Generic placeholder image

Letters in Drug Design & Discovery

Editor-in-Chief

ISSN (Print): 1570-1808
ISSN (Online): 1875-628X

Research Article

In silico Design of Novel SAM Analogs as Potential Inhibitors Against N2G966 16s rRNA Methyltransferase (RsmD)

Author(s): Muthu Raj Salaikumaran and Venkata Laxmi Siva Prasad Burra*

Volume 20, Issue 12, 2023

Published on: 06 September, 2022

Page: [1898 - 1910] Pages: 13

DOI: 10.2174/1570180819666220616105517

Price: $65

Abstract

Introduction: Tuberculosis (TB), caused by Mycobacterium tuberculosis (M.tb), has its natural history tracing back to 70,000 years. Latent M.tb infection is the reservoir of the TB epidemic. M.tb is becoming more prevalent and acquiring multidrug resistance among the first-line antibiotics.

Methods: Methylation is one of the main mechanisms through which bacteria develop resistance, hence targeting methyltransferases provides the opportunity to achieve two-birds-with-one-stone: a) antibiotic: inhibiting the translation activity and b) anti-resistance: eliminating methylation as a mode of resistance. Currently, no known drugs or lead molecules are targeting the methyltransferases, in general, and rRNA Small Subunit Methyltransferase D (RsmD) family, in particular, in M.tb species.

Results and Discussion: S-Adenosyl-L-methionine(SAM) is known as the universal donor of a methyl group which is an indispensable cofactor for the proper functioning of SAM-dependent methyltransferases. This in silico study attempts to design and develop novel SAM-analog inhibitors against RsmD, which in turn affects the growth and survival of M.tb in TB patients. The SAM-analogs were designed, after careful study and analysis of RsmD pharmacophore and SAM binding properties. The functional groups such as amide, amine, acetamide, formamide, hydroxyl, fluorine, iodine, and bromine were used to design novel analogs with the aim to improve the binding of analog with RsmD. The analogs that gave better docking scores followed by favourable binding affinities and ADMET properties than native SAM were ranked.

Conclusion: Among the library of SAM analogs, the top two analogs with IDs: SAM_172 and SAM_153 need testing and validation for their efficacy through in vitro and in vivo studies.

Keywords: Tuberculosis, S-Adenosyl-L-Methionine, SAM-analogs, methyltransferases, rRNA small subunit methyltransferase D, pharmacophore.

Graphical Abstract
[1]
Churchyard, G.; Kim, P.; Shah, N.S.; Rustomjee, R.; Gandhi, N.; Mathema, B.; Dowdy, D.; Kasmar, A.; Cardenas, V. What we know about tuberculosis transmission: An overview. J. Infect. Dis., 2017, 216(Suppl. 6), S629-S635.
[http://dx.doi.org/10.1093/infdis/jix362] [PMID: 29112747]
[2]
Witek, M.A.; Kuiper, E.G.; Minten, E.; Crispell, E.K.; Conn, G.L. A novel motif for S-Adenosyl-l-methionine binding by the ribosomal RNA methyltransferase TlyA from mycobacterium tuberculosis. J. Biol. Chem., 2017, 292(5), 1977-1987.
[http://dx.doi.org/10.1074/jbc.M116.752659] [PMID: 28031456]
[3]
Pipeline | Working group for new TB drugs. Available from: https://www.newtbdrugs.org/pipeline/clinical
[4]
Salaikumaran, M.R.; Badiger, V.P.; Burra, V.L.S.P. 16S rRNA Methyltransferases as Novel Drug Targets Against Tuberculosis. Protein J., 2022, 41(1), 97-130.
[http://dx.doi.org/10.1007/s10930-021-10029-2] [PMID: 35112243]
[5]
Bishi, LY; Vedithi, SC; Blundell, TL Computational deorphaning of mycobacterium tuberculosis targets. Drug Discovery and Development - New Advances, 2020.
[http://dx.doi.org/10.5772/intechopen.82374]
[6]
Lewis, K. Platforms for antibiotic discovery. Nat. Rev. Drug Discov., 2013, 12(5), 371-387.
[http://dx.doi.org/10.1038/nrd3975] [PMID: 23629505]
[7]
Kaneko, T.; Cooper, C.; Mdluli, K. Challenges and opportunities in developing novel drugs for TB. Future Med. Chem., 2011, 3(11), 1373-1400.
[http://dx.doi.org/10.4155/fmc.11.115] [PMID: 21879843]
[8]
Campaniço, A.; Moreira, R.; Lopes, F. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. Eur. J. Med. Chem., 2018, 150, 525-545.
[http://dx.doi.org/10.1016/j.ejmech.2018.03.020] [PMID: 29549838]
[9]
Lauener, F. Genetic Determinants and Prediction of Antibiotic Resistance Phenotypes in Helicobacter Pylori;, 2019.
[http://dx.doi.org/10.3390/jcm8010053]
[10]
Singh, V.; Maniar, K.; Bhattacharayya, R. Public databases of 16s rRNA: A current perspective and future implications. Next Generat Sequenc & Applic, 2017, 04. [Epub ahead of print].
[http://dx.doi.org/10.4172/2469-9853.1000151]
[11]
Vázquez, D. Inhibitors of protein biosynthesis. Mol. Biol. Biochem. Biophys., 1979, 30, i-x, 1-312. [Epub ahead of print]
[http://dx.doi.org/10.1007/978-3-642-81309-2_1] [PMID: 370549]
[12]
Leclerc, D.; Melançon, P.; Brakier-Gingras, L. Mutations in the 915 region of Escherichia coli 16S ribosomal RNA reduce the binding of streptomycin to the ribosome. Nucleic Acids Res., 1991, 19(14), 3973-3977.
[http://dx.doi.org/10.1093/nar/19.14.3973] [PMID: 1713666]
[13]
Cantoni, G.L. S-Adenosylmethionine; a new intermediate formed enzymatically from L-methionine and adenosinetriphosphate. J. Biol. Chem., 1953, 204(1), 403-416.
[http://dx.doi.org/10.1016/S0021-9258(18)66148-4] [PMID: 13084611]
[14]
Waddell, T.G.; Eilders, L.L.; Patel, B.P.; Sims, M. Prebiotic methylation and the evolution of methyl transfer reactions in living cells. Orig. Life Evol. Biosph., 2000, 30(6), 539-548.
[http://dx.doi.org/10.1023/A:1026523222285] [PMID: 11196574]
[15]
Najm, W.I.; Reinsch, S.; Hoehler, F.; Tobis, J.S.; Harvey, P.W. Sadenosyl methionine (SAMe) versus celecoxib for the treatment of osteoarthritis symptoms: A double-blind cross-over trial. [ISRCTN36233495]. BMC Musculoskelet. Disord., 2004, 5, 6. [ISRCTN36233495].
[http://dx.doi.org/10.1186/1471-2474-5-6] [PMID: 15102339]
[16]
Wagner, J.M.; Hackanson, B.; Lübbert, M.; Jung, M. Histone deacetylase (HDAC) inhibitors in recent clinical trials for cancer therapy. Clin. Epigenetics, 2010, 1(3-4), 117-136.
[http://dx.doi.org/10.1007/s13148-010-0012-4] [PMID: 21258646]
[17]
Gören, J.L.; Stoll, A.L.; Damico, K.E.; Sarmiento, I.A.; Cohen, B.M. Bioavailability and lack of toxicity of S-adenosyl-Lmethionine (SAMe) in humans. Pharmacotherapy, 2004, 24(11), 1501-1507.
[http://dx.doi.org/10.1592/phco.24.16.1501.50943] [PMID: 15537554]
[18]
Borroni, B.; Agosti, C.; Archetti, S.; Costanzi, C.; Bonomi, S.; Ghianda, D.; Lenzi, G.L.; Caimi, L.; Di Luca, M.; Padovani, A. Catechol-O-methyltransferase gene polymorphism is associated with risk of psychosis in Alzheimer Disease. Neurosci. Lett., 2004, 370(2-3), 127-129.
[http://dx.doi.org/10.1016/j.neulet.2004.08.006] [PMID: 15488308]
[19]
Wuosmaa, A.M.; Hager, L.P. Methyl chloride transferase: A carbocation route for biosynthesis of halometabolites. Science, 1990, 249(4965), 160-162.
[http://dx.doi.org/10.1126/science.2371563] [PMID: 2371563]
[20]
Thomas, D.J.; Waters, S.B.; Styblo, M. Elucidating the pathway for arsenic methylation. Toxicol. Appl. Pharmacol., 2004, 198(3), 319-326.
[http://dx.doi.org/10.1016/j.taap.2003.10.020] [PMID: 15276411]
[21]
Venkataraman, S.; Dhankar, A.; Sinha, K.M. Crystal structure of a new form of RsmD-like RNA methyl transferase from Mycobacterium tuberculosis determined at 1.74 A resolution. 2018. [Epub ahead of print]
[22]
Sastry, G.M.; Adzhigirey, M.; Day, T.; Annabhimoju, R.; Sherman, W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput. Aided Mol. Des., 2013, 27(3), 221-234.
[http://dx.doi.org/10.1007/s10822-013-9644-8] [PMID: 23579614]
[23]
Shelley, J.C.; Cholleti, A.; Frye, L.L.; Greenwood, J.R.; Timlin, M.R.; Uchimaya, M. Epik: A software program for pK( a ) prediction and protonation state generation for drug-like molecules. J. Comput. Aided Mol. Des., 2007, 21(12), 681-691.
[http://dx.doi.org/10.1007/s10822-007-9133-z] [PMID: 17899391]
[24]
Halgren, T.A. Identifying and characterizing binding sites and assessing druggability. J. Chem. Inf. Model., 2009, 49(2), 377-389.
[http://dx.doi.org/10.1021/ci800324m] [PMID: 19434839]
[25]
Halgren, T. New method for fast and accurate binding-site identification and analysis. Chem. Biol. Drug Des., 2007, 69(2), 146-148.
[http://dx.doi.org/10.1111/j.1747-0285.2007.00483.x] [PMID: 17381729]
[26]
Friesner, R.A.; Banks, J.L.; Murphy, R.B.; Halgren, T.A.; Klicic, J.J.; Mainz, D.T.; Repasky, M.P.; Knoll, E.H.; Shelley, M.; Perry, J.K.; Shaw, D.E.; Francis, P.; Shenkin, P.S. Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J. Med. Chem., 2004, 47(7), 1739-1749.
[http://dx.doi.org/10.1021/jm0306430] [PMID: 15027865]
[27]
Halgren, T.A.; Murphy, R.B.; Friesner, R.A.; Beard, H.S.; Frye, L.L.; Pollard, W.T.; Banks, J.L. Glide: A new approach for rapid, accurate docking and scoring. 2. Enrichment factors in database screening. J. Med. Chem., 2004, 47(7), 1750-1759.
[http://dx.doi.org/10.1021/jm030644s] [PMID: 15027866]
[28]
Pires, D.E.V.; Blundell, T.L.; Ascher, D.B. pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. J. Med. Chem., 2015, 58(9), 4066-4072.
[http://dx.doi.org/10.1021/acs.jmedchem.5b00104] [PMID: 25860834]
[29]
Li, J.; Abel, R.; Zhu, K.; Cao, Y.; Zhao, S.; Friesner, R.A. The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 2011, 79(10), 2794-2812.
[http://dx.doi.org/10.1002/prot.23106] [PMID: 21905107]
[30]
Bowers, K.J.; Sacerdoti, F.D.; Salmon, J.K. Molecular dynamics---Scalable algorithms for molecular dynamics simulations on commodity clusters. Proceedings of the 2006 ACM/IEEE conference on Supercomputing -, SC ’06, 2006.
[http://dx.doi.org/10.1145/1188455.1188544]
[31]
Lesnyak, D.V.; Osipiuk, J.; Skarina, T.; Sergiev, P.V.; Bogdanov, A.A.; Edwards, A.; Savchenko, A.; Joachimiak, A.; Dontsova, O.A. Methyltransferase that modifies guanine 966 of the 16 S rRNA: Functional identification and tertiary structure. J. Biol. Chem., 2007, 282(8), 5880-5887.
[http://dx.doi.org/10.1074/jbc.M608214200] [PMID: 17189261]
[32]
Sergeeva, O.V.; Prokhorova, I.V.; Ordabaev, Y.; Tsvetkov, P.O.; Sergiev, P.V.; Bogdanov, A.A.; Makarov, A.A.; Dontsova, O.A. Properties of small rRNA methyltransferase RsmD: Mutational and kinetic study. RNA, 2012, 18(6), 1178-1185.
[http://dx.doi.org/10.1261/rna.032763.112] [PMID: 22535590]
[33]
Weitzmann, C.; Tumminia, S.J.; Boublik, M.; Ofengand, J. A paradigm for local conformational control of function in the ribosome: Binding of ribosomal protein S19 to Escherichia coli 16S rRNA in the presence of S7 is required for methylation of m2G966 and blocks methylation of m5C967 by their respective methyltransferases. Nucleic Acids Res., 1991, 19(25), 7089-7095.
[http://dx.doi.org/10.1093/nar/19.25.7089] [PMID: 1766869]
[34]
Sergiev, P.V.; Bogdanov, A.A.; Dontsova, O.A. Ribosomal RNA guanine-(N2)-methyltransferases and their targets. Nucleic Acids Res., 2007, 35(7), 2295-2301.
[http://dx.doi.org/10.1093/nar/gkm104] [PMID: 17389639]
[35]
Kumar, A.; Saigal, K.; Malhotra, K.; Sinha, K.M.; Taneja, B. Structural and functional characterization of Rv2966c protein reveals an RsmD-like methyltransferase from Mycobacterium tuberculosis and the role of its N-terminal domain in target recognition. J. Biol. Chem., 2011, 286(22), 19652-19661.
[http://dx.doi.org/10.1074/jbc.M110.200428] [PMID: 21474448]
[36]
Yusupov, M.M.; Yusupova, G.Z.; Baucom, A. Crystal structure of the ribosome at 5.5 A resolution. This file, 1GIX, contains the 30S ribosome subunit, three tRNA, and mRNA molecules. 50S ribosomesubunit is in the file 1GIY, 2001. Epub ahead of print
[37]
Moazed, D.; Noller, H.F. Transfer RNA shields specific nucleotides in 16S ribosomal RNA from attack by chemical probes. Cell, 1986, 47(6), 985-994.
[http://dx.doi.org/10.1016/0092-8674(86)90813-5] [PMID: 2430725]
[38]
Selmer, M.; Dunham, C.M.; Murphy, F.V., IV; Weixlbaumer, A.; Petry, S.; Kelley, A.C.; Weir, J.R.; Ramakrishnan, V. Structure of the 70S ribosome complexed with mRNA and tRNA. Science, 2006, 313(5795), 1935-1942.
[http://dx.doi.org/10.1126/science.1131127] [PMID: 16959973]
[39]
Guo, Q.; Liao, S.; Xu, C. Structure of N6AMT1-TRMT112 complex with SAM. 2019. Epub ahead of print
[40]
Ma, B.; Ma, J.; Liu, D.; Guo, L.; Chen, H.; Ding, J.; Liu, W.; Zhang, H. Biochemical and structural characterization of a DNA N6-adenine methyltransferase from Helicobacter pylori. Oncotarget, 2016, 7(27), 40965-40977.
[http://dx.doi.org/10.18632/oncotarget.9692] [PMID: 27259995]
[41]
Takeshita, K.; Suetake, I.; Yamashita, E.; Suga, M.; Narita, H.; Nakagawa, A.; Tajima, S. Structural insight into maintenance methylation by mouse DNA methyltransferase 1 (Dnmt1). Proc. Natl. Acad. Sci. USA, 2011, 108(22), 9055-9059.
[http://dx.doi.org/10.1073/pnas.1019629108] [PMID: 21518897]
[42]
Schluckebier, G.; Kozak, M.; Bleimling, N.; Weinhold, E.; Saenger, W. Differential binding of S-adenosylmethionine S-adenosylhomocysteine and Sinefungin to the adenine-specific DNA methyltransferase M.TaqI. J. Mol. Biol., 1997, 265(1), 56-67.
[http://dx.doi.org/10.1006/jmbi.1996.0711] [PMID: 8995524]
[43]
Wang, X.; Feng, J.; Xue, Y.; Guan, Z.; Zhang, D.; Liu, Z.; Gong, Z.; Wang, Q.; Huang, J.; Tang, C.; Zou, T.; Yin, P. Structural basis of N(6)-adenosine methylation by the METTL3-METTL14 complex. Nature, 2016, 534(7608), 575-578.
[http://dx.doi.org/10.1038/nature18298] [PMID: 27281194]
[44]
Bügl, H.; Fauman, E.B.; Staker, B.L.; Zheng, F.; Kushner, S.R.; Saper, M.A.; Bardwell, J.C.; Jakob, U. RNA methylation under heat shock control. Mol. Cell, 2000, 6(2), 349-360.
[http://dx.doi.org/10.1016/S1097-2765(00)00035-6] [PMID: 10983982]
[45]
Foster, P.G.; Nunes, C.R.; Greene, P.; Moustakas, D.; Stroud, R.M. The first structure of an RNA m5C methyltransferase, Fmu, provides insight into catalytic mechanism and specific binding of RNA substrate. Structure, 2003, 11(12), 1609-1620.
[http://dx.doi.org/10.1016/j.str.2003.10.014] [PMID: 14656444]
[46]
Richon, V.M.; Johnston, D.; Sneeringer, C.J.; Jin, L.; Majer, C.R.; Elliston, K.; Jerva, L.F.; Scott, M.P.; Copeland, R.A. Chemogenetic analysis of human protein methyltransferases. Chem. Biol. Drug Des., 2011, 78(2), 199-210.
[http://dx.doi.org/10.1111/j.1747-0285.2011.01135.x] [PMID: 21564555]
[47]
Li, W.; Shi, Y.; Zhang, T.; Ye, J.; Ding, J. Structural insight into human N6amt1-Trm112 complex functioning as a protein methyltransferase. Cell Discov., 2019, 5, 51.
[http://dx.doi.org/10.1038/s41421-019-0121-y] [PMID: 31636962]
[48]
Duncan, K.W.; Rioux, N.; Boriack-Sjodin, P.A.; Munchhof, M.J.; Reiter, L.A.; Majer, C.R.; Jin, L.; Johnston, L.D.; Chan-Penebre, E.; Kuplast, K.G.; Porter Scott, M.; Pollock, R.M.; Waters, N.J.; Smith, J.J.; Moyer, M.P.; Copeland, R.A.; Chesworth, R. Structure and Property Guided Design in the Identification of PRMT5 Tool Compound EPZ015666. ACS Med. Chem. Lett., 2015, 7(2), 162-166.
[http://dx.doi.org/10.1021/acsmedchemlett.5b00380] [PMID: 26985292]
[49]
Borkotoky, S.; Meena, C.K.; Murali, A. Interaction analysis of T7 RNA polymerase with heparin and its low molecular weight derivatives - an in silico approach. Bioinform. Biol. Insights, 2016, 10, 155-166.
[http://dx.doi.org/10.4137/BBI.S40427] [PMID: 27594785]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy