Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Review Article

Antimicrobials from Medicinal Plants: Key Examples, Success Stories and Prospects in Tackling Antibiotic Resistance

Author(s): Pragya Tiwari*, Mangalam Bajpai and Abhishek Sharma

Volume 20, Issue 4, 2023

Published on: 27 September, 2022

Page: [420 - 438] Pages: 19

DOI: 10.2174/1570180819666220620102427

Price: $65

Abstract

The rising statistics of antimicrobial resistance pose an alarming concern for the mankind. The extensive/injudicious use of antibiotics in the environment, animal husbandry, and health care have led to the alarming rise of infectious microbes developing resistance against conventional drugs. The use of phytotherapeutics defines an attractive approach to tackling drug-resistant microbes, attributed to their ability to target major antimicrobial resistance mechanisms, including efflux pumps, biofilms, and cell membranes, among others. In recent times, the discovery and bioprospection of plants for value-added metabolites have witnessed a tremendous upsurge, with several phytomolecules demonstrating bactericidal and drug-resistance reversal properties. However, several existing challenges, including their low concentration in plants, climatic variations, overutilization of plant resources, and deforestation, have limited the utilization of phytotherapeutics. Discussing the growing concern of drug-resistant microbes and antimicrobial resistance, the thematic article discusses the existing and emerging scenarios of antimicrobial resistance in microbes. In the post-antibiotic era, phytotherapeutics defines enormous potential to tackle the growing threat of antimicrobial resistance, addressed through genetic engineering of microbes/plant systems for enhanced antimicrobial production. The success stories of antimicrobials from medicinal plants, as exemplified by key examples, associated challenges, possible strategies, and prospects of antimicrobials in drug discovery, form the key underlying theme of the article.

Keywords: Antibiotic susceptibility testing, antimicrobials, bioactive metabolites, drug discovery, medicinal plants, pharmacological uses, toxicity profiling.

[1]
WEF (World Economic Forum). Global Risks 2013 Eighth Edition: An initiative of the risk response network. Geneva: World Economic Forum. 2013.
[2]
Levy, S.B. Antibiotic resistance: Consequences of inaction. Clin. Infect. Dis., 2001, 33(s3)(Suppl. 3), S124-S129.
[http://dx.doi.org/10.1086/321837] [PMID: 11524708]
[3]
WHO. Factsheet on Antimicrobial Resistance., 2018.http://www.who.int/news-room/factsheets/detail/antimicrobial-resistance
[4]
Tanwar, J.; Das, S.; Fatima, Z.; Hameed, S. Multidrug resistance: An emerging crisis. Interdiscip. Perspect. Infect. Dis., 2014, 2014, 541340.
[http://dx.doi.org/10.1155/2014/541340] [PMID: 25140175]
[5]
Tiwari, P.; Srivastava, Y.; Bae, H. Trends of pharmaceutical design of endophytes as anti-infective. Curr. Top. Med. Chem., 2021, 21(17), 1572-1586. a
[http://dx.doi.org/10.2174/1568026621666210524093234] [PMID: 34030614]
[6]
O’Neill, J. Antimicrobial resistance: tackling a crisis for the health and wealth of nations; Review on Antimicrobial Resistance: London 2014.
[8]
Wright, G.D.; Sutherland, A.D. New strategies for combating multidrug-resistant bacteria. Trends Mol. Med., 2007, 13(6), 260-267.
[http://dx.doi.org/10.1016/j.molmed.2007.04.004] [PMID: 17493872]
[9]
Magiorakos, A.P.; Srinivasan, A.; Carey, R.B.; Carmeli, Y.; Falagas, M.E.; Giske, C.G.; Harbarth, S.; Hindler, J.F.; Kahlmeter, G.; Olsson-Liljequist, B.; Paterson, D.L.; Rice, L.B.; Stelling, J.; Struelens, M.J.; Vatopoulos, A.; Weber, J.T.; Monnet, D.L. Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin. Microbiol. Infect., 2012, 18(3), 268-281.
[http://dx.doi.org/10.1111/j.1469-0691.2011.03570.x] [PMID: 21793988]
[10]
Tiwari, P.; Khare, T.; Shriram, V.; Bae, H.; Kumar, V. Plant synthetic biology for producing potent phyto-antimicrobials to combat antimicrobial resistance. Biotechnol. Adv., 2021, 48(107729), 107729. b
[http://dx.doi.org/10.1016/j.biotechadv.2021.107729] [PMID: 33705914]
[11]
Issac Abraham, S.V.; Palani, A.; Ramaswamy, B.R.; Shunmugiah, K.P.; Arumugam, V.R. Antiquorum sensing and antibiofilm potential of Capparis spinosa. Arch. Med. Res., 2011, 42(8), 658-668.
[http://dx.doi.org/10.1016/j.arcmed.2011.12.002] [PMID: 22222491]
[12]
Aghayan, S.S.; Kalalian Mogadam, H.; Fazli, M.; Darban-Sarokhalil, D.; Khoramrooz, S.S.; Jabalameli, F.; Yaslianifard, S.; Mirzaii, M. The effects of berberine and palmatine on efflux pumps inhibition with different gene patterns in Pseudomonas aeruginosa isolated from burn infections. Avicenna J. Med. Biotechnol., 2017, 9(1), 2-7.
[PMID: 28090273]
[13]
Borges, A.; Serra, S.; Cristina Abreu, A.; Saavedra, M.J.; Salgado, A.; Simões, M. Evaluation of the effects of selected phytochemicals on quorum sensing inhibition and in vitro cytotoxicity. Biofouling, 2014, 30(2), 183-195.
[http://dx.doi.org/10.1080/08927014.2013.852542] [PMID: 24344870]
[14]
Côté, H.; Pichette, A.; Simard, F.; Ouellette, M.E.; Ripoll, L.; Mihoub, M.; Grimard, D.; Legault, J. Balsacone C, a new antibiotic targeting bacterial cell membranes, inhibits clinical isolates of methicillin1277 resistant Staphylococcus aureus (MRSA) without inducing resistance. Front. Microbiol., 2019, 10, 2341.
[http://dx.doi.org/10.3389/fmicb.2019.02341] [PMID: 31681206]
[15]
Yu, Z.; Tang, J.; Khare, T.; Kumar, V. The alarming antimicrobial resistance in ESKAPEE pathogens: Can essential oils come to the rescue? Fitoterapia, 2020, 140, 104433.
[http://dx.doi.org/10.1016/j.fitote.2019.104433] [PMID: 31760066]
[16]
Tiwari, P.; Srivastava, Y.; Kumar, V. Antimicrobial peptides as effective agents against drug-resistant pathogens.Kumar V) edited “Antimicrobial Resistance”; Springer Nature 2021.
[17]
Chahardoli, M.; Fazeli, A.; Niazi, A.; Ghabooli, M. Recombinant expression of LF chimera antimicrobial peptide in a plant-based expression system and its antimicrobial activity against clinical and phytopathogenic bacteria. Biotechnol. Biotechnol. Equip., 2018, 32(3), 714-723.
[http://dx.doi.org/10.1080/13102818.2018.1451780]
[18]
Barbieri, R.; Coppo, E.; Marchese, A.; Daglia, M.; Sobarzo-Sánchez, E.; Nabavi, S.F.; Nabavi, S.M. Phytochemicals for human disease: An update on plant-derived compounds antibacterial activity. Microbiol. Res., 2017, 196, 44-68.
[http://dx.doi.org/10.1016/j.micres.2016.12.003] [PMID: 28164790]
[19]
Shin, J.; Prabhakaran, V-S.; Kim, K.S. The multi-faceted potential of plant-derived metabolites as antimicrobial agents against multidrug-resistant pathogens. Microb. Pathog., 2018, 116, 209-214.
[http://dx.doi.org/10.1016/j.micpath.2018.01.043] [PMID: 29407230]
[20]
Lewis, K.; Ausubel, F.M. Prospects for plant-derived antibacterials. Nat. Biotechnol., 2006, 24(12), 1504-1507.
[http://dx.doi.org/10.1038/nbt1206-1504] [PMID: 17160050]
[21]
Suarez, M.; Haenni, M.; Canarelli, S.; Fisch, F.; Chodanowski, P.; Servis, C.; Michielin, O.; Freitag, R.; Moreillon, P.; Mermod, N. Structure-function characterization and optimization of a plant-derived antibacterial peptide. Antimicrob. Agents Chemother., 2005, 49(9), 3847-3857.
[http://dx.doi.org/10.1128/AAC.49.9.3847-3857.2005] [PMID: 16127062]
[22]
Simões, M.; Bennett, R.N.; Rosa, E.A.S. Understanding antimicrobial activities of phytochemicals against multidrug resistant bacteria and biofilms. Nat. Prod. Rep., 2009, 26(6), 746-757.
[http://dx.doi.org/10.1039/b821648g] [PMID: 19471683]
[23]
Ultee, A.; Kets, E.P.W.; Smid, E.J. Mechanisms of action of carvacrol on the food-borne pathogen Bacillus cereus. Appl. Environ. Microbiol., 1999, 65(10), 4606-4610.
[http://dx.doi.org/10.1128/AEM.65.10.4606-4610.1999] [PMID: 10508096]
[24]
Nohynek, L.J.; Alakomi, H-L.; Kähkönen, M.P.; Heinonen, M.; Helander, I.M.; Oksman-Caldentey, K.M.; Puupponen-Pimiä, R.H. Berry phenolics: Antimicrobial properties and mechanisms of action against severe human pathogens. Nutr. Cancer, 2006, 54(1), 18-32.
[http://dx.doi.org/10.1207/s15327914nc5401_4] [PMID: 16800770]
[25]
Plaper, A.; Golob, M.; Hafner, I.; Oblak, M.; Šolmajer, T.; Jerala, R. Characterization of quercetin binding site on DNA gyrase. Biochem. Biophys. Res. Commun., 2003, 306(2), 530-536.
[http://dx.doi.org/10.1016/S0006-291X(03)01006-4] [PMID: 12804597]
[26]
Dabur, R.; Gupta, A.; Mandal, T.K.; Singh, D.D.; Bajpai, V.; Gurav, A.M.; Lavekar, G.S. Antimicrobial activity of some Indian medicinal plants. Afr. J. Tradit. Complement. Altern. Med., 2007, 4(3), 313-318.
[http://dx.doi.org/10.4314/ajtcam.v4i3.31225] [PMID: 20161895]
[27]
Upadhyay, H.C.; Dwivedi, G.R.; Roy, S.; Sharma, A.; Darokar, M.P.; Srivastava, S.K. Phytol derivatives as drug resistance reversal agents. ChemMedChem, 2014, 9(8), 1860-1868.
[http://dx.doi.org/10.1002/cmdc.201402027] [PMID: 24891085]
[28]
Prasch, S.; Bucar, F. Plant-derived inhibitors of bacterial efflux pumps: An update. Phytochem. Rev., 2015, 14(6), 961-974.
[http://dx.doi.org/10.1007/s11101-015-9436-y]
[29]
González-Lamothe, R.; Mitchell, G.; Gattuso, M.; Diarra, M.S.; Malouin, F.; Bouarab, K. Plant antimicrobial agents and their effects on plant and human pathogens. Int. J. Mol. Sci., 2009, 10(8), 3400-3419.
[http://dx.doi.org/10.3390/ijms10083400] [PMID: 20111686]
[30]
Morrissey, J.P.; Osbourn, A.E. Fungal resistance to plant antibiotics as a mechanism of pathogenesis. Microbiol. Mol. Biol. Rev., 1999, 63(3), 708-724.
[http://dx.doi.org/10.1128/MMBR.63.3.708-724.1999] [PMID: 10477313]
[31]
Bowyer, P.; Clarke, B.R.; Lunness, P.; Daniels, M.J.; Osbourn, A.E. Host range of a plant pathogenic fungus determined by a saponin detoxifying enzyme. Science, 1995, 267(5196), 371-374.
[http://dx.doi.org/10.1126/science.7824933] [PMID: 7824933]
[32]
Papadopoulou, K.; Melton, R.E.; Leggett, M.; Daniels, M.J.; Osbourn, A.E. Compromised disease resistance in saponin-deficient plants. Proc. Natl. Acad. Sci. USA, 1999, 96(22), 12923-12928.
[http://dx.doi.org/10.1073/pnas.96.22.12923] [PMID: 10536024]
[33]
Matros, A.; Mock, H.P. Ectopic expression of a UDP-glucose:Phenylpropanoid glucosyltransferase leads to increased resistance of transgenic tobacco plants against infection with Potato Virus Y. Plant Cell Physiol., 2004, 45(9), 1185-1193.
[http://dx.doi.org/10.1093/pcp/pch140] [PMID: 15509841]
[34]
Holaskova, E.; Galuszka, P.; Frebort, I.; Oz, M.T. Antimicrobial peptide production and plant-based expression systems for medical and agricultural biotechnology. Biotechnol. Adv., 2015, 33(6 Pt 2), 1005-1023.
[http://dx.doi.org/10.1016/j.biotechadv.2015.03.007] [PMID: 25784148]
[35]
Nawrot, R.; Barylski, J.; Nowicki, G.; Broniarczyk, J.; Buchwald, W. Goździcka-Józefiak, A. Plant antimicrobial peptides. Folia Microbiol. (Praha), 2014, 59(3), 181-196.
[http://dx.doi.org/10.1007/s12223-013-0280-4] [PMID: 24092498]
[36]
Mendez, E.; Moreno, A.; Colilla, F.; Pelaez, F.; Limas, G.G.; Mendez, R.; Soriano, F.; Salinas, M.; de Haro, C. Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, gamma-hordothionin, from barley endosperm. Eur. J. Biochem., 1990, 194(2), 533-539.
[http://dx.doi.org/10.1111/j.1432-1033.1990.tb15649.x] [PMID: 2176600]
[37]
Pelegrini, P.B.; Lay, F.T.; Murad, A.M.; Anderson, M.A.; Franco, O.L. Novel insights on the mechanism of action of alpha-amylase inhibitors from the plant defensin family. Proteins, 2008, 73(3), 719-729.
[http://dx.doi.org/10.1002/prot.22086] [PMID: 18498107]
[38]
Wijaya, R.; Neumann, G.M.; Condron, R.; Hughes, A.B.; Polya, G.M. Defense proteins from seed of Cassia fistula include a lipid transfer protein homologue and a protease inhibitory plant defensin. Plant Sci., 2000, 159(2), 243-255.
[http://dx.doi.org/10.1016/S0168-9452(00)00348-4] [PMID: 11074277]
[39]
Thevissen, K.; Kristensen, H.H.; Thomma, B.P.; Cammue, B.P.; François, I.E. Therapeutic potential of antifungal plant and insect defensins. Drug Discov. Today, 2007, 12(21-22), 966-971.
[http://dx.doi.org/10.1016/j.drudis.2007.07.016] [PMID: 17993416]
[40]
Wong, J.H.; Ng, T.B. Sesquin, a potent defensin-like antimicrobial peptide from ground beans with inhibitory activities toward tumor cells and HIV-1 reverse transcriptase. Peptides, 2005, 26(7), 1120-1126.
[http://dx.doi.org/10.1016/j.peptides.2005.01.003] [PMID: 15949629]
[41]
Balouiri, M.; Sadiki, M.; Ibnsouda, S.K. Methods for in vitro evaluating antimicrobial activity: A review. J. Pharm. Anal., 2016, 6(2), 71-79.
[http://dx.doi.org/10.1016/j.jpha.2015.11.005] [PMID: 29403965]
[42]
Kurita, K.L.; Glassey, E.; Linington, R.G. Integration of high-content screening and untargeted metabolomics for comprehensive functional annotation of natural product libraries. Proc. Natl. Acad. Sci. USA, 2015, 112(39), 11999-12004.
[http://dx.doi.org/10.1073/pnas.1507743112] [PMID: 26371303]
[43]
Clevenger, K.D.; Bok, J.W.; Ye, R.; Miley, G.P.; Verdan, M.H.; Velk, T.; Chen, C.; Yang, K.; Robey, M.T.; Gao, P.; Lamprecht, M.; Thomas, P.M.; Islam, M.N.; Palmer, J.M.; Wu, C.C.; Keller, N.P.; Kelleher, N.L. A scalable platform to identify fungal secondary metabolites and their gene clusters. Nat. Chem. Biol., 2017, 13(8), 895-901.
[http://dx.doi.org/10.1038/nchembio.2408] [PMID: 28604695]
[44]
Atanasov, A.G.; Zotchev, S.B.; Dirsch, V.M.; Supuran, C.T. Natural products in drug discovery: Advances and opportunities. Nat. Rev. Drug Discov., 2021, 20(3), 200-216.
[http://dx.doi.org/10.1038/s41573-020-00114-z] [PMID: 33510482]
[45]
Yamanaka, K.; Reynolds, K.A.; Kersten, R.D.; Ryan, K.S.; Gonzalez, D.J.; Nizet, V.; Dorrestein, P.C.; Moore, B.S. Direct cloning and refactoring of a silent lipopeptide biosynthetic gene cluster yields the antibiotic taromycin A. Proc. Natl. Acad. Sci. USA, 2014, 111(5), 1957-1962.
[http://dx.doi.org/10.1073/pnas.1319584111] [PMID: 24449899]
[46]
Laureti, L.; Song, L.; Huang, S.; Corre, C.; Leblond, P.; Challis, G.L.; Aigle, B. Identification of a bioactive 51-membered macrolide complex by activation of a silent polyketide synthase in Streptomyces ambofaciens. Proc. Natl. Acad. Sci. USA, 2011, 108(15), 6258-6263.
[http://dx.doi.org/10.1073/pnas.1019077108] [PMID: 21444795]
[47]
Zhang, M.M.; Wong, F.T.; Wang, Y.; Luo, S.; Lim, Y.H.; Heng, E.; Yeo, W.L.; Cobb, R.E.; Enghiad, B.; Ang, E.L.; Zhao, H. CRISPR-Cas9 strategy for activation of silent Streptomyces biosynthetic gene clusters. Nat. Chem. Biol., 2017, 13(6), 607-609.
[http://dx.doi.org/10.1038/nchembio.2341] [PMID: 28398287]
[48]
Chu, J.; Vila-Farres, X.; Inoyama, D.; Ternei, M.; Cohen, L.J.; Gordon, E.A.; Reddy, B.V.; Charlop-Powers, Z.; Zebroski, H.A.; Gallardo-Macias, R.; Jaskowski, M.; Satish, S.; Park, S.; Perlin, D.S.; Freundlich, J.S.; Brady, S.F. Discovery of MRSA active antibiotics using primary sequence from the human microbiome. Nat. Chem. Biol., 2016, 12(12), 1004-1006.
[http://dx.doi.org/10.1038/nchembio.2207] [PMID: 27748750]
[49]
Hover, B.M.; Kim, S.H.; Katz, M.; Charlop-Powers, Z.; Owen, J.G.; Ternei, M.A.; Maniko, J.; Estrela, A.B.; Molina, H.; Park, S.; Perlin, D.S.; Brady, S.F. Culture-independent discovery of the malacidins as calcium-dependent antibiotics with activity against multidrug-resistant Gram-positive pathogens. Nat. Microbiol., 2018, 3(4), 415-422.
[http://dx.doi.org/10.1038/s41564-018-0110-1] [PMID: 29434326]
[50]
Dutertre, S.; Jin, A.H.; Kaas, Q.; Jones, A.; Alewood, P.F.; Lewis, R.J. Deep venomics reveals the mechanism for expanded peptide diversity in cone snail venom. Mol. Cell. Proteomics, 2013, 12(2), 312-329.
[http://dx.doi.org/10.1074/mcp.M112.021469] [PMID: 23152539]
[51]
Helfrich, E.J.N.; Vogel, C.M.; Ueoka, R.; Schäfer, M.; Ryffel, F.; Müller, D.B.; Probst, S.; Kreuzer, M.; Piel, J.; Vorholt, J.A. Bipartite interactions, antibiotic production and biosynthetic potential of the Arabidopsis leaf microbiome. Nat. Microbiol., 2018, 3(8), 909-919.
[http://dx.doi.org/10.1038/s41564-018-0200-0] [PMID: 30038309]
[52]
Yan, F.; Auerbach, D.; Chai, Y.; Keller, L.; Tu, Q.; Hüttel, S.; Glemser, A.; Grab, H.A.; Bach, T.; Zhang, Y.; Müller, R. Biosynthesis and heterologous production of vioprolides: Rational biosynthetic engineering and unprecedented 4-methylazetidinecarboxylic acid formation. Angew. Chem. Int. Ed. Engl., 2018, 57(28), 8754-8759.
[http://dx.doi.org/10.1002/anie.201802479] [PMID: 29694699]
[53]
Moussa, M.; Ebrahim, W.; Bonus, M.; Gohlke, H.; Mándi, A.; Kurtán, T.; Hartmann, R.; Kalscheuer, R.; Lin, W.; Liu, Z.; Proksch, P. Co-culture of the fungus Fusarium tricinctum with Streptomyces lividans induces production of cryptic naphthoquinone dimers. RSC Advances, 2019, 9(3), 1491-1500.
[http://dx.doi.org/10.1039/C8RA09067J] [PMID: 35518011]
[54]
Terekhov, S.S.; Smirnov, I.V.; Stepanova, A.V.; Bobik, T.V.; Mokrushina, Y.A.; Ponomarenko, N.A.; Belogurov, A.A., Jr; Rubtsova, M.P.; Kartseva, O.V.; Gomzikova, M.O.; Moskovtsev, A.A.; Bukatin, A.S.; Dubina, M.V.; Kostryukova, E.S.; Babenko, V.V.; Vakhitova, M.T.; Manolov, A.I.; Malakhova, M.V.; Kornienko, M.A.; Tyakht, A.V.; Vanyushkina, A.A.; Ilina, E.N.; Masson, P.; Gabibov, A.G.; Altman, S. Microfluidic droplet platform for ultrahigh-throughput single-cell screening of biodiversity. Proc. Natl. Acad. Sci. USA, 2017, 114(10), 2550-2555.
[http://dx.doi.org/10.1073/pnas.1621226114] [PMID: 28202731]
[55]
Tiwari, R.K.S.; Chandravanshi, S.S.; Ojha, B.M. Efficacy of extracts of medicinal plant species on growth of Sclerotium rolfsii root rot in tomato. J. Mycol. Plant Pathol., 2005, 34(2), 461-464.
[56]
Das, K.; Tiwari, R.K.S.; Shrivastava, D.K. Techniques for evaluation of medicinal plant products as antimicrobial agents: Current methods and future trends. J. Med. Plants Res., 2010, 4, 104-111.
[57]
CLSI. Method for Antifungal Disk Diffusion Susceptibility Testingof Yeasts, Approved Guideline. In: CLSI document M44-A; CLSI,940 West Valley Road, Suite 1400, Wayne, Pennsylvania 19087-1898, 2004.
[58]
CLSI. Performance Standards for Antimicrobial Disk Susceptibility Tests, Approved Standard. In: CLSI document M02-A11, 7th ed.; Clinical and Laboratory Standards Institute, 950 West Valley Road, Suite 2500, Pennsylvania 19087, USA., 2012.
[59]
Jorgensen, J.H.; Ferraro, M.J. Antimicrobial susceptibility testing: A review of general principles and contemporary practices. Clin. Infect. Dis., 2009, 49(11), 1749-1755.
[http://dx.doi.org/10.1086/647952] [PMID: 19857164]
[60]
Caron, F. Antimicrobial susceptibility testing  A four facets tool for the clinician. J. Des. Anti-Infect., 2012, 14, 186-174.
[61]
Tenover, F.C.; Swenson, J.M.; O’Hara, C.M.; Stocker, S.A. Ability of commercial and reference antimicrobial susceptibility testing methods to detect vancomycin resistance in enterococci. J. Clin. Microbiol., 1995, 33(6), 1524-1527.
[http://dx.doi.org/10.1128/jcm.33.6.1524-1527.1995] [PMID: 7650179]
[62]
Norrel, S.A.; Messley, K.E. Microbiology laboratory manual principles, and applications; Prentice-Hall: Upper Saddle River, New Jersey, 1997.
[63]
Hammami, R.; Fliss, I. Current trends in antimicrobial agent research: Chemo- and bioinformatics approaches. Drug Discov. Today, 2010, 15(13-14), 540-546.
[http://dx.doi.org/10.1016/j.drudis.2010.05.002] [PMID: 20546918]
[64]
Baghalian, K.; Hajirezaei, M.R.; Schreiber, F. Plant metabolic modeling: achieving new insight into metabolism and metabolic engineering. Plant Cell, 2014, 26(10), 3847-3866.
[http://dx.doi.org/10.1105/tpc.114.130328] [PMID: 25344492]
[65]
Zhang, P.; Dreher, K.; Karthikeyan, A.; Chi, A.; Pujar, A.; Caspi, R.; Karp, P.; Kirkup, V.; Latendresse, M.; Lee, C.; Mueller, L.A.; Muller, R.; Rhee, S.Y. Creation of a genome-wide metabolic pathway database for Populus trichocarpa using a new approach for reconstruction and curation of metabolic pathways for plants. Plant Physiol., 2010, 153(4), 1479-1491.
[http://dx.doi.org/10.1104/pp.110.157396] [PMID: 20522724]
[66]
Speck-Planche, A.; Cordeiro, M.N. Computer-aided discovery in antimicrobial research: In silico model for virtual screening of potent and safe anti-pseudomonas agents. Comb. Chem. High Throughput Screen., 2015, 18(3), 305-314.
[http://dx.doi.org/10.2174/1386207318666150305144249] [PMID: 25747443]
[67]
Küken, A.; Nikoloski, Z. Computational approaches to design and test plant synthetic metabolic pathways. Plant Physiol., 2019, 179(3), 894-906.
[http://dx.doi.org/10.1104/pp.18.01273] [PMID: 30647083]
[68]
Kotera, M.; Goto, S. Metabolic pathway reconstruction strategies for central metabolism and natural product biosynthesis. Biophys. Physicobiol., 2016, 13(0), 195-205.
[http://dx.doi.org/10.2142/biophysico.13.0_195] [PMID: 27924274]
[69]
Porto, W.F.; Irazazabal, L.; Alves, E.S.F.; Ribeiro, S.M.; Matos, C.O.; Pires, Á.S.; Fensterseifer, I.C.M.; Miranda, V.J.; Haney, E.F.; Humblot, V.; Torres, M.D.T.; Hancock, R.E.W.; Liao, L.M.; Ladram, A.; Lu, T.K.; de la Fuente-Nunez, C.; Franco, O.L. In silico optimization of a guava antimicrobial peptide enables combinatorial exploration for peptide design. Nat. Commun., 2018, 9(1), 1490.
[http://dx.doi.org/10.1038/s41467-018-03746-3] [PMID: 29662055]
[70]
Cardoso, M.H.; Orozco, R.Q.; Rezende, S.B.; Rodrigues, G.; Oshiro, K.G.N.; Cândido, E.S.; Franco, O.L. Computer-aided design of antimicrobial peptides: Are we generating effective drug candidates? Front. Microbiol., 2020, 10, 3097.
[http://dx.doi.org/10.3389/fmicb.2019.03097] [PMID: 32038544]
[71]
Yang, L.; Rybtke, M.T.; Jakobsen, T.H.; Hentzer, M.; Bjarnsholt, T.; Givskov, M.; Tolker-Nielsen, T. Computer-aided identification of recognized drugs as Pseudomonas aeruginosa quorum-sensing inhibitors. Antimicrob. Agents Chemother., 2009, 53(6), 2432-2443.
[http://dx.doi.org/10.1128/AAC.01283-08] [PMID: 19364871]
[72]
Wang, C.K.; Kaas, Q.; Chiche, L.; Craik, D.J. CyBase: a database of cyclic protein sequences and structures, with applications in protein discovery and engineering. Nucleic Acids Res., 2008, 36(Database issue), D206-D210.
[PMID: 17986451]
[73]
Di Luca, M.; Maccari, G.; Maisetta, G.; Batoni, G. BaAMPs: The database of biofilm-active antimicrobial peptides. Biofouling, 2015, 31(2), 193-199.
[http://dx.doi.org/10.1080/08927014.2015.1021340] [PMID: 25760404]
[74]
Mizera, M.; Szymanowska, D. Stasiłowicz, A.; Siąkowska, D.; Lewandowska, K.; Miklaszewski, A.; Plech, T.; Tykarska, E.; Cielecka-Piontek, J. Computer-aided design of cefuroxime axetil/cyclodextrin system with enhanced solubility and antimicrobial activity. Biomolecules, 2019, 10(1), 24.
[http://dx.doi.org/10.3390/biom10010024] [PMID: 31878057]
[75]
Dai, J.; Dan, W.; Li, N.; Wang, J. Computer-aided drug discovery: Novel 3,9-disubstituted eudistomin U derivatives as potent antibacterial agents. Eur. J. Med. Chem., 2018, 157, 333-338.
[http://dx.doi.org/10.1016/j.ejmech.2018.08.001] [PMID: 30099255]
[76]
Su, M.; Satola, S.W.; Read, T.D. Genome-based prediction of bacterial antibiotic resistance. J. Clin. Microbiol., 2019, 57(3), e01405-e01418.
[http://dx.doi.org/10.1128/JCM.01405-18] [PMID: 30381421]
[77]
Agresti, J.J.; Antipov, E.; Abate, A.R.; Ahn, K.; Rowat, A.C.; Baret, J.C.; Marquez, M.; Klibanov, A.M.; Griffiths, A.D.; Weitz, D.A. Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc. Natl. Acad. Sci. USA, 2010, 107(9), 4004-4009.
[http://dx.doi.org/10.1073/pnas.0910781107] [PMID: 20142500]
[78]
Scanlon, T.C.; Dostal, S.M.; Griswold, K.E. A high-throughput screen for antibiotic drug discovery. Biotechnol. Bioeng., 2014, 111(2), 232-243.
[http://dx.doi.org/10.1002/bit.25019] [PMID: 23955804]
[79]
Tumarkin, E.; Tzadu, L.; Csaszar, E.; Seo, M.; Zhang, H.; Lee, A.; Peerani, R.; Purpura, K.; Zandstra, P.W.; Kumacheva, E. High-throughput combinatorial cell co-culture using microfluidics. Integr. Biol., 2011, 3(6), 653-662.
[http://dx.doi.org/10.1039/c1ib00002k] [PMID: 21526262]
[80]
Zhang, H.; Jenkins, G.; Zou, Y.; Zhu, Z.; Yang, C.J. Massively parallel single-molecule and single-cell emulsion reverse transcription polymerase chain reaction using agarose droplet microfluidics. Anal. Chem., 2012, 84(8), 3599-3606.
[http://dx.doi.org/10.1021/ac2033084] [PMID: 22455457]
[81]
Liu, X.; Painter, R.E.; Enesa, K.; Holmes, D.; Whyte, G.; Garlisi, C.G.; Monsma, F.J., Jr; Rehak, M.; Craig, F.F.; Smith, C.A. High-throughput screening of antibiotic-resistant bacteria in picodroplets. Lab Chip, 2016, 16(9), 1636-1643.
[http://dx.doi.org/10.1039/C6LC00180G] [PMID: 27033300]
[82]
Terekhov, S.S.; Osterman, I.A.; Smirnov, I.V. High-throughput screening of biodiversity for antibiotic discovery. Acta Nat. (Engl. Ed.), 2018, 10(3), 23-29.
[http://dx.doi.org/10.32607/20758251-2018-10-3-23-29] [PMID: 30397523]
[83]
Wong, W.R.; Oliver, A.G.; Linington, R.G. Development of antibiotic activity profile screening for the classification and discovery of natural product antibiotics. Chem. Biol., 2012, 19(11), 1483-1495.
[http://dx.doi.org/10.1016/j.chembiol.2012.09.014] [PMID: 23177202]
[84]
Wang, J.; Soisson, S.M.; Young, K.; Shoop, W.; Kodali, S.; Galgoci, A.; Painter, R.; Parthasarathy, G.; Tang, Y.S.; Cummings, R.; Ha, S.; Dorso, K.; Motyl, M.; Jayasuriya, H.; Ondeyka, J.; Herath, K.; Zhang, C.; Hernandez, L.; Allocco, J.; Basilio, A.; Tormo, J.R.; Genilloud, O.; Vicente, F.; Pelaez, F.; Colwell, L.; Lee, S.H.; Michael, B.; Felcetto, T.; Gill, C.; Silver, L.L.; Hermes, J.D.; Bartizal, K.; Barrett, J.; Schmatz, D.; Becker, J.W.; Cully, D.; Singh, S.B. Platensimycin is a selective FabF inhibitor with potent antibiotic properties. Nature, 2006, 441(7091), 358-361.
[http://dx.doi.org/10.1038/nature04784] [PMID: 16710421]
[85]
Metelev, M.; Osterman, I.A.; Ghilarov, D.; Khabibullina, N.F.; Yakimov, A.; Shabalin, K.; Utkina, I.; Travin, D.Y.; Komarova, E.S.; Serebryakova, M.; Artamonova, T.; Khodorkovskii, M.; Konevega, A.L.; Sergiev, P.V.; Severinov, K.; Polikanov, Y.S. Klebsazolicin inhibits 70S ribosome by obstructing the peptide exit tunnel. Nat. Chem. Biol., 2017, 13(10), 1129-1136.
[http://dx.doi.org/10.1038/nchembio.2462] [PMID: 28846667]
[86]
Li, S.; She, P.; Zhou, L.; Zeng, X.; Xu, L.; Liu, Y.; Chen, L.; Wu, Y. High-throughput identification of antibacterial against Pseudomonas aeruginosa. Front. Microbiol., 2020, 11, 591426.
[http://dx.doi.org/10.3389/fmicb.2020.591426] [PMID: 33362739]
[87]
Zulauf, K.E.; Kirby, J.E. Discovery of small-molecule inhibitors of multidrug-resistance plasmid maintenance using a high-throughput screening approach. Proc. Natl. Acad. Sci. USA, 2020, 117(47), 29839-29850.
[http://dx.doi.org/10.1073/pnas.2005948117] [PMID: 33168749]
[88]
Patra, A.K. An overview of antimicrobial properties of different classes of phytochemicals. Dietary Phytochemicals and Microbes, 2012, 1-32.
[http://dx.doi.org/10.1007/978-94-007-3926-0_1]
[89]
Khameneh, B.; Iranshahy, M.; Soheili, V.; Fazly Bazzaz, B.S. Review on plant antimicrobials: A mechanistic viewpoint. Antimicrob. Resist. Infect. Control, 2019, 8(1), 118.
[http://dx.doi.org/10.1186/s13756-019-0559-6] [PMID: 31346459]
[90]
Crozier, A.; Jaganath, I.B.; Clifford, M.N. Phenols, polyphenols, and tannins: An overview.Plant secondary metabolites and the human diet; Crozier, A.; Ashihara, H; Clifford, M.N., Ed.; Blackwell Publishing: Oxford, 2006, pp. 1-31.
[http://dx.doi.org/10.1002/9780470988558.ch1]
[91]
Pandey, A.K.; Kumar, S. Perspective on plant products as antimicrobials agents: A review. Pharmacologia, 2013, 4(7), 469-480.
[http://dx.doi.org/10.5567/pharmacologia.2013.469.480]
[92]
Hartmann, M.; Berditsch, M.; Hawecker, J.; Ardakani, M.F.; Gerthsen, D.; Ulrich, A.S. Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob. Agents Chemother., 2010, 54(8), 3132-3142.
[http://dx.doi.org/10.1128/AAC.00124-10] [PMID: 20530225]
[93]
Tsuchiya, H. Membrane interactions of phytochemicals as their molecular mechanism applicable to the discovery of drug leads from plants. Molecules, 2015, 20(10), 18923-18966.
[http://dx.doi.org/10.3390/molecules201018923] [PMID: 26501254]
[94]
Tsuchiya, H.; Sato, M.; Miyazaki, T.; Fujiwara, S.; Tanigaki, S.; Ohyama, M.; Tanaka, T.; Iinuma, M. Comparative study on the antibacterial activity of phytochemical flavanones against methicillin-resistant Staphylococcus aureus. J. Ethnopharmacol., 1996, 50(1), 27-34.
[http://dx.doi.org/10.1016/0378-8741(96)85514-0] [PMID: 8778504]
[95]
Compean, K.L.; Ynalvez, R.A. Res. J. Med. Plant, 2010, 10.
[http://dx.doi.org/10.103923/rjmp]
[96]
Nowakowska, Z. A review of anti-infective and anti-inflammatory chalcones. Eur. J. Med. Chem., 2007, 42(2), 125-137.
[http://dx.doi.org/10.1016/j.ejmech.2006.09.019] [PMID: 17112640]
[97]
Griffin, S.G.; Wyllie, S.G.; Markham, J.L.; Leach, D.N. The role of structure and molecular properties of terpenoids in determining their antimicrobial activity. Flavour Fragrance J., 1999, 14(5), 322-332.
[http://dx.doi.org/10.1002/(SICI)1099-1026(199909/10)14:5<322:AID-FFJ837>3.0.CO;2-4]
[98]
Souza, A.B.; Martins, C.H.; Souza, M.G.; Furtado, N.A.; Heleno, V.C.; de Sousa, J.P.; Rocha, E.M.; Bastos, J.K.; Cunha, W.R.; Veneziani, R.C.; Ambrósio, S.R. Antimicrobial activity of terpenoids from Copaifera langsdorffii Desf. against cariogenic bacteria. Phytother. Res., 2011, 25(2), 215-220.
[http://dx.doi.org/10.1002/ptr.3244] [PMID: 20632306]
[99]
Doughari, J.H.; Saa-Aondo, M. Phytochemical analysis of crude methanol extracts and antimicrobial activity of n-hexane fractions of methanol seed and pod extracts of Prosopis africana on some selected microorganisms. Phytochem. Anal., 2021, 2, 121-137.
[100]
Singh, B.; Singh, S. Antimicrobial activity of terpenoids from Trichodesma amplexicaule Roth. Phytother. Res., 2003, 17(7), 814-816.
[http://dx.doi.org/10.1002/ptr.1202] [PMID: 12916085]
[101]
Guimarães, A.C.; Meireles, L.M.; Lemos, M.F.; Guimarães, M.C.C.; Endringer, D.C.; Fronza, M.; Scherer, R. Antibacterial activity of terpenes and terpenoids present in essential oils. Molecules, 2019, 24(13), 2471.
[http://dx.doi.org/10.3390/molecules24132471] [PMID: 31284397]
[102]
Irfan, M.; Ahmed, S.; Sharma, M. Antimicrobial activity of terpenoids from Sphaeranthus indicus L. Asian. J. Plant Sci. Res., 2014, 4, 1-6.
[103]
Yang, W.; Chen, X.; Li, Y.; Guo, S.; Wang, Z.; Yu, X. Advances in pharmacological activities of terpenoids. Nat. Prod. Commun., 2020, 15(3)
[http://dx.doi.org/10.1177/1934578X20903555]
[104]
Rajiv, P.; Sivaraj, R. Screening for phytochemicals and antimicrobial activity of aqueous extract of Ficus religiosa. Linn. Int. J. Pharm. Pharm. Sci., 2012, 4(5), 207-209.
[105]
Venkatesan, D.; Karrunakarn, C.M.; Kumar, S.S.; Swamy, P. Identification of phytochemical constituents of Aegle marmelos responsible for antimicrobial activity against selected pathogenic organisms. Ethnobotany. Leafl., 2009, 11(4)
[106]
Cushnie, T.P.; Cushnie, B.; Lamb, A.J. Alkaloids: an overview of their antibacterial, antibiotic-enhancing and antivirulence activities. Int. J. Antimicrob. Agents, 2014, 44(5), 377-386.
[http://dx.doi.org/10.1016/j.ijantimicag.2014.06.001] [PMID: 25130096]
[107]
Preusser, H.J.; Habermehl, G.; Sablofski, M.; Schmall-Haury, D. Antimicrobial activity of alkaloids from amphibian venoms and effects on the ultrastructure of yeast cells. Toxicon, 1975, 13(4), 285-289.
[http://dx.doi.org/10.1016/0041-0101(75)90135-X] [PMID: 809864]
[108]
Hegnauer, R. Biochemistry, distribution and taxonomic relevance of higher plant alkaloids. Phytochemistry, 1988, 21(8), 2423-2427.
[http://dx.doi.org/10.1016/0031-9422(88)87006-7]
[109]
Iwasa, K.; Moriyasu, M.; Yamori, T.; Turuo, T.; Lee, D.U.; Wiegrebe, W. In vitro cytotoxicity of the protoberberine-type alkaloids. J. Nat. Prod., 2001, 64(7), 896-898.
[http://dx.doi.org/10.1021/np000554f] [PMID: 11473418]
[110]
Yi, Z.B.; Yan, Yu Liang, Y.Z.; Bao Zeng, Evaluation of the antimicrobial mode of berberine by LC/ESI-MS combined with principal component analysis. J. Pharm. Biomed. Anal., 2007, 44(1), 301-304.
[http://dx.doi.org/10.1016/j.jpba.2007.02.018] [PMID: 17383137]
[111]
Domadia, P.N.; Bhunia, A.; Sivaraman, J.; Swarup, S.; Dasgupta, D. Berberine targets assembly of Escherichia coli cell division protein FtsZ. Biochemistry, 2008, 47(10), 3225-3234.
[http://dx.doi.org/10.1021/bi7018546] [PMID: 18275156]
[112]
Khan, I.A.; Mirza, Z.M.; Kumar, A.; Verma, V.; Qazi, G.N. Piperine, a phytochemical potentiator of ciprofloxacin against Staphylococcus aureus. Antimicrob. Agents Chemother., 2006, 50(2), 810-812.
[http://dx.doi.org/10.1128/AAC.50.2.810-812.2006] [PMID: 16436753]
[113]
Khameneh, B.; Iranshahy, M.; Ghandadi, M.; Ghoochi Atashbeyk, D.; Fazly Bazzaz, B.S.; Iranshahi, M. Investigation of the antibacterial activity and efflux pump inhibitory effect of co-loaded piperine and gentamicin nanoliposomes in methicillin-resistant Staphylococcus aureus. Drug Dev. Ind. Pharm., 2015, 41(6), 989-994.
[http://dx.doi.org/10.3109/03639045.2014.920025] [PMID: 24842547]
[114]
Kumar, A.; Khan, I.A.; Koul, S.; Koul, J.L.; Taneja, S.C.; Ali, I.; Ali, F.; Sharma, S.; Mirza, Z.M.; Kumar, M.; Sangwan, P.L.; Gupta, P.; Thota, N.; Qazi, G.N. Novel structural analogues of piperine as inhibitors of the NorA efflux pump of Staphylococcus aureus. J. Antimicrob. Chemother., 2008, 61(6), 1270-1276.
[http://dx.doi.org/10.1093/jac/dkn088] [PMID: 18334493]
[115]
Vermerris, W.; Nicholson, R.L. Phenolic compound biochemistry; Springer, Dordrech, 2006.
[116]
Klančnik, A.; Šikić Pogačar, M.; Trošt, K.; Tušek Žnidarič M.; Mozetič Vodopivec, B.; Smole Možina, S. Anti-Campylobacter activity of resveratrol and an extract from waste Pinot noir grape skins and seeds, and resistance of Camp. jejuni planktonic and biofilm cells, mediated via the CmeABC efflux pump. J. Appl. Microbiol., 2017, 122(1), 65-77.
[http://dx.doi.org/10.1111/jam.13315] [PMID: 27709726]
[117]
Lechner, D.; Gibbons, S.; Bucar, F. Plant phenolic compounds as ethidium bromide efflux inhibitors in Mycobacterium smegmatis. J. Antimicrob. Chemother., 2008, 62(2), 345-348.
[http://dx.doi.org/10.1093/jac/dkn178] [PMID: 18430720]
[118]
Ferreira, S.; Silva, F.; Queiroz, J.A.; Oleastro, M.; Domingues, F.C. Resveratrol against Arcobacter butzleri and Arcobacter cryaerophilus: Activity and effect on cellular functions. Int. J. Food Microbiol., 2014, 180, 62-68.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2014.04.004] [PMID: 24786554]
[119]
Xiao, Z.P.; Wang, X.D.; Wang, P.F.; Zhou, Y.; Zhang, J.W.; Zhang, L.; Zhou, J.; Zhou, S.S.; Ouyang, H.; Lin, X.Y.; Mustapa, M.; Reyinbaike, A.; Zhu, H.L. Design, synthesis, and evaluation of novel fluoroquinolone-flavonoid hybrids as potent antibiotics against drug-resistant microorganisms. Eur. J. Med. Chem., 2014, 80, 92-100.
[http://dx.doi.org/10.1016/j.ejmech.2014.04.037] [PMID: 24769347]
[120]
Park, B.S.; Kim, J.G.; Kim, M.R.; Lee, S.E.; Takeoka, G.R.; Oh, K.B.; Kim, J.H. Curcuma longa L. constituents inhibit sortase A and Staphylococcus aureus cell adhesion to fibronectin. J. Agric. Food Chem., 2005, 53(23), 9005-9009.
[http://dx.doi.org/10.1021/jf051765z] [PMID: 16277395]
[121]
Kang, S.S.; Kim, J.G.; Lee, T.H.; Oh, K.B. Flavonols inhibit sortases and sortase-mediated Staphylococcus aureus clumping to fibrinogen. Biol. Pharm. Bull., 2006, 29(8), 1751-1755.
[http://dx.doi.org/10.1248/bpb.29.1751] [PMID: 16880637]
[122]
Sakkas, H.; Papadopoulou, C. Antimicrobial Activity of Basil, Oregano, and Thyme Essential Oils. J. Microbiol. Biotechnol., 2017, 27(3), 429-438.
[http://dx.doi.org/10.4014/jmb.1608.08024] [PMID: 27994215]
[123]
Savoia, D. Plant-derived antimicrobial compounds: Alternatives to antibiotics. Future Microbiol., 2012, 7(8), 979-990.
[http://dx.doi.org/10.2217/fmb.12.68] [PMID: 22913356]
[124]
Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems–A review. Food Control, 2015, 54, 111-119.
[http://dx.doi.org/10.1016/j.foodcont.2014.12.040]
[125]
Antolak, H.; Kregiel, D. Food preservatives from plants , 45-54.
[http://dx.doi.org/10.5772/intechopen.70090]
[126]
Khorshidiana, N.; Yousefia, M.; Khanniria, E.; Mortazavianc, A.M. Innov. Food Sci. Emerg. Technol., 2018, 45, 62-72.
[http://dx.doi.org/10.1016/j.ifset.2017.09.020]
[127]
Butler, L.G.; Riedl, D.J.; Lebryk, D.G.; Blytt, H.J. Interaction of proteins with sorghum tannin: Mechanism, specificity, and significance. J. Am. Oil Chem. Soc., 1984, 61(5), 916-920.
[http://dx.doi.org/10.1007/BF02542166]
[128]
Özacar, M.; Şengil, İ.A.; Türkmenler, H.E. Equilibrium, and kinetic data, and adsorption mechanism for adsorption of lead onto valonia tannin resin. Chem. Eng. J., 2008, 143(1-3), 32-42.
[http://dx.doi.org/10.1016/j.cej.2007.12.005]
[129]
Nakajima, A.; Baba, Y. Mechanism of hexavalent chromium adsorption by persimmon tannin gel. Water Res., 2004, 38(12), 2859-2864.
[http://dx.doi.org/10.1016/j.watres.2004.04.005] [PMID: 15223280]
[130]
Zhan, X.M.; Zhao, X. Mechanism of lead adsorption from aqueous solutions using an adsorbent synthesized from natural condensed tannin. Water Res., 2003, 37(16), 3905-3912.
[http://dx.doi.org/10.1016/S0043-1354(03)00312-9] [PMID: 12909109]
[131]
Liu, J.; Liu, Y.; He, X.; Teng, B.; McRae, J.M. Valonea. Tannin: Tyrosinase inhibition activity, structural elucidation, and insights into the inhibition mechanism. Molecules, 2021, 26(9), 2747.
[http://dx.doi.org/10.3390/molecules26092747] [PMID: 34067030]
[132]
Kong, Y.; Fu, Y.J.; Zu, Y.G.; Chang, F.R.; Chen, Y.H.; Liu, X.L.; Stelten, J.; Schiebel, H.M. Cajanuslactone, a new coumarin with anti-bacterial activity from pigeon pea [Cajanus cajan (L.) Millsp. leaves. Food Chem., 2010, 121(4), 1150-1155.
[http://dx.doi.org/10.1016/j.foodchem.2010.01.062]
[133]
Weinmann, I. History of the development and application of coumarin and coumarin-related compounds.Coumarins: biology, applications, and mode of action; O’Kennedy, R; Thornes, R.D., Ed.; Wiley Press: Chichester, 1997.
[134]
Melliou, E.; Magiatis, P.; Mitaku, S.; Skaltsounis, A.L.; Chinou, E.; Chinou, I. Natural and synthetic 2,2-dimethylpyranocoumarins with antibacterial activity. J. Nat. Prod., 2005, 68(1), 78-82.
[http://dx.doi.org/10.1021/np0497447] [PMID: 15679322]
[135]
Liu, X.; Dong, M.; Chen, X.; Jiang, M.; Lv, X.; Zhou, J. Antimicrobial activity of an endophytic Xylaria sp.YX-28 and identification of its antimicrobial compound 7-amino-4-methylcoumarin. Appl. Microbiol. Biotechnol., 2008, 78(2), 241-247.
[http://dx.doi.org/10.1007/s00253-007-1305-1] [PMID: 18092158]
[136]
Smyth, T.; Ramachandran, V.N.; Smyth, W.F. A study of the antimicrobial activity of selected naturally occurring and synthetic coumarins. Int. J. Antimicrob. Agents, 2009, 33(5), 421-426.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.10.022] [PMID: 19155158]
[137]
Ng, T.B.; Ling, J.M.; Wang, Z.T.; Cai, J.N.; Xu, G.J. Examination of coumarins, flavonoids and polysaccharopeptide for antibacterial activity. Gen. Pharmacol., 1996, 27(7), 1237-1240.
[http://dx.doi.org/10.1016/0306-3623(95)02143-4] [PMID: 8981074]
[138]
Brown, G.D.; Denning, D.W.; Gow, N.A.; Levitz, S.M.; Netea, M.G.; White, T.C. Hidden killers: Human fungal infections. Sci. Transl. Med., 2012, 4(165), 165rv13.
[http://dx.doi.org/10.1126/scitranslmed.3004404] [PMID: 23253612]
[139]
Mulholland, E.K.; Adegbola, R.A. Bacterial infections-a major cause of death among children in Africa. N. Engl. J. Med., 2005, 352(1), 75-77.
[http://dx.doi.org/10.1056/NEJMe048306] [PMID: 15635117]
[140]
Wisplinghoff, H.; Bischoff, T.; Tallent, S.M.; Seifert, H.; Wenzel, R.P.; Edmond, M.B. Nosocomial bloodstream infections in US hospitals: Analysis of 24,179 cases from a prospective nationwide surveillance study. Clin. Infect. Dis., 2004, 39(3), 309-317.
[http://dx.doi.org/10.1086/421946] [PMID: 15306996]
[141]
Kourtesi, C.; Ball, A.R.; Huang, Y.Y.; Jachak, S.M.; Vera, D.M.A.; Khondkar, P.; Gibbons, S.; Hamblin, M.R.; Tegos, G.P. Microbial efflux systems and inhibitors: Approaches to drug discovery and the challenge of clinical implementation. Open Microbiol. J., 2013, 7(1), 34-52.
[http://dx.doi.org/10.2174/1874285801307010034] [PMID: 23569468]
[142]
Naika, R.; Prasanna, K.P.; Ganapathy, P.S. Antibacterial activity of piper longumine an alkaloid isolated from the methanolic root extract of Piper Longum L. Pharmacophore, 2010, 1, 141-148.
[143]
Karsha, P.V.; Lakshmi, O.B. Antibacterial activity of black pepper (Piper nigrum L.) with special reference to its mode of action on bacteria. Indian J. Nat. Prod. Resour., 2010, 1, 213-215.
[144]
Scott, I.M.; Puniani, E.; Jensen, H.; Livesey, J.F.; Poveda, L.; Sánchez-Vindas, P.; Durst, T.; Arnason, J.T. Analysis of Piperaceae germplasm by HPLC and LCMS: A method for isolating and identifying unsaturated amides from Piper spp extracts. J. Agric. Food Chem., 2005, 53(6), 1907-1913.
[http://dx.doi.org/10.1021/jf048305a] [PMID: 15769112]
[145]
Adesina, S.K.; Adebayo, A.S.; Adesina, S.K.; Gröning, R. New constituents of Piper guineense fruit and leaf. Pharmazie, 2003, 58(6), 423-425.
[http://dx.doi.org/10.1002/chin.200340213] [PMID: 12857009]
[146]
Mgbeahuruike, E.E.; Stålnacke, M.; Vuorela, H.; Holm, Y. Antimicrobial and synergistic effects of commercial Piperine and Piper longumine in combination with conventional antimicrobials. Antibiotics (Basel), 2019, 8(2), 55.
[http://dx.doi.org/10.3390/antibiotics8020055] [PMID: 31060239]
[147]
Kaloustian, J.; Chevalier, J.; Mikail, C.; Martino, M.; Abou, L.; Vergnes, M.F. Étude de six huiles essentielles: Composition chimique et activité antibactérienne. Phytotherapie, 2008, 6(3), 160-164.
[http://dx.doi.org/10.1007/s10298-008-0307-1]
[148]
Benjilali, B.; Ayadi, A. Methode d’études des propriétes antiseptiques des huiles essentielles par contact direct en milieu gelose [thymus capitatus, rosmarinus officinalis, eucalyptus globulus, artemisia herba alba] Plantes Méd. Phytothér., 1986, 2, 155-167.
[149]
Burt, S. Essential oils: Their antibacterial properties and potential applications in foods-a review. Int. J. Food Microbiol., 2004, 94(3), 223-253.
[http://dx.doi.org/10.1016/j.ijfoodmicro.2004.03.022] [PMID: 15246235]
[150]
Stefanakis, M.K.; Touloupakis, E.; Anastasopoulos, E.; Ghanotakis, D.; Katerinopoulos, H.E.; Makridis, P. Antibacterial activity of essential oils from plants of the genus Origanum. Food Control, 2013, 34(2), 539-546.
[http://dx.doi.org/10.1016/j.foodcont.2013.05.024]
[151]
Chouhan, S.; Sharma, K.; Guleria, S. Antimicrobial activity of some essential oils-Present status and future perspectives. Medicines (Basel), 2017, 4(3), 58.
[http://dx.doi.org/10.3390/medicines4030058] [PMID: 28930272]
[152]
Devi, K.P.; Nisha, S.A.; Sakthivel, R.; Pandian, S.K. Eugenol (an essential oil of clove) acts as an antibacterial agent against Salmonella typhi by disrupting the cellular membrane. J. Ethnopharmacol., 2010, 130(1), 107-115.
[http://dx.doi.org/10.1016/j.jep.2010.04.025] [PMID: 20435121]
[153]
Schlittler, E.; Saner, H.; Muller, J.M. Reserpinin, ei neues alkaloid aus Rauvolfia serpentina. Experientia, 1954, 10(3), 109-133.
[http://dx.doi.org/10.1007/BF02158516]
[154]
Howes, L.G.; Louis, W.J. Rauvolfia alkaloids (Reserpine), pharmacology of antihypertensive therapeutics. Handb. Exp. Pharmacol., 1990, 93(1), 263-285.
[http://dx.doi.org/10.1007/978-3-642-74209-5_7]
[155]
Weiss, R.F.; Fintelmann, V. Herbal medicine, 2nd ed; Thieme: Stuttgart, 2000, pp. 229-230.
[156]
Pullaiah, J. Medicinal plants in India, New Delhi. Regency Publication, 2002, 2, 441-443.
[157]
Banerjee, M.; Modi, P. A novel protocol for micropropagation of Rauvolfia serpentina: In low concentration of growth regulators with sucrose and phenolic acid. Int. J. Plant Sci., 2010, 5(1), 93-97.
[158]
Ellenhorn, M.; Barceloux, D.G. Medical Toxicology; Elsevier Science Publishing Company, Inc: New York, NY, 1988, pp. 644-659.
[159]
Gilman, A.F.; Rall, W.T.; Nies, A.D.; Taylor, P. Goodman and Gilman’s: The pharmacologic Basis of Therapeutics, 8th ed; Pergamon Press: New York, 1990, p. 795.
[160]
Nammi, S.; Boini, K.M.; Koppula, S.; Sreemantula, S. Reserpine-induced central effects: Pharmacological evidence for the lack of central effects of reserpine methiodide. Can. J. Physiol. Pharmacol., 2005, 83(6), 509-515.
[http://dx.doi.org/10.1139/y05-039] [PMID: 16049551]
[161]
Prusoff, W.H. Effect of reserpine on the 5-hydroxytryptamine and adenosinetriphosphate of the dog intestinal mucosa. Br. J. Pharmacol. Chemother., 1961, 17(1), 87-91.
[http://dx.doi.org/10.1111/j.1476-5381.1961.tb01107.x] [PMID: 13738310]
[162]
Anitha, S.; Kumari, B.D.R. Stimulation of reserpine biosynthesis in the callus of Rauvolfia tetraphyla L. by precursor feeding. Afr. J. Biotechnol., 2006, 5, 659-661.
[163]
Vakil, R.J. Rauvolfia serpentina in the treatment of high blood pressure. Circulation, 1955, 12(2), 220-229.
[http://dx.doi.org/10.1161/01.CIR.12.2.220] [PMID: 13240803]
[164]
von Poser, G.; Andrade, H.H.; da Silva, K.V.; Henriques, A.T.; Henriques, J.A. Genotoxic, mutagenic and recombinogenic effects of rauwolfia alkaloids. Mutat. Res., 1990, 232(1), 37-43.
[http://dx.doi.org/10.1016/0027-5107(90)90107-F] [PMID: 2201913]
[165]
Bhatara, V.S.; Sharma, J.N.; Gupta, S.; Gupta, Y.K. Images in psychiatry. Rauwolfia serpentina: The first herbal antipsychotic. Am. J. Psychiatry, 1997, 154(7), 894-894.
[http://dx.doi.org/10.1176/ajp.154.7.894] [PMID: 9210737]
[166]
Stanford, J.L.; Martin, E.J.; Brinton, L.A.; Hoover, R.N. Rauwolfia use and breast cancer: A case-control study. J. Natl. Cancer Inst., 1986, 76(5), 817-822.
[PMID: 3457968]
[167]
Dey, A.; De, J.N. Rauvolfia serpentina (L). Benth. Ex Kurz.-a review. Asian J. Plant Sci., 2010, 9(6), 285-298.
[http://dx.doi.org/10.3923/ajps.2010.285.298]
[168]
Mittal, B. Phytochemical and pharmacological activity of Rauvolfia serpentina-a review. Int. J. Ayurvedic Herb. Med., 2012, 2(3), 427-434.
[169]
Shamsi, Y.; Kumar, H.; Tamanna, S.A.; Khan, E.A. Effect of a polyherbal Unani formulation on chronic urticaria. Indian J. Tradit. Knowl., 2006, 5, 279-283.
[170]
Macphillamy, H.B. Drugs from plants. Plant Sci. Bull., 1963, 9(2)
[171]
Harisaranraj, R.; Suresh, K.; Saravanababu, S. Evaluation of the chemical composition Rauvolfia serpentina and Ephedra vulgeris. Adv. Biol. Res. (Faisalabad), 2009, 3(5-6), 174-178.
[172]
Poonam; Shipra, A.; Mishra, S. Physiological, biochemical, and modern biotechnological approach to improvement of Rauvolfia serpentina. J. Pharm. Biol. Sci., 2013, 6(2), 73-78.
[173]
Yamakoshi, H.; Ohori, H.; Kudo, C.; Sato, A.; Kanoh, N.; Ishioka, C.; Shibata, H.; Iwabuchi, Y. Structure-activity relationship of C5-curcuminoids and synthesis of their molecular probes thereof. Bioorg. Med. Chem., 2010, 18(3), 1083-1092.
[http://dx.doi.org/10.1016/j.bmc.2009.12.045] [PMID: 20060305]
[174]
Abu-Rizq, H.A.; Mansour, M.H.; Safer, A.M.; Afzal, M. Cytoprotective and immune-modulating effect of Curcuma longa in Wistar rats subjected to carbon tetrachloride-induced oxidative stress. Inflammopharmacology, 2010, 16(2), 87-95.
[http://dx.doi.org/10.1007/s10787-007-1621-1]
[175]
Aggarwal, B.B.; Sundaram, C.; Malani, N.; Ichikawa, H. Curcumin: the Indian solid gold. Adv. Exp. Med. Biol., 2007, 595, 1-75.
[http://dx.doi.org/10.1007/978-0-387-46401-5_1] [PMID: 17569205]
[176]
Altenburg, J.D.; Bieberich, A.A.; Terry, C.; Harvey, K.A.; Vanhorn, J.F.; Xu, Z.; Jo Davisson, V.; Siddiqui, R.A. A synergistic antiproliferation effect of curcumin and docosahexaenoic acid in SK-BR-3 breast cancer cells: Unique signaling not explained by the effects of either compound alone. BMC Cancer, 2011, 11(1), 149.
[http://dx.doi.org/10.1186/1471-2407-11-149] [PMID: 21510869]
[177]
Ammon, H.P.; Wahl, M.A. Pharmacology of Curcuma longa. Planta Med., 1991, 57(1), 1-7.
[http://dx.doi.org/10.1055/s-2006-960004] [PMID: 2062949]
[178]
Govindarajan, V.S.; Stahl, W.H. Turmeric-chemistry, technology, and quality. Crit. Rev. Food Sci. Nutr., 1980, 12(3), 199-301.
[http://dx.doi.org/10.1080/10408398009527278] [PMID: 6993103]
[179]
Aoi, K.; Kaburagi, K.; Seki, T.; Tobata, T.; Satake, M.; Kuroyanagi, M. Studies on the cultivation of turmeric (Curcuma longa L.). I. Varietal differences in rhizome yield and curcuminoid content. Eisei Shikenjo hokoku; Bull; Nat. Inst. Hygien. Sci, 1986, pp. 124-128.
[180]
Yasuda, K.; Tsuda, T.; Shimizu, H.; Sugaya, A. Multiplication of curcuma species by tissue culture. Planta Med., 1988, 54(1), 75-79.
[http://dx.doi.org/10.1055/s-2006-962344] [PMID: 17265210]
[181]
Jain, S.K. Ethnobotany and research on medicinal plants in India. Ciba Found. Symp., 1994, 185, 153-164.
[PMID: 7736852]
[182]
Minami, M.; Nishio, K.; Ajioka, Y.; Kyushima, H.; Shigeki, K.; Kinjo, K.; Yamada, K.; Nagai, M.; Satoh, K.; Sakurai, Y. Identification of Curcuma plants and curcumin content level by DNA polymorphisms in the trnS-trnfM intergenic spacer in chloroplast DNA. J. Nat. Med., 2009, 63(1), 75-79.
[http://dx.doi.org/10.1007/s11418-008-0283-7] [PMID: 18688695]
[183]
Cao, H.; Sasaki, Y.; Fushimi, H.; Komatsu, K. Authentication of Curcuma species (Zingiberaceae) based on nuclear 18S rDNA and plastid trnK sequences. Yao Xue Xue Bao, 2010, 45(7), 926-933.
[PMID: 20931794]
[184]
López-Lázaro, M. Anticancer and carcinogenic properties of curcumin: considerations for its clinical development as a cancer chemopreventive and chemotherapeutic agent. Mol. Nutr. Food Res., 2008, 52(1)(Suppl. 1), S103-S127.
[http://dx.doi.org/10.1002/mnfr.200700238] [PMID: 18496811]
[185]
Hussain, A.R.; Ahmed, M.; Al-Jomah, N.A.; Khan, A.S.; Manogaran, P.; Sultana, M.; Abubaker, J.; Platanias, L.C.; Al-Kuraya, K.S.; Uddin, S. Curcumin suppresses constitutive activation of nuclear factor-kappa B and requires functional Bax to induce apoptosis in Burkitt’s lymphoma cell lines. Mol. Cancer Ther., 2008, 7(10), 3318-3329.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0541] [PMID: 18852135]
[186]
Lee, H.S.; Lee, M.J.; Kim, H.; Choi, S.K.; Kim, J.E.; Moon, H.I.; Park, W.H. Curcumin inhibits TNFalpha-induced lectin-like oxidised LDL receptor-1 (LOX-1) expression and suppresses the inflammatory response in human umbilical vein endothelial cells (HUVECs) by an antioxidant mechanism. J. Enzyme Inhib. Med. Chem., 2010, 25(5), 720-729.
[http://dx.doi.org/10.3109/14756360903555274] [PMID: 20163327]
[187]
Saller, R.; Iten, F.; Reichling, J. Dyspeptic pain and phytotherapy-a review of traditional and modern herbal drugs. Forschende Komplementarmedizin und klassische Naturheilkunde Res. Compl. Nat. Classical Med., 2001, 8, 263-273.
[188]
Tripathi, A.K.; Prajapati, V.; Verma, N.; Bahl, J.R.; Bansal, R.P.; Khanuja, S.P.; Kumar, S. Bioactivities of the leaf essential oil of Curcuma longa (var. ch-66) on three species of stored-product beetles (Coleoptera). J. Econ. Entomol., 2002, 95(1), 183-189.
[http://dx.doi.org/10.1603/0022-0493-95.1.183] [PMID: 11942755]
[189]
Lu, Y.; Ma, Y.; Wang, X.; Liang, J.; Zhang, C.; Zhang, K.; Lin, G.; Lai, R. The first antimicrobial peptide from sea amphibian. Mol. Immunol., 2008, 45(3), 678-681.
[http://dx.doi.org/10.1016/j.molimm.2007.07.004] [PMID: 17707909]
[190]
Li, C.; Zhu, C.; Ren, B.; Yin, X.; Shim, S.H.; Gao, Y.; Zhu, J.; Zhao, P.; Liu, C.; Yu, R.; Xia, X.; Zhang, L. Two optimized antimicrobial peptides with therapeutic potential for clinical antibiotic-resistant Staphylococcus aureus. Eur. J. Med. Chem., 2019, 183, 111686.
[http://dx.doi.org/10.1016/j.ejmech.2019.111686] [PMID: 31520928]
[191]
de la Fuente-Núñez, C.; Silva, O.N.; Lu, T.K.; Franco, O.L. Antimicrobial peptides: Role in human disease and potential as immunotherapies. Pharmacol. Ther., 2017, 178, 132-140.
[http://dx.doi.org/10.1016/j.pharmthera.2017.04.002] [PMID: 28435091]
[192]
Guaní-Guerra, E.; Santos-Mendoza, T.; Lugo-Reyes, S.O.; Terán, L.M. Antimicrobial peptides: General overview and clinical implications in human health and disease. Clin. Immunol., 2010, 135(1), 1-11.
[http://dx.doi.org/10.1016/j.clim.2009.12.004] [PMID: 20116332]
[193]
Bevins, C.L.; Salzman, N.H. Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat. Rev. Microbiol., 2011, 9(5), 356-368.
[http://dx.doi.org/10.1038/nrmicro2546] [PMID: 21423246]
[194]
Izadi, N.; Keikha, M.; Ghazvini, K.; Karbalaei, M. Oral antimicrobial peptides and new therapeutic strategies for plaque-mediated diseases. Gene Rep., 2020, 21, 100811.
[http://dx.doi.org/10.1016/j.genrep.2020.100811]
[195]
Chen, L.; Jia, L.; Zhang, Q.; Zhou, X.; Liu, Z.; Li, B.; Zhu, Z.; Wang, F.; Yu, C.; Zhang, Q.; Chen, F.; Luo, S.Z. A novel antimicrobial peptide against dental-caries-associated bacteria. Anaerobe, 2017, 47, 165-172.
[http://dx.doi.org/10.1016/j.anaerobe.2017.05.016] [PMID: 28571698]
[196]
Yoong, P.; Schuch, R.; Nelson, D.; Fischetti, V.A. Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J. Bacteriol., 2004, 186(14), 4808-4812.
[http://dx.doi.org/10.1128/JB.186.14.4808-4812.2004] [PMID: 15231813]
[197]
Sassetti, C.M.; Rubin, E.J. Genetic requirements for mycobacterial survival during infection. Proc. Natl. Acad. Sci. USA, 2003, 100(22), 12989-12994.
[http://dx.doi.org/10.1073/pnas.2134250100] [PMID: 14569030]
[198]
Challenges for the development of new antimicrobials-rethinking the approaches. 2006.https://www.ncbi.nlm.nih.gov/books/NBK19843/

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy