Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Mini-Review Article

Sodium-glucose Cotransporter Type 2 Inhibitors: A New Insight into the Molecular Mechanisms of Diabetic Nephropathy

Author(s): Na Li and Hong Zhou*

Volume 28, Issue 26, 2022

Published on: 01 August, 2022

Page: [2131 - 2139] Pages: 9

DOI: 10.2174/1381612828666220617153331

Price: $65

conference banner
Abstract

Diabetic nephropathy is one of the chronic microvascular complications of diabetes and is a leading cause of end-stage renal disease. Fortunately, clinical trials have demonstrated that sodium-glucose cotransporter type 2 inhibitors could decrease proteinuria and improve renal endpoints and are promising agents for the treatment of diabetic nephropathy. The renoprotective effects of sodium-glucose cotransporter type 2 inhibitors cannot be simply attributed to their advantages in aspects of metabolic benefits, such as glycemic control, lowering blood pressure, and control of serum uric acid, or improving hemodynamics associated with decreased glomerular filtration pressure. Some preclinical evidence suggests that sodium-glucose cotransporter type 2 inhibitors exert their renoprotective effects by multiple mechanisms, including attenuation of oxidative and endoplasmic reticulum stresses, anti-fibrosis and anti-inflammation, protection of podocytes, suppression of megalin function, improvement of renal hypoxia, restored mitochondrial dysfunction and autophagy, as well as inhibition of sodium-hydrogen exchanger 3. In the present study, the detailed molecular mechanisms of sodium-glucose cotransporter type 2 inhibitors with the actions of diabetic nephropathy were reviewed, with the purpose of providing the basis for drug selection for the treatment of diabetic nephropathy.

Keywords: Sodium-glucose cotransporter 2 inhibitors, diabetic nephropathy, renal protection, molecular mechanism, renal hypoxia, podocyte protection.

[1]
Gnudi L, Gentile G, Ruggenenti P, et al. Oxford Textbook of Clinical Nephrology. Oxford, UK: Oxford University Press 2016; 2: pp. 1199-247.
[2]
Dagar N, Das P, Bisht P, Taraphdar AK, Velayutham R, Arumugam S. Diabetic nephropathy: A twisted thread to unravel. Life Sci 2021; 278: 119635.
[http://dx.doi.org/10.1016/j.lfs.2021.119635] [PMID: 34015285]
[3]
Abdul-Ghani MA, Norton L, Defronzo RA. Role of sodium-glucose cotransporter 2 (SGLT 2) inhibitors in the treatment of type 2 diabetes. Endocr Rev 2011; 32(4): 515-31.
[http://dx.doi.org/10.1210/er.2010-0029] [PMID: 21606218]
[4]
Norton L, Shannon CE, Fourcaudot M, et al. Sodium-glucose co-transporter (SGLT) and glucose transporter (GLUT) expression in the kidney of type 2 diabetic subjects. Diabetes Obes Metab 2017; 19(9): 1322-6.
[http://dx.doi.org/10.1111/dom.13003] [PMID: 28477418]
[5]
Neal B, Perkovic V, Mahaffey KW, et al. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 2017; 377(7): 644-57.
[http://dx.doi.org/10.1056/NEJMoa1611925] [PMID: 28605608]
[6]
Zinman B, Wanner C, Lachin JM, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med 2015; 373(22): 2117-28.
[http://dx.doi.org/10.1056/NEJMoa1504720] [PMID: 26378978]
[7]
Wiviott SD, Raz I, Bonaca MP, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 2019; 380(4): 347-57.
[http://dx.doi.org/10.1056/NEJMoa1812389] [PMID: 30415602]
[8]
Perkovic V, Jardine MJ, Neal B, et al. Canagliflozin and renal outcomes in type 2 diabetes and nephropathy. N Engl J Med 2019; 380(24): 2295-306.
[http://dx.doi.org/10.1056/NEJMoa1811744] [PMID: 30990260]
[9]
Wheeler DC, Stefansson BV, Batiushin M, et al. The dapagliflozin and prevention of adverse outcomes in chronic kidney disease (DAPA-CKD) trial: Baseline characteristics. Nephrol Dial Transplant 2020; 35(10): 1700-11.
[http://dx.doi.org/10.1093/ndt/gfaa234] [PMID: 32862232]
[10]
Heerspink HJ, Desai M, Jardine M, Balis D, Meininger G, Perkovic V. Canagliflozin slows progression of renal function decline independently of glycemic effects. J Am Soc Nephrol 2017; 28(1): 368-75.
[http://dx.doi.org/10.1681/ASN.2016030278] [PMID: 27539604]
[11]
Kaplan A, Abidi E, El-Yazbi A, Eid A, Booz GW, Zouein FA. Direct cardiovascular impact of SGLT2 inhibitors: Mechanisms and effects. Heart Fail Rev 2018; 23(3): 419-37.
[http://dx.doi.org/10.1007/s10741-017-9665-9] [PMID: 29322280]
[12]
Heerspink HJL, Perkins BA, Fitchett DH, Husain M, Cherney DZI. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: Cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation 2016; 134(10): 752-72.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.116.021887] [PMID: 27470878]
[13]
Lytvyn Y, Bjornstad P, Udell JA, Lovshin JA, Cherney DZI. Sodium glucose cotransporter-2 inhibition in heart failure: Potential mechanisms, clinical applications, and summary of clinical trials. Circulation 2017; 136(17): 1643-58.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.117.030012] [PMID: 29061576]
[14]
Lytvyn Y, Škrtić M, Yang GK, Yip PM, Perkins BA, Cherney DZI. Glycosuria-mediated urinary uric acid excretion in patients with uncomplicated type 1 diabetes mellitus. Am J Physiol Renal Physiol 2015; 308(2): F77-83.
[http://dx.doi.org/10.1152/ajprenal.00555.2014] [PMID: 25377916]
[15]
Cherney DZ, Perkins BA, Soleymanlou N, et al. Renal hemodynamic effect of sodium-glucose cotransporter 2 inhibition in patients with type 1 diabetes mellitus. Circulation 2014; 129(5): 587-97.
[http://dx.doi.org/10.1161/CIRCULATIONAHA.113.005081] [PMID: 24334175]
[16]
Thomson SC, Rieg T, Miracle C, et al. Acute and chronic effects of SGLT2 blockade on glomerular and tubular function in the early diabetic rat. Am J Physiol Regul Integr Comp Physiol 2012; 302(1): R75-83.
[http://dx.doi.org/10.1152/ajpregu.00357.2011] [PMID: 21940401]
[17]
Malatiali S, Francis I, Barac-Nieto M. Phlorizin prevents glomerular hyperfiltration but not hypertrophy in diabetic rats. Exp Diabetes Res 2008; 2008: 305403.
[http://dx.doi.org/10.1155/2008/305403] [PMID: 18769499]
[18]
Arakawa K, Ishihara T, Oku A, et al. Improved diabetic syndrome in C57BL/KsJ-db/db mice by oral administration of the Na(+)-glucose cotransporter inhibitor T-1095. Br J Pharmacol 2001; 132(2): 578-86.
[http://dx.doi.org/10.1038/sj.bjp.0703829] [PMID: 11159708]
[19]
Kojima N, Williams JM, Takahashi T, Miyata N, Roman RJ. Effects of a new SGLT2 inhibitor, luseogliflozin, on diabetic nephropathy in T2DN rats. J Pharmacol Exp Ther 2013; 345(3): 464-72.
[http://dx.doi.org/10.1124/jpet.113.203869] [PMID: 23492941]
[20]
van Bommel EJM, Muskiet MHA, van Baar MJB, et al. The renal hemodynamic effects of the SGLT2 inhibitor dapagliflozin are caused by post-glomerular vasodilatation rather than pre-glomerular vasoconstriction in metformin-treated patients with type 2 diabetes in the randomized, double-blind RED trial. Kidney Int 2020; 97(1): 202-12.
[http://dx.doi.org/10.1016/j.kint.2019.09.013] [PMID: 31791665]
[21]
Vallon V, Rose M, Gerasimova M, et al. Knockout of Na-glucose transporter SGLT2 attenuates hyperglycemia and glomerular hyperfiltration but not kidney growth or injury in diabetes mellitus. Am J Physiol Renal Physiol 2013; 304(2): F156-67.
[http://dx.doi.org/10.1152/ajprenal.00409.2012] [PMID: 23152292]
[22]
Ito M, Tanaka T. The anticipated renoprotective effects of sodium-glucose cotransporter 2 inhibitors. Intern Med 2018; 57(15): 2105-14.
[http://dx.doi.org/10.2169/internalmedicine.9842-17] [PMID: 29491318]
[23]
Matoba K, Takeda Y, Nagai Y, Kawanami D, Utsunomiya K, Nishimura R. Unraveling the role of inflammation in the pathogenesis of diabetic kidney disease. Int J Mol Sci 2019; 20(14): 3393.
[http://dx.doi.org/10.3390/ijms20143393] [PMID: 31295940]
[24]
Oraby MA, El-Yamany MF, Safar MM, Assaf N, Ghoneim HA. Dapagliflozin attenuates early markers of diabetic nephropathy in fructose-streptozotocin-induced diabetes in rats. Biomed Pharmacother 2019; 109: 910-20.
[http://dx.doi.org/10.1016/j.biopha.2018.10.100] [PMID: 30551545]
[25]
Wang XX, Levi J, Luo Y, et al. SGLT2 Protein expression is increased in human diabetic nephropathy: SGLT2 protein inhibition decreases renal lipid accumulation inflammation and the development of nephropathy in diabetic mice. J Biol Chem 2017; 292(13): 5335-48.
[http://dx.doi.org/10.1074/jbc.M117.779520] [PMID: 28196866]
[26]
Tang L, Wu Y, Tian M, et al. Dapagliflozin slows the progression of the renal and liver fibrosis associated with type 2 diabetes. Am J Physiol Endocrinol Metab 2017; 313(5): E563-76.
[http://dx.doi.org/10.1152/ajpendo.00086.2017] [PMID: 28811292]
[27]
Wang D, Luo Y, Wang X, et al. The sodium-glucose cotransporter 2 inhibitor dapagliflozin prevents renal and liver disease in western diet induced obesity mice. Int J Mol Sci 2018; 19(1): 137.
[http://dx.doi.org/10.3390/ijms19010137] [PMID: 29301371]
[28]
Panchapakesan U, Pegg K, Gross S, et al. Effects of SGLT2 inhibition in human kidney proximal tubular cells--renoprotection in diabetic nephropathy? PLoS One 2013; 8(2): e54442.
[http://dx.doi.org/10.1371/journal.pone.0054442] [PMID: 23390498]
[29]
Bandala-Sanchez EG, Bediaga N, Goddard-Borger ED, et al. CD52 glycan binds the proinflammatory B box of HMGB1 to engage the Siglec-10 receptor and suppress human T cell function. Proc Natl Acad Sci USA 2018; 115(30): 7783-8.
[http://dx.doi.org/10.1073/pnas.1722056115] [PMID: 29997173]
[30]
Ashrafi Jigheh Z, Ghorbani Haghjo A, Argani H, et al. Empagliflozin alleviates renal inflammation and oxidative stress in streptozotocin-induced diabetic rats partly by repressing HMGB1-TLR4 receptor axis. Iran J Basic Med Sci 2019; 22(4): 384-90.
[PMID: 31168342]
[31]
Yao D, Wang S, Wang M, Lu W. Renoprotection of dapagliflozin in human renal proximal tubular cells via the inhibition of the high mobility group box 1-receptor for advanced glycation end products- nuclear factor-κB signaling pathway. Mol Med Rep 2018; 18(4): 3625-30.
[http://dx.doi.org/10.3892/mmr.2018.9393] [PMID: 30132524]
[32]
Birnbaum Y, Bajaj M, Yang HC, Ye Y. Combined SGLT2 and DPP4 inhibition reduces the activation of the Nlrp3/ASC inflammasome and attenuates the development of diabetic nephropathy in mice with type 2 diabetes. Cardiovasc Drugs Ther 2018; 32(2): 135-45.
[http://dx.doi.org/10.1007/s10557-018-6778-x] [PMID: 29508169]
[33]
Guo Y, Ran Z, Zhang Y, et al. Marein ameliorates diabetic nephropathy by inhibiting renal sodium glucose transporter 2 and activating the AMPK signaling pathway in db/db mice and high glucose-treated HK-2 cells. Biomed Pharmacother 2020; 131: 110684.
[http://dx.doi.org/10.1016/j.biopha.2020.110684] [PMID: 33152903]
[34]
Zeisberg M, Neilson EG. Mechanisms of tubulointerstitial fibrosis. J Am Soc Nephrol 2010; 21(11): 1819-34.
[http://dx.doi.org/10.1681/ASN.2010080793] [PMID: 20864689]
[35]
Hodrea J, Balogh DB, Hosszu A, et al. Reduced O-GlcNAcylation and tubular hypoxia contribute to the antifibrotic effect of SGLT2 inhibitor dapagliflozin in the diabetic kidney. Am J Physiol Renal Physiol 2020; 318(4): F1017-29.
[http://dx.doi.org/10.1152/ajprenal.00021.2020] [PMID: 32116017]
[36]
Aroor AR, Das NA, Carpenter AJ, et al. Glycemic control by the SGLT2 inhibitor empagliflozin decreases aortic stiffness, renal resistivity index and kidney injury. Cardiovasc Diabetol 2018; 17(1): 108.
[http://dx.doi.org/10.1186/s12933-018-0750-8] [PMID: 30060748]
[37]
Das NA, Carpenter AJ, Belenchia A, et al. Empagliflozin reduces high glucose-induced oxidative stress and miR-21-dependent TRAF3IP2 induction and RECK suppression, and inhibits human renal proximal tubular epithelial cell migration and epithelial-to-mesenchymal transition. Cell Signal 2020; 68: 109506.
[http://dx.doi.org/10.1016/j.cellsig.2019.109506] [PMID: 31862399]
[38]
Kogot-Levin A, Hinden L, Riahi Y, et al. Proximal tubule mTORC1 is a central player in the pathophysiology of diabetic nephropathy and its correction by SGLT2 inhibitors. Cell Rep 2020; 32(4): 107954.
[http://dx.doi.org/10.1016/j.celrep.2020.107954] [PMID: 32726619]
[39]
Park MJ, Kim DI, Lim SK, et al. High glucose-induced O-GlcNAcylated carbohydrate response element-binding protein (ChREBP) mediates mesangial cell lipogenesis and fibrosis: The possible role in the development of diabetic nephropathy. J Biol Chem 2014; 289(19): 13519-30.
[http://dx.doi.org/10.1074/jbc.M113.530139] [PMID: 24616092]
[40]
Huang F, Zhao Y, Wang Q, et al. Dapagliflozin attenuates renal tubulointerstitial fibrosis associated with type 1 diabetes by regulating STAT1/TGFβ1 signaling. Front Endocrinol (Lausanne) 2019; 10: 441.
[http://dx.doi.org/10.3389/fendo.2019.00441] [PMID: 31333586]
[41]
Inoue MK, Matsunaga Y, Nakatsu Y, et al. Possible involvement of normalized Pin1 expression level and AMPK activation in the molecular mechanisms underlying renal protective effects of SGLT2 inhibitors in mice. Diabetol Metab Syndr 2019; 11: 57.
[http://dx.doi.org/10.1186/s13098-019-0454-6] [PMID: 31367234]
[42]
Habibi J, Aroor AR, Sowers JR, et al. Sodium glucose transporter 2 (SGLT2) inhibition with empagliflozin improves cardiac diastolic function in a female rodent model of diabetes. Cardiovasc Diabetol 2017; 16(1): 9.
[http://dx.doi.org/10.1186/s12933-016-0489-z] [PMID: 28086951]
[43]
Kang S, Verma S, Hassanabad AF, et al. Direct effects of empagliflozin on extracellular matrix remodelling in human cardiac myofibroblasts: Novel translational clues to explain EMPA-REG OUTCOME results. Can J Cardiol 2020; 36(4): 543-53.
[http://dx.doi.org/10.1016/j.cjca.2019.08.033] [PMID: 31837891]
[44]
Qiang S, Nakatsu Y, Seno Y, et al. Treatment with the SGLT2 inhibitor luseogliflozin improves nonalcoholic steatohepatitis in a rodent model with diabetes mellitus. Diabetol Metab Syndr 2015; 7: 104.
[http://dx.doi.org/10.1186/s13098-015-0102-8] [PMID: 26594248]
[45]
Goto R, Kamimura K, Shinagawa-Kobayashi Y, et al. Inhibition of sodium glucose cotransporter 2 (SGLT2) delays liver fibrosis in a medaka model of nonalcoholic steatohepatitis (NASH). FEBS Open Bio 2019; 9(4): 643-52.
[http://dx.doi.org/10.1002/2211-5463.12598] [PMID: 30984539]
[46]
Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010; 107(9): 1058-70.
[http://dx.doi.org/10.1161/CIRCRESAHA.110.223545] [PMID: 21030723]
[47]
Brownlee M. Biochemistry and molecular cell biology of diabetic complications. Nature 2001; 146865: 813-20.
[http://dx.doi.org/10.1038/414813a]
[48]
Forbes JM, Cooper ME. Mechanisms of diabetic complications. Physiol Rev 2013; 93(1): 137-88.
[http://dx.doi.org/10.1152/physrev.00045.2011] [PMID: 23303908]
[49]
Nishikawa T, Edelstein D, Du XL, et al. Normalizing mitochondrial superoxide production blocks three pathways of hyperglycaemic damage. Nature 2000; 404(6779): 787-90.
[http://dx.doi.org/10.1038/35008121] [PMID: 10783895]
[50]
Ojima A, Matsui T, Nishino Y, Nakamura N, Yamagishi S. Empagliflozin, an inhibitor of sodium-glucose cotransporter 2 exerts anti-inflammatory and antifibrotic effects on experimental diabetic nephropathy partly by suppressing AGEs receptor axis. Horm Metab Res 2015; 47(9): 686-92.
[http://dx.doi.org/10.1055/s-0034-1395609] [PMID: 25611208]
[51]
Abdel-Wahab AF, Bamagous GA, Al-Harizy RM, et al. Renal protective effect of SGLT2 inhibitor dapagliflozin alone and in combination with irbesartan in a rat model of diabetic nephropathy. Biomed Pharmacother 2018; 103: 59-66.
[http://dx.doi.org/10.1016/j.biopha.2018.03.176] [PMID: 29635129]
[52]
Maeda S, Matsui T, Takeuchi M, Yamagishi S. Sodium-glucose cotransporter 2-mediated oxidative stress augments advanced glycation end products-induced tubular cell apoptosis. Diabetes Metab Res Rev 2013; 29(5): 406-12.
[http://dx.doi.org/10.1002/dmrr.2407] [PMID: 23508966]
[53]
Kamezaki M, Kusaba T, Komaki K, et al. Comprehensive renoprotective effects of ipragliflozin on early diabetic nephropathy in mice. Sci Rep 2018; 8(1): 4029.
[http://dx.doi.org/10.1038/s41598-018-22229-5] [PMID: 29507299]
[54]
Maki T, Maeno S, Maeda Y, et al. Amelioration of diabetic nephropathy by SGLT2 inhibitors independent of its glucose-lowering effect: A possible role of SGLT2 in mesangial cells. Sci Rep 2019; 9(1): 4703.
[http://dx.doi.org/10.1038/s41598-019-41253-7] [PMID: 30886225]
[55]
Hosokawa K, Takata T, Sugihara T, et al. Ipragliflozin ameliorates endoplasmic reticulum stress and apoptosis through preventing ectopic lipid deposition in renal tubules. Int J Mol Sci 2019; 21(1): 190.
[http://dx.doi.org/10.3390/ijms21010190] [PMID: 31888083]
[56]
Shibusawa R, Yamada E, Okada S, et al. Dapagliflozin rescues endoplasmic reticulum stress-mediated cell death. Sci Rep 2019; 9(1): 9887.
[http://dx.doi.org/10.1038/s41598-019-46402-6] [PMID: 31285506]
[57]
Heerspink HJL, Kosiborod M, Inzucchi SE, Cherney DZI. Renoprotective effects of sodium-glucose cotransporter-2 inhibitors. Kidney Int 2018; 94(1): 26-39.
[http://dx.doi.org/10.1016/j.kint.2017.12.027] [PMID: 29735306]
[58]
Franzén S, Pihl L, Khan N, Gustafsson H, Palm F. Pronounced kidney hypoxia precedes albuminuria in type 1 diabetic mice. Am J Physiol Renal Physiol 2016; 310(9): F807-9.
[http://dx.doi.org/10.1152/ajprenal.00049.2016] [PMID: 26936871]
[59]
Blantz RC, Deng A, Miracle CM, Thomson SC. Regulation of kidney function and metabolism: A question of supply and demand. Trans Am Clin Climatol Assoc 2007; 118: 23-43.
[PMID: 18528487]
[60]
Deng A, Arndt MA, Satriano J, et al. Renal protection in chronic kidney disease: Hypoxia-inducible factor activation vs. angiotensin II blockade. Am J Physiol Renal Physiol 2010; 299(6): F1365-73.
[http://dx.doi.org/10.1152/ajprenal.00153.2010] [PMID: 20881034]
[61]
Layton AT, Laghmani K, Vallon V, Edwards A. Solute transport and oxygen consumption along the nephrons: Effects of Na+ transport inhibitors. Am J Physiol Renal Physiol 2016; 311(6): F1217-29.
[http://dx.doi.org/10.1152/ajprenal.00294.2016] [PMID: 27707706]
[62]
Rosenberger C, Khamaisi M, Abassi Z, et al. Adaptation to hypoxia in the diabetic rat kidney. Kidney Int 2008; 73(1): 34-42.
[http://dx.doi.org/10.1038/sj.ki.5002567] [PMID: 17914354]
[63]
Eckardt KU, Bernhardt W, Willam C, Wiesener M. Hypoxia-inducible transcription factors and their role in renal disease. Semin Nephrol 2007; 27(3): 363-72.
[http://dx.doi.org/10.1016/j.semnephrol.2007.02.007] [PMID: 17533012]
[64]
Semenza GL. Hypoxia-inducible factors in physiology and medicine. Cell 2012; 148(3): 399-408.
[http://dx.doi.org/10.1016/j.cell.2012.01.021] [PMID: 22304911]
[65]
Nayak BK, Shanmugasundaram K, Friedrichs WE, et al. HIF-1 mediates renal fibrosis in OVE26 type 1 diabetic mice. Diabetes 2016; 65(5): 1387-97.
[http://dx.doi.org/10.2337/db15-0519] [PMID: 26908870]
[66]
Vallon V. The proximal tubule in the pathophysiology of the diabetic kidney. Am J Physiol Regul Integr Comp Physiol 2011; 300(5): R1009-22.
[http://dx.doi.org/10.1152/ajpregu.00809.2010] [PMID: 21228342]
[67]
Palm F, Cederberg J, Hansell P, Liss P, Carlsson PO. Reactive oxygen species cause diabetes-induced decrease in renal oxygen tension. Diabetologia 2003; 46(8): 1153-60.
[http://dx.doi.org/10.1007/s00125-003-1155-z] [PMID: 12879251]
[68]
Bessho R, Takiyama Y, Takiyama T, et al. Hypoxia-inducible factor-1α is the therapeutic target of the SGLT2 inhibitor for diabetic nephropathy. Sci Rep 2019; 9(1): 14754.
[http://dx.doi.org/10.1038/s41598-019-51343-1] [PMID: 31611596]
[69]
Packer M. Mechanisms leading to differential hypoxia-inducible factor signaling in the diabetic kidney: Modulation by SGLT2 inhibitors and hypoxia mimetics. Am J Kidney Dis 2021; 77(2): 280-6.
[http://dx.doi.org/10.1053/j.ajkd.2020.04.016] [PMID: 32711072]
[70]
Ndibalema AR, Kabuye D, Wen S, Li L, Li X, Fan Q. Empagliflozin protects against proximal renal tubular cell injury induced by high glucose via regulation of hypoxia-inducible factor 1-alpha. Diabetes Metab Syndr Obes 2020; 13: 1953-67.
[http://dx.doi.org/10.2147/DMSO.S243170] [PMID: 32606855]
[71]
Steffes MW, Schmidt D, McCrery R, Basgen JM. Glomerular cell number in normal subjects and in type 1 diabetic patients. Kidney Int 2001; 59(6): 2104-13.
[http://dx.doi.org/10.1046/j.1523-1755.2001.00725.x] [PMID: 11380812]
[72]
Cassis P, Locatelli M, Cerullo D, et al. SGLT2 inhibitor dapagliflozin limits podocyte damage in proteinuric nondiabetic nephropathy. JCI Insight 2018; 3(15): e98720.
[http://dx.doi.org/10.1172/jci.insight.98720] [PMID: 30089717]
[73]
Korbut AI, Taskaeva IS, Bgatova NP, et al. SGLT2 inhibitor empagliflozin and DPP4 inhibitor linagliptin reactivate glomerular autophagy in db/db Mice, a model of type 2 diabetes. Int J Mol Sci 2020; 21(8): 2987.
[http://dx.doi.org/10.3390/ijms21082987] [PMID: 32340263]
[74]
Russo LM, Sandoval RM, Campos SB, Molitoris BA, Comper WD, Brown D. Impaired tubular uptake explains albuminuria in early diabetic nephropathy. J Am Soc Nephrol 2009; 20(3): 489-94.
[http://dx.doi.org/10.1681/ASN.2008050503] [PMID: 19118149]
[75]
Weinberg JM, Venkatachalam MA, Roeser NF, Nissim I. Mitochondrial dysfunction during hypoxia/reoxygenation and its correction by anaerobic metabolism of citric acid cycle intermediates. Proc Natl Acad Sci USA 2000; 97(6): 2826-31.
[http://dx.doi.org/10.1073/pnas.97.6.2826] [PMID: 10717001]
[76]
Sakai S, Yamamoto T, Takabatake Y, et al. Proximal tubule autophagy differs in type 1 and 2 diabetes. J Am Soc Nephrol 2019; 30(6): 929-45.
[http://dx.doi.org/10.1681/ASN.2018100983] [PMID: 31040190]
[77]
Wei W, An XR, Jin SJ, Li XX, Xu M. Inhibition of insulin resistance by PGE1 via autophagy-dependent FGF21 pathway in diabetic nephropathy. Sci Rep 2018; 8(1): 9.
[http://dx.doi.org/10.1038/s41598-017-18427-2] [PMID: 29311680]
[78]
Zhao X, Chen Y, Tan X, et al. Advanced glycation end-products suppress autophagic flux in podocytes by activating mammalian target of rapamycin and inhibiting nuclear translocation of transcription factor EB. J Pathol 2018; 245(2): 235-48.
[http://dx.doi.org/10.1002/path.5077] [PMID: 29570219]
[79]
Takagi S, Li J, Takagaki Y, et al. Ipragliflozin improves mitochondrial abnormalities in renal tubules induced by a high-fat diet. J Diabetes Investig 2018; 9(5): 1025-32.
[http://dx.doi.org/10.1111/jdi.12802] [PMID: 29352520]
[80]
Otomo H, Nara M, Kato S, et al. Sodium-glucose cotransporter 2 inhibition attenuates protein overload in renal proximal tubule via suppression of megalin O-GlcNacylation in progressive diabetic nephropathy. Metabolism 2020; 113: 154405.
[http://dx.doi.org/10.1016/j.metabol.2020.154405] [PMID: 33069809]
[81]
Wang Z, Jiang H, Chen S, Du F, Wang X. The mitochondrial phosphatase PGAM5 functions at the convergence point of multiple necrotic death pathways. Cell 2012; 148(1-2): 228-43.
[http://dx.doi.org/10.1016/j.cell.2011.11.030] [PMID: 22265414]
[82]
Liu X, Xu C, Xu L, et al. Empagliflozin improves diabetic renal tubular injury by alleviating mitochondrial fission via AMPK/SP1/PGAM5 pathway. Metabolism 2020; 111: 154334.
[http://dx.doi.org/10.1016/j.metabol.2020.154334] [PMID: 32777444]
[83]
Lee YH, Kim SH, Kang JM, et al. Empagliflozin attenuates diabetic tubulopathy by improving mitochondrial fragmentation and autophagy. Am J Physiol Renal Physiol 2019; 317(4): F767-80.
[http://dx.doi.org/10.1152/ajprenal.00565.2018] [PMID: 31390268]
[84]
Packer M. Interplay of adenosine monophosphate-activated protein kinase/sirtuin-1 activation and sodium influx inhibition mediates the renal benefits of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: A novel conceptual framework. Diabetes Obes Metab 2020; 22(5): 734-42.
[http://dx.doi.org/10.1111/dom.13961] [PMID: 31916329]
[85]
Sun YM, Su Y, Li J, Tian Y, Wang LF. Role of the Na+/H+ exchanger on the development of diabetes mellitus and its chronic complications. Biochem Biophys Res Commun 2012; 427(2): 229- 31.
[http://dx.doi.org/10.1016/j.bbrc.2012.09.050] [PMID: 23000155]
[86]
Li P, Chen GR, Wang F, et al. Inhibition of Na+/H+ exchanger 1 attenuates renal dysfunction induced by advanced glycation end products in rats. J Diabetes Res 2016; 2016: 1802036.
[http://dx.doi.org/10.1155/2016/1802036] [PMID: 26697498]
[87]
Schelling JR, Abu Jawdeh BG. Regulation of cell survival by Na+/H+ exchanger-1. Am J Physiol Renal Physiol 2008; 295(3): F625-32.
[http://dx.doi.org/10.1152/ajprenal.90212.2008] [PMID: 18480176]
[88]
Li K, Su W, Li M, et al. Acid loading stimulates rat glomerular mesangial cells proliferation through Na+-H+ exchanger isoform 1 (NHE1)-dependent pathway. Naunyn Schmiedebergs Arch Pharmacol 2013; 386(6): 563-9.
[http://dx.doi.org/10.1007/s00210-013-0856-1] [PMID: 23545808]
[89]
Semplicini A, Ceolotto G, Sartori M, et al. Regulation of glomerular filtration in essential hypertension: Role of abnormal Na+ transport and atrial natriuretic peptide. J Nephrol 2002; 15(5): 489-96.
[PMID: 12455714]
[90]
Hryciw DH, Lee EM, Pollock CA, Poronnik P. Molecular changes in proximal tubule function in diabetes mellitus. Clin Exp Pharmacol Physiol 2004; 31(5-6): 372-9.
[http://dx.doi.org/10.1111/j.1440-1681.2004.04001.x] [PMID: 15191416]
[91]
Lee EM, Pollock CA, Drumm K, Barden JA, Poronnik P. Effects of pathophysiological concentrations of albumin on NHE3 activity and cell proliferation in primary cultures of human proximal tubule cells. Am J Physiol Renal Physiol 2003; 285(4): F748-57.
[http://dx.doi.org/10.1152/ajprenal.00442.2002] [PMID: 12799307]
[92]
Yaribeygi H, Katsiki N, Butler AE, Sahebkar A. Effects of antidiabetic drugs on NLRP3 inflammasome activity, with a focus on diabetic kidneys. Drug Discov Today 2019; 24(1): 256-62.
[http://dx.doi.org/10.1016/j.drudis.2018.08.005] [PMID: 30086405]
[93]
Li N, Zhou H. SGLT2 inhibitors: A novel player in the treatment and prevention of diabetic cardiomyopathy. Drug Des Devel Ther 2020; 14: 4775-88.
[http://dx.doi.org/10.2147/DDDT.S269514] [PMID: 33192053]
[94]
Baartscheer A, Schumacher CA, Wüst RC, et al. Empagliflozin decreases myocardial cytoplasmic Na+ through inhibition of the cardiac Na+/H+ exchanger in rats and rabbits. Diabetologia 2017; 60(3): 568-73.
[http://dx.doi.org/10.1007/s00125-016-4134-x] [PMID: 27752710]
[95]
Uthman L, Baartscheer A, Bleijlevens B, et al. Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: Inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 2018; 61(3): 722-6.
[http://dx.doi.org/10.1007/s00125-017-4509-7] [PMID: 29197997]
[96]
McCullough PA, Kluger AY, Tecson KM, et al. Inhibition of the sodium-proton antiporter (exchanger) is a plausible mechanism of potential benefit and harm for drugs designed to block sodium glucose co-transporter 2. Rev Cardiovasc Med 2018; 19(2): 51-63.
[PMID: 31032603]
[97]
Wilcox CS. Antihypertensive and renal mechanisms of SGLT2 (Sodium-Glucose Linked Transporter 2) inhibitors. Hypertension 2020; 75(4): 894-901.
[http://dx.doi.org/10.1161/HYPERTENSIONAHA.119.11684] [PMID: 32114848]
[98]
Pessoa TD, Campos LC, Carraro-Lacroix L, Girardi AC, Malnic G. Functional role of glucose metabolism, osmotic stress, and sodium- glucose cotransporter isoform-mediated transport on Na+/H+ exchanger isoform 3 activity in the renal proximal tubule. J Am Soc Nephrol 2014; 25(9): 2028-39.
[http://dx.doi.org/10.1681/ASN.2013060588] [PMID: 24652792]
[99]
Onishi A, Fu Y, Darshi M, et al. Effect of renal tubule-specific knockdown of the Na+/H+ exchanger NHE3 in Akita diabetic mice. Am J Physiol Renal Physiol 2019; 317(2): F419-34.
[http://dx.doi.org/10.1152/ajprenal.00497.2018] [PMID: 31166707]
[100]
DeFronzo RA, Reeves WB, Awad AS. Pathophysiology of diabetic kidney disease: Impact of SGLT2 inhibitors. Nat Rev Nephrol 2021; 17(5): 319-34.
[http://dx.doi.org/10.1038/s41581-021-00393-8]
[101]
De Pascalis A, Cianciolo G, Capelli I, Brunori G, La Manna G. SGLT2 inhibitors, sodium and off-target effects: An overview. J Nephrol 2021; 34(3): 673-80.
[http://dx.doi.org/10.1007/s40620-020-00845-7] [PMID: 32870494]
[102]
Mori KP, Yokoi H, Kasahara M, et al. Increase of total nephron albumin filtration and reabsorption in diabetic nephropathy. J Am Soc Nephrol 2017; 28(1): 278-89.
[http://dx.doi.org/10.1681/ASN.2015101168] [PMID: 27382987]
[103]
Sabolic I, Vrhovac I, Eror DB, et al. Expression of Na+-D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am J Physiol Cell Physiol 2012; 302(8): C1174-88.
[http://dx.doi.org/10.1152/ajpcell.00450.2011] [PMID: 22262063]
[104]
Vallon V, Platt KA, Cunard R, et al. SGLT2 mediates glucose reabsorption in the early proximal tubule. J Am Soc Nephrol 2011; 22(1): 104-12.
[http://dx.doi.org/10.1681/ASN.2010030246] [PMID: 20616166]
[105]
Takiyama Y, Sera T, Nakamura M, et al. Impacts of diabetes and an SGLT2 inhibitor on the glomerular number and volume in db/db mice, as estimated by synchrotron radiation micro-CT at SPring-8. EBioMedicine 2018; 36: 329-46.
[http://dx.doi.org/10.1016/j.ebiom.2018.09.048] [PMID: 30322799]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy