drug Des., 2021, 97(3), 633-648.
[http://dx.doi.org/10.1111/cbdd.13800] [PMID: 32946161]
[92]
Shilpa, C.; Dipak, S.; Vimukta, S.; Arti, D. Microwave and conventional synthesis of pyrimidine derivatives and their pharmacological activity-A review. J. Pharm. Biomed. Sci., 2012, 21(10), 1-11.

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy