Generic placeholder image

Current Traditional Medicine

Editor-in-Chief

ISSN (Print): 2215-0838
ISSN (Online): 2215-0846

Review Article

Potential Plant Secondary Metabolites for the Prevention of Skin Cancers and their Mechanism: A Review

Author(s): Jai Parkash Kadian*, Madan Lal Kaushik*, Bhupendra Chauhan and Aniruddh Dev Singh

Volume 9, Issue 4, 2023

Published on: 12 September, 2022

Article ID: e170622206120 Pages: 14

DOI: 10.2174/2215083808666220617105123

Abstract

Skin carcinoma is the most common malignancy, including malignant melanoma and non-malignant melanoma throughout the world, and in the last three decades, its incidences have been increasing drastically. High cost, severe side effects and development of resistance from conventional chemotherapy have decreased its acceptability and increased the urge for the search for alternate options. Therefore, plant derived phytochemicals have come up with cost effectiveness, ease of availability and promising potential for skin related cancers. In spite of the lack of clinical data involving humans to support the positive effects of phytochemicals on different types of skin cancers, topical application of these plant derived anticancer phytochemicals is extremely promising. Many mechanisms and pathways underlie the antitumor activity of plant-derived phytochemicals , such as loss of mitochondrial membrane potential, the release of cytochrome-c, suppression of antiapoptotic proteins and induction of proapoptotic proteins, activation of caspases, Fas, FADD and p53 signaling pathway, inhibition of Akt signaling pathway, phosphorylation of ERK, P13K, Raf, survivin gene, STAT 3 and NF-kB. The use of cell line models in the in vitro study of skin cancer offers the opportunity to identify the mechanisms of action of plant derived phytochemicals against various types of skin cancer. As such, this article aims at providing a comprehensive review of plant extracts and phytochemicals, which have been reported to exhibit promising anti-carcinogenic properties in animal models and against various skin cancer cell lines.

Keywords: Plant derived, metabolites, skin carcinoma, cell lines, phytochemicals, anticarcinogenic, melanoma.

Graphical Abstract
[1]
Kuppusamy P, Yusoff MM, Maniam GP, Govindan N. A case study- regulation and functional mechanisms of cancer cells and control its activity using plants and their derivatives. J Pharm Res 2013; 6(8): 884-92.
[http://dx.doi.org/10.1016/j.jopr.2013.08.002]
[2]
World Health Organization. Cancer report. Available from: https://www.who.int/en/news-room/fact-sheets/detail/cancer Accessed 18 December, 2019.
[3]
Khazir J, Mir BA, Pilcher L, Riley DL. Role of plants in anticancer drug discovery. Phytochem Lett 2014; 7: 173-81.
[http://dx.doi.org/10.1016/j.phytol.2013.11.010]
[4]
Higgins JPT, Sally G. Cochrane Handbook for Systematic Reviews of Interventions. England: John Wiley & Sons: Wiley-Blackwell 2011; Vol. 4.
[5]
Liberati A, Altman DG, Tetzlaff J, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. PLOS Med 2009; 6(7): e1000100.
[http://dx.doi.org/10.1371/journal.pmed.1000100] [PMID: 19621070]
[6]
National Cancer Institute USA. Skin cancer treatment Available from: https://www.cancer.gov/types/skin/patient/skin-treatment-pdq#_1 Accessed 18 December, 2019.
[7]
Cakir BO, Adamson P, Cingi C. Epidemiology and economic burden of nonmelanoma skin cancer. Facial Plast Surg Clin North Am 2012; 20(4): 419-22.
[http://dx.doi.org/10.1016/j.fsc.2012.07.004] [PMID: 23084294]
[8]
Rajpar S, Marsden J. ABC of Skin Cancer. USA: Blackwell Publishing Ltd 2008.
[9]
Dunphy LM, Winland-Brown JE. Primary Care: The Art and Science of Advanced Practice Nursing. (3rd ed.), Philadelphia: F.A. Davis Company 2011.
[10]
Stewart BW, Wild CP. World Cancer Report. World Health Organization 2014.
[11]
Rigel DS. Cutaneous ultraviolet exposure and its relationship to the development of skin cancer. J Am Acad Dermatol 2008; 58(5) (Suppl. 2): S129-32.
[http://dx.doi.org/10.1016/j.jaad.2007.04.034] [PMID: 18410798]
[12]
Maverakis E, Miyamura Y, Bowen MP, Correa G, Ono Y, Goodarzi H. Light, including ultraviolet. J Autoimmun 2010; 34(3): J247-57.
[http://dx.doi.org/10.1016/j.jaut.2009.11.011] [PMID: 20018479]
[13]
Leiter U, Garbe C. Epidemiology of melanoma and nonmelanoma skin cancer--the role of sunlight Sunlight, Vitamin D and Skin Cancer. Switzerland: E-Publishing Springer Nature 2008.
[http://dx.doi.org/10.1007/978-0-387-77574-6_8]
[14]
Chiao EY, Krown SE. Update on non-acquired immunodeficiency syndrome-defining malignancies. Curr Opin Oncol 2003; 15(5): 389-97.
[http://dx.doi.org/10.1097/00001622-200309000-00008] [PMID: 12960522]
[15]
Dubas LE, Ingraffea A. Nonmelanoma skin cancer. Facial Plast Surg Clin Am 2013; 21(1): 43-53.
[http://dx.doi.org/10.1016/j.fsc.2012.10.003] [PMID: 23369588]
[16]
Harris RE. Epidemiology of chronic disease: Global perspectives. (2nd ed.), USA: Jones & Bartlett Publishers 2019.
[17]
Carneiro BA, El-Deiry WS. Targeting apoptosis in cancer therapy. Nat Rev Clin Oncol 2020; 17(7): 395-417.
[http://dx.doi.org/10.1038/s41571-020-0341-y] [PMID: 32203277]
[18]
Bode AM, Dong Z. Signal transduction pathways in cancer development and as targets for cancer prevention. Prog Nucleic Acid Res Mol Biol 2005; 79: 237-97.
[http://dx.doi.org/10.1016/S0079-6603(04)79005-4] [PMID: 16096030]
[19]
Eferl R, Wagner EF. AP-1: A double-edged sword in tumorigenesis. Nat Rev Cancer 2003; 3(11): 859-68.
[http://dx.doi.org/10.1038/nrc1209] [PMID: 14668816]
[20]
Alves-Silva JM, Romane A, Efferth T, Salgueiro L. North African medicinal plants traditionally used in cancer therapy. Front Pharmacol 2017; 8: 383.
[http://dx.doi.org/10.3389/fphar.2017.00383] [PMID: 28694778]
[21]
Tariq A, Sadia S, Pan K, et al. A systematic review on ethnomedicines of anti-cancer plants. Phytother Res 2017; 31(2): 202-64.
[http://dx.doi.org/10.1002/ptr.5751] [PMID: 28093828]
[22]
Nwodo JN, Ibezim A, Simoben CV, Ntie-Kang F. Exploring cancer therapeutics with natural products from African medicinal plants, Part II: Alkaloids, terpenoids and flavonoids. Anticancer Agents Med Chem 2016; 16(1): 108-27.
[http://dx.doi.org/10.2174/1871520615666150520143827] [PMID: 25991425]
[23]
Habli Z, Toumieh G, Fatfat M, Rahal ON, Gali-Muhtasib H. Emerging cytotoxic alkaloids in the battle against cancer: Overview of molecular mechanisms. Molecules 2017; 22(2): 250.
[http://dx.doi.org/10.3390/molecules22020250] [PMID: 28208712]
[24]
Kalra N, Arora A, Shukla Y. Involvement of multiple signaling pathways in diallyl sulfide mediated apoptosis in mouse skin tumors. Asian Pac J Cancer Prev 2006; 7(4): 556-62.
[PMID: 17250426]
[25]
Wang HC, Pao J, Lin SY, Sheen LY. Molecular mechanisms of garlic-derived allyl sulfides in the inhibition of skin cancer progression. Ann N Y Acad Sci 2012; 1271(1): 44-52.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06743.x] [PMID: 23050963]
[26]
Zhang W, Lan Y, Huang Q, Hua Z. Galangin induces B16F10 melanoma cell apoptosis via mitochondrial pathway and sustained activation of p38 MAPK. Cytotechnology 2013; 65(3): 447-55.
[http://dx.doi.org/10.1007/s10616-012-9499-1] [PMID: 23001390]
[27]
Aydoğmuş-Öztürk F, Jahan H, Beyazit N, Günaydın K, Choudhary MI. The anticancer activity of visnagin, isolated from Ammi visnaga L., against the human malignant melanoma cell lines, HT 144. Mol Biol Rep 2019; 46(2): 1709-14.
[http://dx.doi.org/10.1007/s11033-019-04620-1] [PMID: 30694454]
[28]
Choi J, Lee DH, Park SY, Seol JW. Diosmetin inhibits tumor development and block tumor angiogenesis in skin cancer. Biomed Pharmacother 2019; 117: 109091.
[http://dx.doi.org/10.1016/j.biopha.2019.109091] [PMID: 31228803]
[29]
Ozturk G, Ginis Z, Akyol S, Erden G, Gurel A, Akyol O. The anticancer mechanism of caffeic acid phenethyl ester (CAPE): Review of melanomas, lung and prostate cancers. Eur Rev Med Pharmacol Sci 2012; 16(15): 2064-8.
[PMID: 23280020]
[30]
Aggarwal BB, Bhardwaj A, Aggarwal RS, Seeram NP, Shishodia S, Takada Y. Role of resveratrol in prevention and therapy of cancer: Preclinical and clinical studies. Anticancer Res 2004; 24(5A): 2783-840.
[PMID: 15517885]
[31]
Niles RM, McFarland M, Weimer MB, Redkar A, Fu YM, Meadows GG. Resveratrol is a potent inducer of apoptosis in human melanoma cells. Cancer Lett 2003; 190(2): 157-63.
[http://dx.doi.org/10.1016/S0304-3835(02)00676-6] [PMID: 12565170]
[32]
Ahmad N, Adhami VM, Afaq F, Feyes DK, Mukhtar H. Resveratrol causes WAF-1/p21-mediated G(1)-phase arrest of cell cycle and induction of apoptosis in human epidermoid carcinoma A431 cells. Clin Cancer Res 2001; 7(5): 1466-73.
[PMID: 11350919]
[33]
Larrosa M, Tomás-Barberán FA, Espín JC. Grape polyphenol resveratrol and the related molecule 4-hydroxystilbene induce growth inhibition, apoptosis, S-phase arrest, and upregulation of cyclins A, E, and B1 in human SK-Mel-28 melanoma cells. J Agric Food Chem 2003; 51(16): 4576-84.
[http://dx.doi.org/10.1021/jf030073c] [PMID: 14705880]
[34]
Mantena SK, Sharma SD, Katiyar SK. Berberine inhibits growth, induces G1 arrest and apoptosis in human epidermoid carcinoma A431 cells by regulating Cdki-Cdk-cyclin cascade, disruption of mitochondrial membrane potential and cleavage of caspase 3 and PARP. Carcinogenesis 2006; 27(10): 2018-27.
[http://dx.doi.org/10.1093/carcin/bgl043] [PMID: 16621886]
[35]
Chaudhary R, Jahan S, Goyal PK. Chemopreventive potential of an Indian medicinal plant (Tinospora cordifolia) on skin carcinogenesis in mice. J Environ Pathol Toxicol Oncol 2008; 27(3): 233-43.
[http://dx.doi.org/10.1615/JEnvironPatholToxicolOncol.v27.i3.70] [PMID: 18652570]
[36]
Król SK. Kiełbus M, Rivero-Müller A, Stepulak A. Comprehensive review on betulin as a potent anticancer agent. BioMed Res Int 2015; 2015: 584189.
[http://dx.doi.org/10.1155/2015/584189] [PMID: 25866796]
[37]
Orchel A, Kulczycka A, Chodurek E, et al. Influence of betulin and 28-O-propynoylbetulin on proliferation and apoptosis of human melanoma cells (G-361). Postepy Hig Med Dosw 2014; 68: 191-7.
[http://dx.doi.org/10.5604/17322693.1088757] [PMID: 24662787]
[38]
Zhao W, Entschladen F, Liu H, et al. Boswellic acid acetate induces differentiation and apoptosis in highly metastatic melanoma and fibrosarcoma cells. Cancer Detect Prev 2003; 27(1): 67-75.
[http://dx.doi.org/10.1016/S0361-090X(02)00170-8] [PMID: 12600419]
[39]
Rudolf K, Cervinka M, Rudolf E. Sulforaphane-induced apoptosis involves p53 and p38 in melanoma cells. Apoptosis 2014; 19(4): 734-47.
[http://dx.doi.org/10.1007/s10495-013-0959-7] [PMID: 24375172]
[40]
Aronchik I, Kundu A, Quirit JG, Firestone GL. The antiproliferative response of indole-3-carbinol in human melanoma cells is triggered by an interaction with NEDD4-1 and disruption of wild-type PTEN degradation. Mol Cancer Res 2014; 12(11): 1621-34.
[http://dx.doi.org/10.1158/1541-7786.MCR-14-0018] [PMID: 25009292]
[41]
Katiya SK, Agarwal A, Wang ZY, Bhatia AK, Mukhtar H. (-) Epigallocatechin 3 gallate in Camellia sinensis leaves from Himalayan region of Sikkim: Inhibitory effects against biochemical events and tumor initiation in sencar mouse skin. Nutr Cancer 1992(online 2009) 18(1): 73-83.
[42]
Nihal M, Ahmad N, Mukhtar H, Wood GS. Anti-proliferative and proapoptotic effects of (-)-epigallocatechin-3-gallate on human melanoma: Possible implications for the chemoprevention of melanoma. Int J Cancer 2005; 114(4): 513-21.
[http://dx.doi.org/10.1002/ijc.20785] [PMID: 15609335]
[43]
Shin DH, Kim OH, Jun HS, Kang MK. Inhibitory effect of capsaicin on B16-F10 melanoma cell migration via the phosphatidylinositol 3-kinase/Akt/Rac1 signal pathway. Exp Mol Med 2008; 40(5): 486-94.
[http://dx.doi.org/10.3858/emm.2008.40.5.486] [PMID: 18985006]
[44]
Park BC, Bosire KO, Lee ES, Lee YS, Kim JA. Asiatic acid induces apoptosis in SK-MEL-2 human melanoma cells. Cancer Lett 2005; 218(1): 81-90.
[http://dx.doi.org/10.1016/j.canlet.2004.06.039] [PMID: 15639343]
[45]
Looi CY, Moharram B, Paydar M, et al. Induction of apoptosis in melanoma A375 cells by a chloroform fraction of Centratherum anthelminticum (L.) seeds involves NF-kappaB, p53 and Bcl-2-controlled mitochondrial signaling pathways. BMC Complement Altern Med 2013; 13(1): 166.
[http://dx.doi.org/10.1186/1472-6882-13-166] [PMID: 23837445]
[46]
Choi BBR, Shin SH, Kim UK, Hong JW, Kim GCS. Phase cell cycle arrest and apoptosis is induced by Eugenol in G361 human melanoma cells. Int J Oral Biol 2011; 36(3): 129-34.
[47]
Das I, Das S, Saha T. Saffron suppresses oxidative stress in DMBA-induced skin carcinoma: A histopathological study. Acta Histochem 2010; 112(4): 317-27.
[http://dx.doi.org/10.1016/j.acthis.2009.02.003] [PMID: 19328523]
[48]
Ahmed MS, Halaweish FT. Cucurbitacins: Potential candidates targeting mitogen-activated protein kinase pathway for treatment of melanoma. J Enzyme Inhib Med Chem 2014; 29(2): 162-7.
[http://dx.doi.org/10.3109/14756366.2012.762646] [PMID: 23368732]
[49]
Chen W, Tang W, Lou L, Zhao W. Pregnane, coumarin and lupane derivatives and cytotoxic constituents from Helicteres angustifolia. Phytochemistry 2006; 67(10): 1041-7.
[http://dx.doi.org/10.1016/j.phytochem.2006.03.005] [PMID: 16631831]
[50]
Kumar N, Kale RK, Tiku AB. Chemopreventive effect of Lagenaria siceraria in two stages DMBA plus croton oil induced skin papillomagenesis. Nutr Cancer 2013; 65(7): 991-1001.
[http://dx.doi.org/10.1080/01635581.2013.814800] [PMID: 23914728]
[51]
Zhang YP, Li YQ, Lv YT, Wang JM. Effect of curcumin on the proliferation, apoptosis, migration, and invasion of human melanoma A375 cells. Genet Mol Res 2015; 14(1): 1056-67.
[http://dx.doi.org/10.4238/2015.February.6.9] [PMID: 25730045]
[52]
Tran QL, Tezuka Y, Banskota AH, Tran QK, Saiki I, Kadota S. New spirostanol steroids and steroidal saponins from roots and rhizomes of Dracaena angustifolia and their antiproliferative activity. J Nat Prod 2001; 64(9): 1127-32.
[http://dx.doi.org/10.1021/np0100385] [PMID: 11575942]
[53]
Duh PD, Chen ZT, Lee SW, et al. Antiproliferative activity and apoptosis induction of Eucalyptus citriodora resin and its major bioactive compound in melanoma B16F10 cells. J Agric Food Chem 2012; 60(32): 7866-72.
[http://dx.doi.org/10.1021/jf301068z] [PMID: 22838509]
[54]
Larrosa M, Tomás-Barberán FA, Espín JC. The grape and wine polyphenol piceatannol is a potent inducer of apoptosis in human SK-Mel-28 melanoma cells. Eur J Nutr 2004; 43(5): 275-84.
[http://dx.doi.org/10.1007/s00394-004-0471-5] [PMID: 15309446]
[55]
Iranshahi M, Sahebkar A, Hosseini ST, Takasaki M, Konoshima T, Tokuda H. Cancer chemopreventive activity of diversin from Ferula diversivittata in vitro and in vivo. Phytomedicine 2010; 17(3-4): 269-73.
[http://dx.doi.org/10.1016/j.phymed.2009.05.020] [PMID: 19577457]
[56]
Anastyuk SD, Shevchenko NM, Ermakova SP, et al. Anticancer activity in vitro of a fucoidan from the brown alga Fucus evanescens and its low-molecular fragments, structurally characterized by tandem mass-spectrometry. Carbohydr Polym 2012; 87(1): 186-94.
[http://dx.doi.org/10.1016/j.carbpol.2011.07.036] [PMID: 34662949]
[57]
Harhaji Trajković LM, Mijatović SA, Maksimović-Ivanić DD, et al. Anticancer properties of Ganoderma lucidum methanol extracts in vitro and in vivo. Nutr Cancer 2009; 61(5): 696-707.
[http://dx.doi.org/10.1080/01635580902898743] [PMID: 19838944]
[58]
Wang JJ, Sanderson BJS, Zhang W. Cytotoxic effect of xanthones from pericarp of the tropical fruit mangosteen (Garcinia mangostana Linn.) on human melanoma cells. Food Chem Toxicol 2011; 49(9): 2385-91.
[http://dx.doi.org/10.1016/j.fct.2011.06.051] [PMID: 21723363]
[59]
Wang JJ, Shi QH, Zhang W, Sanderson BJS. Anti-skin cancer properties of phenolic-rich extract from the pericarp of mangosteen (Garcinia mangostana Linn.). Food Chem Toxicol 2012; 50(9): 3004-13.
[http://dx.doi.org/10.1016/j.fct.2012.06.003] [PMID: 22705325]
[60]
Khuda-Bukhsh AR, Bhattacharyya SS, Paul S, Boujedaini N. Polymeric nanoparticle encapsulation of a naturally occurring plant scopoletin and its effects on human melanoma cell A375. J Chin Integr Med 2010; 8(9): 853-62.
[http://dx.doi.org/10.3736/jcim20100909] [PMID: 20836976]
[61]
Wang H, Zhu Y, Li C, et al. Effects of genistein on cell cycle and apoptosis of two murine melanoma cell lines. Tsinghua Sci Technol 2007; 12(4): 372-80.
[http://dx.doi.org/10.1016/S1007-0214(07)70056-1]
[62]
Danciu C, Caraba A, Bojin F, et al. Genistein does not induce caspase 2 activation in vitro on B16 melanoma cell lines. Farmacia 2014; 62(4): 753-60.
[63]
Song NR, Lee E, Byun S, et al. Isoangustone A, a novel licorice compound, inhibits cell proliferation by targeting PI3K, MKK4, and MKK7 in human melanoma. Cancer Prev Res (Phila) 2013; 6(12): 1293-303.
[http://dx.doi.org/10.1158/1940-6207.CAPR-13-0134] [PMID: 24104352]
[64]
Touriño S, Lizárraga D, Carreras A, et al. Highly galloylated tannin fractions from witch hazel (Hamamelis virginiana) bark: Electron transfer capacity, in vitro antioxidant activity, and effects on skin-related cells. Chem Res Toxicol 2008; 21(3): 696-704.
[http://dx.doi.org/10.1021/tx700425n] [PMID: 18311930]
[65]
Balasubramanian R, Narayanan M, Kedalgovindaram L, Rama KD. Cytotoxic activity of flavone glycoside from the stem of Indigofera aspalathoides Vahl. J Nat Med 2007; 61(1): 80-3.
[http://dx.doi.org/10.1007/s11418-006-0026-6]
[66]
Kim KN, Ahn G, Heo SJ, et al. Inhibition of tumor growth in vitro and in vivo by fucoxanthin against melanoma B16F10 cells. Environ Toxicol Pharmacol 2013; 35(1): 39-46.
[http://dx.doi.org/10.1016/j.etap.2012.10.002] [PMID: 23228706]
[67]
Navarro E, Alonso SJ, Alonso PJ, Trujillo J, Jorge E, Perez C. Pharmacological effects of elenoside, an arylnaphthalene lignan. Biol Pharm Bull 2001; 24(3): 254-8.
[http://dx.doi.org/10.1248/bpb.24.254] [PMID: 11256480]
[68]
Panza E, Tersigni M, Iorizzi M, et al. Lauroside B, a megastigmane glycoside from Laurus nobilis (bay laurel) leaves, induces apoptosis in human melanoma cell lines by inhibiting NF-κB activation. J Nat Prod 2011; 74(2): 228-33.
[http://dx.doi.org/10.1021/np100688g] [PMID: 21188975]
[69]
Das S, Das J, Paul A, Samadder A, Khuda-Bukhsh AR. Apigenin, a bioactive flavonoid from Lycopodium clavatum, stimulates nucleotide excision repair genes to protect skin keratinocytes from ultraviolet B-induced reactive oxygen species and DNA damage. J Acupunct Meridian Stud 2013; 6(5): 252-62.
[http://dx.doi.org/10.1016/j.jams.2013.07.002] [PMID: 24139463]
[70]
Das S, Das J, Samadder A, Boujedaini N, Khuda-Bukhsh AR. Apigenin-induced apoptosis in A375 and A549 cells through selective action and dysfunction of mitochondria. Exp Biol Med (Maywood) 2012; 237(12): 1433-48.
[http://dx.doi.org/10.1258/ebm.2012.012148] [PMID: 23354402]
[71]
Zhao G, Han X, Cheng W, et al. Apigenin inhibits proliferation and invasion, and induces apoptosis and cell cycle arrest in human melanoma cells. Oncol Rep 2017; 37(4): 2277-85.
[http://dx.doi.org/10.3892/or.2017.5450] [PMID: 28260058]
[72]
Gschwendt M, Müller HJ, Kielbassa K, et al. Rottlerin, a novel protein kinase inhibitor. Biochem Biophys Res Commun 1994; 199(1): 93-8.
[http://dx.doi.org/10.1006/bbrc.1994.1199] [PMID: 8123051]
[73]
Daveri E, Valacchi G, Romagnoli R, Maellaro E, Maioli E. Antiproliferative effect of Rottlerin on SK-MEL-28 melanoma cells. Evid Based Complement Altern Med 2015; 1-9.
[74]
Syed DN, Afaq F, Maddodi N, et al. Inhibition of human melanoma cell growth by the dietary flavonoid fisetin is associated with disruption of Wnt/β-catenin signaling and decreased Mitf levels. J Invest Dermatol 2011; 131(6): 1291-9.
[http://dx.doi.org/10.1038/jid.2011.6] [PMID: 21346776]
[75]
Pal HC, Sharma S, Elmets CA, Athar M, Afaq F. Fisetin inhibits growth, induces G₂/M arrest and apoptosis of human epidermoid carcinoma A431 cells: Role of mitochondrial membrane potential disruption and consequent caspases activation. Exp Dermatol 2013; 22(7): 470-5.
[http://dx.doi.org/10.1111/exd.12181] [PMID: 23800058]
[76]
Pal HC, Sharma S, Strickland LR, et al. Fisetin inhibits human melanoma cell invasion through promotion of mesenchymal to epithelial transition and by targeting MAPK and NFκB signaling pathways. PLOS One 2014; 9(1): 1-13.
[http://dx.doi.org/10.1371/journal.pone.0086338]
[77]
Teh SS, Cheng Lian Ee G, Mah SH, Lim YM, Rahmani M. Mesua beccariana (Clusiaceae), a source of potential anti-cancer lead compounds in drug discovery. Molecules 2012; 17(9): 10791-800.
[http://dx.doi.org/10.3390/molecules170910791] [PMID: 22964497]
[78]
Teh SS, Ee GC, Mah SH, et al. In vitro cytotoxic, antioxidant, and antimicrobial activities of Mesua beccariana (Baill.) Kosterm., Mesua ferrea Linn., and Mesua congestiflora extracts. BioMed Res Int 2013; 2013: 517072.
[http://dx.doi.org/10.1155/2013/517072] [PMID: 24089682]
[79]
Jaszewska E. Kośmider A, Kiss AK, Naruszewicz M. Pro-oxidative and pro-apoptotic action of defatted seeds of Oenothera paradoxa on human skin melanoma cells. J Agric Food Chem 2009; 57(18): 8282-9.
[http://dx.doi.org/10.1021/jf901395t] [PMID: 19694434]
[80]
Fouche G, Cragg GM, Pillay P, Kolesnikova N, Maharaj VJ, Senabe J. In vitro anticancer screening of South African plants. J Ethnopharmacol 2008; 119(3): 455-61.
[http://dx.doi.org/10.1016/j.jep.2008.07.005] [PMID: 18678239]
[81]
Hwang SH, Lee BH, Kim HJ, et al. Suppression of metastasis of intravenously-inoculated B16/F10 melanoma cells by the novel ginseng-derived ingredient, gintonin: Involvement of autotaxin inhibition. Int J Oncol 2013; 42(1): 317-26.
[http://dx.doi.org/10.3892/ijo.2012.1709] [PMID: 23174888]
[82]
Harlev E, Nevo E, Lansky EP, Lansky S, Bishayee A. Anticancer attributes of desert plants: A review. Anticancer Drugs 2012; 23(3): 255-71.
[http://dx.doi.org/10.1097/CAD.0b013e32834f968c] [PMID: 22217921]
[83]
Massaoka MH, Matsuo AL, Figueiredo CR, et al. Jacaranone induces apoptosis in melanoma cells via ROS-mediated downregulation of Akt and p38 MAPK activation and displays antitumor activity in-vivo. PLOS One 2012; 7(6): 1-11.
[http://dx.doi.org/10.1371/journal.pone.0038698]
[84]
Rafiq RA, Ganai BA, Tasduq SA. Piperine promotes ultraviolet (UV)-B-induced cell death in B16F10 mouse melanoma cells through modulation of major regulators of cell survival. RSC Advances 2015; 5(16): 11884-94.
[http://dx.doi.org/10.1039/C4RA12860E]
[85]
Wang CC, Chiang YM, Sung SC, Hsu YL, Chang JK, Kuo PL. Plumbagin induces cell cycle arrest and apoptosis through reactive oxygen species/c-Jun N-terminal kinase pathways in human melanoma A375.S2 cells. Cancer Lett 2008; 259(1): 82-98.
[http://dx.doi.org/10.1016/j.canlet.2007.10.005] [PMID: 18023967]
[86]
Brohem CA, Sawada TC, Massaro RR, et al. Apoptosis induction by 4-nerolidylcatechol in melanoma cell lines. Toxicol In Vitro 2009; 23(1): 111-9.
[http://dx.doi.org/10.1016/j.tiv.2008.11.004] [PMID: 19059332]
[87]
Krohn K, Gehle D, Dey SK, et al. Prismatomerin, a new iridoid from Prismatomeris tetrandra. Structure elucidation, determination of absolute configuration, and cytotoxicity. J Nat Prod 2007; 70(8): 1339-43.
[http://dx.doi.org/10.1021/np070202+] [PMID: 17665951]
[88]
Hora JJ, Maydew ER, Lansky EP, Dwivedi C. Chemopreventive effects of pomegranate seed oil on skin tumor development in CD1 mice. J Med Food 2003; 6(3): 157-61.
[http://dx.doi.org/10.1089/10966200360716553] [PMID: 14585180]
[89]
Lucci P, Pacetti D, Loizzo MR, Frega NG. Punica granatum cv. Dente di Cavallo seed ethanolic extract: Antioxidant and antiproliferative activities. Food Chem 2015; 167: 475-83.
[http://dx.doi.org/10.1016/j.foodchem.2014.06.123] [PMID: 25149014]
[90]
Darmanin S, Wismayer PS, Camilleri Podesta MT, Micallef MJ, Buhagiar JA. An extract from Ricinus communis L. leaves possesses cytotoxic properties and induces apoptosis in SK-MEL-28 human melanoma cells. Nat Prod Res 2009; 23(6): 561-71.
[http://dx.doi.org/10.1080/14786410802228579] [PMID: 19384733]
[91]
Jung SK, Kim JE, Lee SY, et al. The P110 subunit of PI3-K is a therapeutic target of acacetin in skin cancer. Carcinogenesis 2014; 35(1): 123-30.
[http://dx.doi.org/10.1093/carcin/bgt266] [PMID: 23913940]
[92]
Manu KA, Kuttan G. Ursolic acid induces apoptosis by activating p53 and caspase-3 gene expressions and suppressing NF-kappaB mediated activation of bcl-2 in B16F-10 melanoma cells. Int Immunopharmacol 2008; 8(7): 974-81.
[http://dx.doi.org/10.1016/j.intimp.2008.02.013] [PMID: 18486908]
[93]
Lee YH, Wang E, Kumar N, Glickman RD. Ursolic acid differentially modulates apoptosis in skin melanoma and retinal pigment epithelial cells exposed to UV-VIS broadband radiation. Apoptosis 2014; 19(5): 816-28.
[http://dx.doi.org/10.1007/s10495-013-0962-z] [PMID: 24375173]
[94]
Tahergorabi Z, Abedini MR, Mitra M, Fard MH, Beydokhti H. “Ziziphus jujuba”: A red fruit with promising anticancer activities. Pharmacogn Rev 2015; 9(18): 99-106.
[http://dx.doi.org/10.4103/0973-7847.162108] [PMID: 26392706]
[95]
Monga J, Sharma M, Tailor N, Ganesh N. Antimelanoma and radioprotective activity of alcoholic aqueous extract of different species of Ocimum in C(57)BL mice. Pharm Biol 2011; 49(4): 428-36.
[http://dx.doi.org/10.3109/13880209.2010.521513] [PMID: 21428866]
[96]
Vetal MD, Lade VG, Rathod VK. Extraction of ursolic acid from Ocimum sanctum leaves: Kinetics and modeling. Food Bioprod Process 2012; 90(4): 793-8.
[http://dx.doi.org/10.1016/j.fbp.2012.07.003]
[97]
Oprean C, Ivan A, Bojin F, et al. Selective in vitro anti-melanoma activity of ursolic and oleanolic acids. Toxicol Mech Methods 2018; 28(2): 148-56.
[http://dx.doi.org/10.1080/15376516.2017.1373881] [PMID: 28868958]
[98]
Ghosh S, Sikdar S, Mukherjee A, Khuda-Bukhsh AR. Evaluation of chemopreventive potentials of ethanolic extract of Ruta graveolens against A375 skin melanoma cells in vitro and induced skin cancer in mice in vivo. J Integr Med 2015; 13(1): 34-44.
[http://dx.doi.org/10.1016/S2095-4964(15)60156-X] [PMID: 25609370]
[99]
Vishchuk OS, Ermakova SP, Zvyagintseva TN. Sulfated polysaccharides from brown seaweeds Saccharina japonica and Undaria pinnatifida: Isolation, structural characteristics, and antitumor activity. Carbohydr Res 2011; 346(17): 2769-76.
[http://dx.doi.org/10.1016/j.carres.2011.09.034] [PMID: 22024567]
[100]
Ale MT, Maruyama H, Tamauchi H, Mikkelsen JD, Meyer AS. Fucoidan from Sargassum sp. and Fucus vesiculosus reduces cell viability of lung carcinoma and melanoma cells in vitro and activates natural killer cells in mice in vivo. Int J Biol Macromol 2011; 49(3): 331-6.
[http://dx.doi.org/10.1016/j.ijbiomac.2011.05.009] [PMID: 21624396]
[101]
Atashrazm F, Lowenthal RM, Woods GM, Holloway AF, Dickinson JL. Fucoidan and cancer: A multifunctional molecule with anti-tumor potential. Mar Drugs 2015; 13(4): 2327-46.
[http://dx.doi.org/10.3390/md13042327] [PMID: 25874926]
[102]
Tundis R, Loizzo MR, Menichini F, Bonesi M, Colica C, Menichini F. In vitro cytotoxic activity of extracts and isolated constituents of Salvia leriifolia Benth. against a panel of human cancer cell lines. Chem Biodivers 2011; 8(6): 1152-62.
[http://dx.doi.org/10.1002/cbdv.201000311] [PMID: 21674787]
[103]
Ramasamy K, Agarwal R. Multitargeted therapy of cancer by silymarin. Cancer Lett 2008; 269(2): 352-62.
[http://dx.doi.org/10.1016/j.canlet.2008.03.053] [PMID: 18472213]
[104]
Lee MH, Huang Z, Kim DJ, et al. Direct targeting of MEK1/2 and RSK2 by silybin induces cell-cycle arrest and inhibits melanoma cell growth. Cancer Prev Res (Phila) 2013; 6(5): 455-65.
[http://dx.doi.org/10.1158/1940-6207.CAPR-12-0425] [PMID: 23447564]
[105]
Cragg GM, Newman DJ, Yang SS. Natural product extracts of plant and marine origin having antileukemia potential. The NCI experience. J Nat Prod 2006; 69(3): 488-98.
[http://dx.doi.org/10.1021/np0581216] [PMID: 16562862]
[106]
Elmasri WA, Hegazy MEF, Mechref Y, Pare PW. Cytotoxic saponin poliusaposide from Teucrium polium. RSC Adv 2015; 5(34): 27126-33.
[http://dx.doi.org/10.1039/C5RA02713F]
[107]
Biswas R, Mandal SK, Dutta S, Bhattacharyya SS, Boujedaini N, Khuda-Bukhsh AR. Thujone-rich fraction of Thuja occidentalis demonstrates major anticancer potentials: Evidences from in vitro studies on A375 cells. Evid Based Complement Alternat Med 2011; 2011: 568148.
[http://dx.doi.org/10.1093/ecam/neq042] [PMID: 21647317]
[108]
Calò R, Marabini L. Protective effect of Vaccinium myrtillus extract against UVA- and UVB-induced damage in a human keratinocyte cell line (HaCaT cells). J Photochem Photobiol B 2014; 132: 27-35.
[http://dx.doi.org/10.1016/j.jphotobiol.2014.01.013] [PMID: 24577051]
[109]
Wang E, Liu Y, Xu C, Liu J. Antiproliferative and proapoptotic activities of anthocyanin and anthocyanidin extracts from blueberry fruits on B16-F10 melanoma cells. Food Nutr Res 2017; 61(1): 1325308.
[http://dx.doi.org/10.1080/16546628.2017.1325308] [PMID: 28680383]
[110]
Mayola E, Gallerne C, Esposti DD, et al. Withaferin A induces apoptosis in human melanoma cells through generation of reactive oxygen species and down-regulation of Bcl-2. Apoptosis 2011; 16(10): 1014-27.
[http://dx.doi.org/10.1007/s10495-011-0625-x] [PMID: 21710254]
[111]
Antony J, Saikia M, Nath LR, et al. DW-F5: A novel formulation against malignant melanoma from Wrightia tinctoria. Sci Rep 2015; 5(1): 1-15.
[http://dx.doi.org/10.1038/srep11107]
[112]
Nigam N, Bhui K, Prasad S, George J, Shukla Y. [6]-Gingerol induces reactive oxygen species regulated mitochondrial cell death pathway in human epidermoid carcinoma A431 cells. Chem Biol Interact 2009; 181(1): 77-84.
[http://dx.doi.org/10.1016/j.cbi.2009.05.012] [PMID: 19481070]

© 2024 Bentham Science Publishers | Privacy Policy