Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Review Article

Neuropharmacology of Organoselenium Compounds in Mental Disorders and Degenerative Diseases

Author(s): Paloma T. Birmann, Angela M. Casaril, Laura Abenante, Filipe Penteado, César A. Brüning*, Lucielli Savegnago* and Eder J. Lenardão*

Volume 30, Issue 21, 2023

Published on: 05 September, 2022

Page: [2357 - 2395] Pages: 39

DOI: 10.2174/0929867329666220615124412

Price: $65

conference banner
Abstract

Neurodegenerative and mental disorders are a public health burden with pharmacological treatments of limited efficacy. Organoselenium compounds are receiving great attention in medicinal chemistry mainly because of their antioxidant and immunomodulatory activities, with a multi-target profile that can favor the treatment of multifactorial diseases. Therefore, the purpose of this review is to discuss recent preclinical studies about organoselenium compounds as therapeutic agents for the management of mental (e.g., depression, anxiety, bipolar disorder, and schizophrenia) and neurodegenerative diseases (e.g., Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, and multiple sclerosis). We have summarized around 70 peer-reviewed articles from 2016 to the present that used in silico, in vitro, and/or in vivo approaches to assess the neuropharmacology of selenium- containing compounds. Among the diversity of organoselenium molecules investigated in the last five years, diaryl diselenides, Ebselen-derivatives, and Se-containing heterocycles are the most representative. Ultimately, this review is expected to provide disease-oriented information regarding the neuropharmacology of organoselenium compounds that can be useful for the design, synthesis, and pharmacological characterization of novel bioactive molecules that can potentially be clinically viable candidates.

Keywords: Selenium, mood, neurodegeneration, pharmacology, neuroprotection, therapeutic agents.

[1]
Fredga, A. Organic selenium chemistry. Ann. N. Y. Acad. Sci., 1972, 192, 1-9.
[http://dx.doi.org/10.1111/j.1749-6632.1972.tb52571.x] [PMID: 4503563]
[2]
Schwarz, K.; Foltz, C.M. Selenium as an integral part of Factor 3 against dietary necrotic liver degeneration. J. Am. Chem. Soc., 1957, 79, 3292-3293.
[http://dx.doi.org/10.1021/ja01569a087] [PMID: 10408880]
[3]
Stadtman, T.C. Selenium biochemistry. Science, 1974, 183(4128), 915-922.
[http://dx.doi.org/10.1126/science.183.4128.915] [PMID: 4605100]
[4]
Flohe, L.; Günzler, W.A.; Schock, H.H. Glutathione peroxidase: A selenoenzyme. FEBS Lett., 1973, 32(1), 132-134.
[http://dx.doi.org/10.1016/0014-5793(73)80755-0] [PMID: 4736708]
[5]
Yang, G.Q.; Ge, K.Y.; Chen, J.S.; Chen, X.S. Selenium-related endemic diseases and the daily selenium requirement of humans. World Rev. Nutr. Diet., 1988, 55, 98-152.
[http://dx.doi.org/10.1159/000415560] [PMID: 3287776]
[6]
Vanderpas, J.B.; Contempré, B.; Duale, N.L.; Goossens, W.; Bebe, N.; Thorpe, R.; Ntambue, K.; Dumont, J.; Thilly, C.H.; Diplock, A.T. Iodine and selenium deficiency associated with cretinism in northern Zaire. Am. J. Clin. Nutr., 1990, 52(6), 1087-1093.
[http://dx.doi.org/10.1093/ajcn/52.6.1087] [PMID: 2239787]
[7]
Kryukov, G.V.; Castellano, S.; Novoselov, S.V.; Lobanov, A.V.; Zehtab, O.; Guigó, R.; Gladyshev, V.N. Characterization of mammalian selenoproteomes. Science, 2003, 300(5624), 1439-1443.
[http://dx.doi.org/10.1126/science.1083516] [PMID: 12775843]
[8]
Holben, D.H.; Smith, A.M. The diverse role of selenium within selenoproteins: A review. J. Am. Diet. Assoc., 1999, 99(7), 836-843.
[http://dx.doi.org/10.1016/S0002-8223(99)00198-4] [PMID: 10405682]
[9]
Rayman, M.P. The importance of selenium to human health. Lancet, 2000, 356(9225), 233-241.
[http://dx.doi.org/10.1016/S0140-6736(00)02490-9] [PMID: 10963212]
[10]
Burk, R.F.; Brown, D.G.; Seely, R.J.; Scaief, C.C., III Influence of dietary and injected selenium on whole-blody retention, route of excretion, and tissue retention of 75SeO3 2- in the rat. J. Nutr., 1972, 102(8), 1049-1055.
[http://dx.doi.org/10.1093/jn/102.8.1049] [PMID: 5072897]
[11]
Zhang, Y.; Zhou, Y.; Schweizer, U.; Savaskan, N.E.; Hua, D.; Kipnis, J.; Hatfield, D.L.; Gladyshev, V.N. Comparative analysis of selenocysteine machinery and selenoproteome gene expression in mouse brain identifies neurons as key functional sites of selenium in mammals. J. Biol. Chem., 2008, 283(4), 2427-2438.
[http://dx.doi.org/10.1074/jbc.M707951200] [PMID: 18032379]
[12]
Hill, K.E.; Wu, S.; Motley, A.K.; Stevenson, T.D.; Winfrey, V.P.; Capecchi, M.R.; Atkins, J.F.; Burk, R.F. Production of selenoprotein P (Sepp1) by hepatocytes is central to selenium homeostasis. J. Biol. Chem., 2012, 287(48), 40414-40424.
[http://dx.doi.org/10.1074/jbc.M112.421404] [PMID: 23038251]
[13]
Burk, R.F.; Hill, K.E. Regulation of selenium metabolism and transport. Annu. Rev. Nutr., 2015, 35, 109-134.
[http://dx.doi.org/10.1146/annurev-nutr-071714-034250] [PMID: 25974694]
[14]
Olson, G.E.; Winfrey, V.P.; Nagdas, S.K.; Hill, K.E.; Burk, R.F. Apolipoprotein E receptor-2 (ApoER2) mediates selenium uptake from selenoprotein P by the mouse testis. J. Biol. Chem., 2007, 282(16), 12290-12297.
[http://dx.doi.org/10.1074/jbc.M611403200] [PMID: 17314095]
[15]
Chiu-Ugalde, J.; Theilig, F.; Behrends, T.; Drebes, J.; Sieland, C.; Subbarayal, P.; Köhrle, J.; Hammes, A.; Schomburg, L.; Schweizer, U. Mutation of megalin leads to urinary loss of selenoprotein P and selenium deficiency in serum, liver, kidneys and brain. Biochem. J., 2010, 431(1), 103-111.
[http://dx.doi.org/10.1042/BJ20100779] [PMID: 20653565]
[16]
de Almeida, T.L.F.; Petarli, G.B.; Cattafesta, M.; Zandonade, E.; Bezerra, O.M.P.A.; Tristão, K.G.; Ferreira de Almeida, T.L.; Petarli, G.B.; Cattafesta, M.; Zandonade, E.; Bezerra, O.M.P.A.; Tristão, K.G.; Salaroli, L.B. Association of selenium intake and development of depression in Brazilian farmers. Front. Nutr., 2021, 8, 671377.
[http://dx.doi.org/10.3389/fnut.2021.671377] [PMID: 34095192]
[17]
Müller, A.; Cadenas, E.; Graf, P.; Sies, H. A novel biologically active seleno-organic compound--I. Glutathione peroxidase-like activity in vitro and antioxidant capacity of PZ 51 (Ebselen). Biochem. Pharmacol., 1984, 33(20), 3235-3239.
[PMID: 6487370]
[18]
Jain, V.K. Organoselenium Compounds in Biology and Medicine: Synthesis, Biological and Therapeutic Treatments; RSC Publishing: London, 2017.
[19]
Santi, C., Ed.; Organoselenium Chemistry: Between Synthesis and Biochemistry; Bentham Science Publishers: Sharjah, 2014.
[20]
Lenardão, E.J.; Santi, C.; Sancineto, L. New Frontiers in Organoselenium Compounds; Springer: Cham, Switzerland, 2018.
[http://dx.doi.org/10.1007/978-3-319-92405-2]
[21]
Nogueira, C.W.; Rocha, J.B.T. Toxicology and pharmacology of selenium: Emphasis on synthetic organoselenium compounds. Arch. Toxicol., 2011, 85(11), 1313-1359.
[http://dx.doi.org/10.1007/s00204-011-0720-3] [PMID: 21720966]
[22]
Chuai, H.; Zhang, S.Q.; Bai, H.; Li, J.; Wang, Y.; Sun, J.; Wen, E.; Zhang, J.; Xin, M. Small molecule selenium-containing compounds: Recent development and therapeutic applications. Eur. J. Med. Chem., 2021, 223, 113621.
[http://dx.doi.org/10.1016/j.ejmech.2021.113621] [PMID: 34217061]
[23]
Nogueira, C.W.; Barbosa, N.V.; Rocha, J.B.T. Toxicology and pharmacology of synthetic organoselenium compounds: An update. Arch. Toxicol., 2021, 95(4), 1179-1226.
[http://dx.doi.org/10.1007/s00204-021-03003-5] [PMID: 33792762]
[24]
Santi, C.; Scimmi, C.; Sancineto, L. Ebselen and analogues: Pharmacological properties and synthetic strategies for their preparation. Molecules, 2021, 26(14), 4230.
[http://dx.doi.org/10.3390/molecules26144230] [PMID: 34299505]
[25]
Andrade, L.; Caraveo-Anduaga, J.J.; Berglund, P.; Bijl, R.V.; De Graaf, R.; Vollebergh, W.; Dragomirecka, E.; Kohn, R.; Keller, M.; Kessler, R.C.; Kawakami, N.; Kiliç, C.; Offord, D.; Ustun, T.B.; Wittchen, H.U. The epidemiology of major depressive episodes: Results from the international consortium of psychiatric epidemiology (ICPE) Surveys. Int. J. Methods Psychiatr. Res., 2003, 12(1), 3-21.
[http://dx.doi.org/10.1002/mpr.138] [PMID: 12830306]
[26]
Troubat, R.; Barone, P.; Leman, S.; Desmidt, T.; Cressant, A.; Atanasova, B.; Brizard, B.; El Hage, W.; Surget, A.; Belzung, C.; Camus, V. Neuroinflammation and depression: A review. Eur. J. Neurosci., 2021, 53(1), 151-171.
[http://dx.doi.org/10.1111/ejn.14720] [PMID: 32150310]
[27]
Hasler, G. Pathophysiology of depression: Do we have any solid evidence of interest to clinicians? World Psychiatry, 2010, 9(3), 155-161.
[http://dx.doi.org/10.1002/j.2051-5545.2010.tb00298.x] [PMID: 20975857]
[28]
Bahji, A.; Mesbah-Oskui, L. Comparative efficacy and safety of stimulant-type medications for depression: A systematic review and network meta-analysis. J. Affect. Disord., 2021, 292, 416-423.
[http://dx.doi.org/10.1016/j.jad.2021.05.119] [PMID: 34144366]
[29]
Pereira, V.S.; Hiroaki-Sato, V.A. A brief history of antidepressant drug development: From tricyclics to beyond ketamine. Acta Neuropsychiatr., 2018, 30(6), 307-322.
[http://dx.doi.org/10.1017/neu.2017.39] [PMID: 29388517]
[30]
Jans, L.A.; Riedel, W.J.; Markus, C.R.; Blokland, A. Serotonergic vulnerability and depression: Assumptions, experimental evidence and implications. Mol. Psychiatry, 2007, 12(6), 522-543.
[http://dx.doi.org/10.1038/sj.mp.4001920] [PMID: 17160067]
[31]
Moreno, F.A.; Parkinson, D.; Palmer, C.; Castro, W.L.; Misiaszek, J.; El Khoury, A.; Mathé, A.A.; Wright, R.; Delgado, P.L. CSF neurochemicals during tryptophan depletion in individuals with remitted depression and healthy controls. Eur. Neuropsychopharmacol., 2010, 20(1), 18-24.
[http://dx.doi.org/10.1016/j.euroneuro.2009.10.003] [PMID: 19896342]
[32]
Dalvi-Garcia, F.; Fonseca, L.L.; Vasconcelos, A.T.R.; Hedin-Pereira, C.; Voit, E.O. A model of dopamine and serotonin-kynurenine metabolism in cortisolemia: Implications for depression. PLOS Comput. Biol., 2021, 17(5), e1008956.
[http://dx.doi.org/10.1371/journal.pcbi.1008956] [PMID: 33970902]
[33]
Verduijn, J.; Milaneschi, Y.; Schoevers, R.A.; van Hemert, A.M.; Beekman, A.T.; Penninx, B.W. Pathophysiology of major depressive disorder: Mechanisms involved in etiology are not associated with clinical progression. Transl. Psychiatry, 2015, 5, e649.
[http://dx.doi.org/10.1038/tp.2015.137] [PMID: 26418277]
[34]
O’Connor, J.C.; André, C.; Wang, Y.; Lawson, M.A.; Szegedi, S.S.; Lestage, J.; Castanon, N.; Kelley, K.W.; Dantzer, R. Interferon-γ and tumor necrosis factor-α mediate the upregulation of indoleamine 2,3-dioxygenase and the induction of depressive-like behavior in mice in response to bacillus Calmette-Guerin. J. Neurosci., 2009, 29(13), 4200-4209.
[http://dx.doi.org/10.1523/JNEUROSCI.5032-08.2009] [PMID: 19339614]
[35]
Moylan, S.; Maes, M.; Wray, N.R.; Berk, M. The neuroprogressive nature of major depressive disorder: Pathways to disease evolution and resistance, and therapeutic implications. Mol. Psychiatry, 2013, 18(5), 595-606.
[http://dx.doi.org/10.1038/mp.2012.33] [PMID: 22525486]
[36]
Leonard, B.E. Inflammation and depression: A causal or coincidental link to the pathophysiology? Acta Neuropsychiatr., 2018, 30(1), 1-16.
[http://dx.doi.org/10.1017/neu.2016.69] [PMID: 28112061]
[37]
Bajpai, A.; Verma, A.K.; Srivastava, M.; Srivastava, R. Oxidative stress and major depression. J. Clin. Diagn. Res., 2014, 8(12), CC04-CC07.
[PMID: 25653939]
[38]
Anderson, G.; Berk, M.; Dean, O.; Moylan, S.; Maes, M. Role of immune-inflammatory and oxidative and nitrosative stress pathways in the etiology of depression: therapeutic implications. CNS Drugs, 2014, 28(1), 1-10.
[http://dx.doi.org/10.1007/s40263-013-0119-1] [PMID: 24150993]
[39]
Okusaga, O.O. Accelerated aging in schizophrenia patients: The potential role of oxidative stress. Aging Dis., 2013, 5(4), 256-262.
[PMID: 25110609]
[40]
Kannan, K.; Jain, S.K. Oxidative stress and apoptosis. Pathophysiology, 2000, 7(3), 153-163.
[http://dx.doi.org/10.1016/S0928-4680(00)00053-5] [PMID: 10996508]
[41]
Sekiguchi, M.; Sekiguchi, Y.; Konno, S.; Kobayashi, H.; Homma, Y.; Kikuchi, S. Comparison of neuropathic pain and neuronal apoptosis following nerve root or spinal nerve compression. Eur. Spine J., 2009, 18(12), 1978-1985.
[http://dx.doi.org/10.1007/s00586-009-1064-z] [PMID: 19543754]
[42]
Wann, B.P.; Bah, T.M.; Kaloustian, S.; Boucher, M.; Dufort, A.M.; Le Marec, N.; Godbout, R.; Rousseau, G. Behavioural signs of depression and apoptosis in the limbic system following myocardial infarction: effects of sertraline. J. Psychopharmacol., 2009, 23(4), 451-459.
[http://dx.doi.org/10.1177/0269881108089820] [PMID: 18562428]
[43]
Serafini, G.; Pompili, M.; Elena Seretti, M.; Stefani, H.; Palermo, M.; Coryell, W.; Girardi, P. The role of inflammatory cytokines in suicidal behavior: A systematic review. Eur. Neuropsychopharmacol., 2013, 23(12), 1672-1686.
[http://dx.doi.org/10.1016/j.euroneuro.2013.06.002] [PMID: 23896009]
[44]
Sorrells, S.F.; Paredes, M.F.; Cebrian-Silla, A.; Sandoval, K.; Qi, D.; Kelley, K.W.; James, D.; Mayer, S.; Chang, J.; Auguste, K.I.; Chang, E.F.; Gutierrez, A.J.; Kriegstein, A.R.; Mathern, G.W.; Oldham, M.C.; Huang, E.J.; Garcia-Verdugo, J.M.; Yang, Z.; Alvarez-Buylla, A. Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature, 2018, 555(7696), 377-381.
[http://dx.doi.org/10.1038/nature25975] [PMID: 29513649]
[45]
Groves, J.O. Is it time to reassess the BDNF hypothesis of depression? Mol. Psychiatry, 2007, 12(12), 1079-1088.
[http://dx.doi.org/10.1038/sj.mp.4002075] [PMID: 17700574]
[46]
Hanson, N.D.; Owens, M.J.; Nemeroff, C.B. Depression, antidepressants, and neurogenesis: A critical reappraisal. Neuropsychopharmacology, 2011, 36(13), 2589-2602.
[http://dx.doi.org/10.1038/npp.2011.220] [PMID: 21937982]
[47]
Hillhouse, T.M.; Porter, J.H. A brief history of the development of antidepressant drugs: From monoamines to glutamate. Exp. Clin. Psychopharmacol., 2015, 23(1), 1-21.
[http://dx.doi.org/10.1037/a0038550] [PMID: 25643025]
[48]
Halaris, A.; Sohl, E.; Whitham, E.A. Treatment-resistant depression revisited: A glimmer of hope. J. Pers. Med., 2021, 11(2), 155.
[http://dx.doi.org/10.3390/jpm11020155] [PMID: 33672126]
[49]
Samuels, B.A.; Mendez-David, I.; Faye, C.; David, S.A.; Pierz, K.A.; Gardier, A.M.; Hen, R.; David, D.J. Serotonin 1A and serotonin 4 receptors: Essential mediators of the neurogenic and behavioral actions of antidepressants. Neuroscientist, 2016, 22(1), 26-45.
[http://dx.doi.org/10.1177/1073858414561303] [PMID: 25488850]
[50]
Besckow, E.M.; Nonemacher, N.T.; Garcia, C.S.; da Silva Espíndola, C.N.; Balbom, E.B.; Gritzenco, F.; Savegnago, L.; Godoi, B.; Bortolatto, C.F.; Brüning, C.A. Antidepressant-like effect of a selenopropargylic benzamide in mice: Involvement of the serotonergic system. Psychopharmacology (Berl.), 2020, 237(10), 3149-3159.
[http://dx.doi.org/10.1007/s00213-020-05600-1] [PMID: 32617647]
[51]
Balbom, E.B.; Gritzenco, F.; Sperança, A.; Godoi, M.; Alves, D.; Barcellos, T.; Godoi, B. Copper-catalyzed Cspchalcogen bond formation: Versatile approach to N-(3-(organochalcogenyl)prop-2-yn-1-yl)amides. Tetrahedron, 2019, 75, 4017-4023.
[http://dx.doi.org/10.1016/j.tet.2019.06.031]
[52]
Gay, R.M.; Manarin, F.; Schneider, C.C.; Barancelli, D.A.; Costa, M.D.; Zeni, G. FeCl3-Diorganyl dichalcogenides promoted cyclization of 2-alkynylanisoles to 3-chalcogen benzo[b]furans. J. Org. Chem., 2010, 75(16), 5701-5706.
[http://dx.doi.org/10.1021/jo101126q] [PMID: 20704440]
[53]
Gall, J.I.; Gonçalves Alves, A.; Carraro Júnior, L.R.; da Silva Teixeira Rech, T.; Dos Santos Neto, J.S.; Alves, D.; Pereira Soares, M.S.; Spohr, L.; Spanevello, R.M.; Brüning, C.A.; Folharini Bortolatto, C. Insights into serotonergic and antioxidant mechanisms involved in antidepressant-like action of 2-phenyl-3-(phenylselanyl)benzofuran in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 102, 109956.
[http://dx.doi.org/10.1016/j.pnpbp.2020.109956] [PMID: 32371105]
[54]
da Silva, T.R.T.; Gonçalves Alves, A.; Nornberg Strelow, D.; Devantier Krüger, L.; Carraro Júnior, L.R.; Dos Santos Neto, J.S.; Braga, A.L.; Brüning, C.A.; Folharini Bortolatto, C. 2-Phenyl-3-(phenylselanyl)benzofuran elicits acute antidepressant-like action in male Swiss mice mediated by modulation of the dopaminergic system and reveals therapeutic efficacy in both sexes. Psychopharmacology (Berl.), 2021, 238(10), 3013-3024.
[http://dx.doi.org/10.1007/s00213-021-05921-9] [PMID: 34312682]
[55]
Stein, A.L.; Bilheri, F.N.; da Rocha, J.T.; Back, D.F.; Zeni, G. Application of copper(I) iodide/diorganoyl dichalcogenides to the synthesis of 4-organochalcogen isoquinolines by regioselective C-N and C-chalcogen bond formation. Chemistry, 2012, 18(34), 10602-10608.
[http://dx.doi.org/10.1002/chem.201201618] [PMID: 22807116]
[56]
Sampaio, T.B.; Bilheri, F.N.; Zeni, G.R.; Nogueira, C.W. Dopaminergic system contribution to the antidepressant-like effect of 3-phenyl-4-(phenylseleno) isoquinoline in mice. Behav. Brain Res., 2020, 386, 112602.
[http://dx.doi.org/10.1016/j.bbr.2020.112602] [PMID: 32184159]
[57]
Tipton, K.F.; Boyce, S.; O’Sullivan, J.; Davey, G.P.; Healy, J. Monoamine oxidases: Certainties and uncertainties. Curr. Med. Chem., 2004, 11(15), 1965-1982.
[http://dx.doi.org/10.2174/0929867043364810] [PMID: 15279561]
[58]
Cristancho, M.A.; Thase, M.E. Critical appraisal of selegiline transdermal system for major depressive disorder. Expert Opin. Drug Deliv., 2016, 13(5), 659-665.
[http://dx.doi.org/10.1517/17425247.2016.1140145] [PMID: 26837935]
[59]
Velasquez, D.; Quines, C.; Pistóia, R.; Zeni, G.; Nogueira, C.W. Selective inhibition of MAO-A activity results in an antidepressant-like action of 2-benzoyl 4-iodoselenophene in mice. Physiol. Behav., 2017, 170, 100-105.
[http://dx.doi.org/10.1016/j.physbeh.2016.12.024] [PMID: 28012831]
[60]
Roehrs, J.A.; Pistoia, R.P.; Back, D.F.; Zeni, G. Diorganyl dichalcogenides-promoted nucleophilic closure of 1,4-diyn-3-ols: synthesis of 2-benzoyl chalcogenophenes. J. Org. Chem., 2015, 80(24), 12470-12481.
[http://dx.doi.org/10.1021/acs.joc.5b02334] [PMID: 26561717]
[61]
Meyer, J.H.; Ginovart, N.; Boovariwala, A.; Sagrati, S.; Hussey, D.; Garcia, A.; Young, T.; Praschak-Rieder, N.; Wilson, A.A.; Houle, S. Elevated monoamine oxidase a levels in the brain: an explanation for the monoamine imbalance of major depression. Arch. Gen. Psychiatry, 2006, 63(11), 1209-1216.
[http://dx.doi.org/10.1001/archpsyc.63.11.1209] [PMID: 17088501]
[62]
Vargas, J.P.; Pinto, L.M.; Savegnago, L.; Lüdtke, D.S. Synthesis of alkylseleno-carbohydrates and evaluation of their antioxidant properties. J. Braz. Chem. Soc., 2015, 26, 810-815.
[http://dx.doi.org/10.5935/0103-5053.20150021]
[63]
Pinto Brod, L.M.; Fronza, M.G.; Vargas, J.P.; Lüdtke, D.S.; Luchese, C.; Wilhelm, E.A.; Savegnago, L. Involvement of monoaminergic system in the antidepressant-like effect of (octylseleno)-xylofuranoside in the mouse tail suspension test. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2016, 65, 201-207.
[http://dx.doi.org/10.1016/j.pnpbp.2015.10.008] [PMID: 26596986]
[64]
Pinto Brod, L.M.; Fronza, M.G.; Vargas, J.P.; Lüdtke, D.S.; Brüning, C.A.; Savegnago, L. Modulation of PKA, PKC, CAMKII, ERK 1/2 pathways is involved in the acute antidepressant-like effect of (octylseleno)-xylofuranoside (OSX) in mice. Psychopharmacology (Berl.), 2017, 234(4), 717-725.
[http://dx.doi.org/10.1007/s00213-016-4505-5] [PMID: 27995278]
[65]
Quines, C.B.; Rosa, S.G.; Velasquez, D.; Da Rocha, J.T.; Neto, J.S.; Nogueira, C.W. Diphenyl diselenide elicits antidepressant-like activity in rats exposed to monosodium glutamate: A contribution of serotonin uptake and Na(+), K(+)-ATPase activity. Behav. Brain Res., 2016, 301, 161-167.
[http://dx.doi.org/10.1016/j.bbr.2015.12.038] [PMID: 26738966]
[66]
Oliveira, C.E.; Sari, M.H.; Zborowski, V.A.; Araujo, P.C.; Nogueira, C.W.; Zeni, G. p,p′-Methoxyl-diphenyl diselenide elicits an anti-depressant-like effect in mice without discontinuation anxiety phenotype. Pharmacol. Biochem. Behav., 2017, 154, 31-38.
[http://dx.doi.org/10.1016/j.pbb.2017.02.002] [PMID: 28174136]
[67]
Oliveira, C.E.S.; Marcondes Sari, M.H.M.; Zborowski, V.A.; Prado, V.C.; Nogueira, C.W.; Zeni, G. Pain-depression dyad induced by reserpine is relieved by p,p′-methoxyl-diphenyl diselenide in rats. Eur. J. P., 2016, 791, 794-802.
[http://dx.doi.org/10.1016/j.ejphar.2016.10.021] [PMID: 27769701]
[68]
Heck, S.O.; Zborowski, V.A.; Quines, C.B.; Nogueira, C.W. 4,4′-Dichlorodiphenyl diselenide reverses a depressive-like phenotype, modulates prefrontal cortical oxidative stress and dysregulated glutamatergic neurotransmission induced by subchronic dexamethasone exposure to mice. J. P. Res., 2019, 116, 61-68.
[http://dx.doi.org/10.1016/j.jpsychires.2019.05.027] [PMID: 31200328]
[69]
Zborowski, V.A.; Heck, S.O.; Vencato, M.; Pinton, S.; Marques, L.S.; Nogueira, C.W. Keap1/Nrf2/HO-1 signaling pathway contributes to p-chlorodiphenyl diselenide antidepressant-like action in diabetic mice. Psychopharmacology (Berl.), 2020, 237(2), 363-374.
[http://dx.doi.org/10.1007/s00213-019-05372-3] [PMID: 31828396]
[70]
Satoh, T.; Okamoto, S.I.; Cui, J.; Watanabe, Y.; Furuta, K.; Suzuki, M.; Tohyama, K.; Lipton, S.A. Activation of the Keap1/Nrf2 path-way for neuroprotection by electrophilic [correction of electrophillic] phase II inducers. Proc. Natl. Acad. Sci. USA, 2006, 103(3), 768-773.
[http://dx.doi.org/10.1073/pnas.0505723102] [PMID: 16407140]
[71]
Schossler Garcia, C.; Garcia, P.R.; da Silva Espíndola, C.N.; Nunes, G.D.; Jardim, N.S.; Müller, S.G.; Bortolatto, C.F.; Brüning, C.A. Effect of m-Trifluoromethyl-diphenyl diselenide on the pain-depression dyad induced by reserpine: Insights on oxidative stress, apoptotic, and glucocorticoid receptor modulation. Mol. Neurobiol., 2021, 58(10), 5078-5089.
[http://dx.doi.org/10.1007/s12035-021-02483-x] [PMID: 34245440]
[72]
Rosa, S.G.; Pesarico, A.P.; Tagliapietra, C.F.; da Luz, S.C.; Nogueira, C.W. Opioid system contribution to the antidepressant-like action of m-trifluoromethyl-diphenyl diselenide in mice: A compound devoid of tolerance and withdrawal syndrome. J. Psychopharmacol., 2017, 31(9), 1250-1262.
[http://dx.doi.org/10.1177/0269881117724353] [PMID: 28857657]
[73]
Martins, C.C.; Rosa, S.G.; Recchi, A.M.S.; Nogueira, C.W.; Zeni, G. m-Trifluoromethyl-diphenyl diselenide (m-CF3-PhSe)2 modulates the hippocampal neurotoxic adaptations and abolishes a depressive-like phenotype in a short-term morphine withdrawal in mice. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2020, 98, 109803.
[http://dx.doi.org/10.1016/j.pnpbp.2019.109803] [PMID: 31689445]
[74]
Rosa, S.G.; Pesarico, A.P.; Nogueira, C.W. m-Trifluoromethyl-diphenyl diselenide promotes resilience to social avoidance induced by social defeat stress in mice: Contribution of opioid receptors and MAPKs. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 82, 123-135.
[http://dx.doi.org/10.1016/j.pnpbp.2017.11.021] [PMID: 29174974]
[75]
Rosa, S.G.; Pesarico, A.P.; Martini, F.; Nogueira, C.W. m-Trifluoromethyl-diphenyl diselenide regulates prefrontal cortical MOR and KOR protein levels and abolishes the phenotype induced by repeated forced swim stress in mice. Mol. Neurobiol., 2018, 55(12), 8991-9000.
[http://dx.doi.org/10.1007/s12035-018-1024-x] [PMID: 29623611]
[76]
Müller, S.G.; Jardim, N.S.; Trindade, M.A.; Nogueira, C.W. Opioid system contributes to the trifluoromethyl-substituted diselenide effectiveness in a lifestyle-induced depression mouse model. Mol. Neurobiol., 2021, 58(5), 2231-2241.
[http://dx.doi.org/10.1007/s12035-020-02255-z] [PMID: 33417225]
[77]
Vieira, B.M.; Thurow, S.; da Costa, M.; Casaril, A.M.; Domingues, M.; Schumacher, R.F.; Perin, G.; Alves, D.; Savegnago, L.; Lenardão, E.J. Ultrasound-assisted synthesis and antioxidant activity of 3-selanyl-1H-indole and 3-selanylimidazo[1,2-a]pyridine derivatives. Asian J. Org. Chem., 2017, 6, 1635-1646.
[http://dx.doi.org/10.1002/ajoc.201700339]
[78]
Bampi, S.R.; Casaril, A.M.; Sabedra Sousa, F.S.; Pesarico, A.P.; Vieira, B.; Lenardão, E.J.; Savegnago, L. Repeated administration of a selenium-containing indolyl compound attenuates behavioural alterations by streptozotocin through modulation of oxidative stress in mice. Pharmacol. Biochem. Behav., 2019, 183, 46-55.
[http://dx.doi.org/10.1016/j.pbb.2019.06.006] [PMID: 31207269]
[79]
Bampi, S.R.; Casaril, A.M.; Domingues, M.; de Andrade Lourenço, D.; Pesarico, A.P.; Vieira, B.; Begnini, K.R.; Seixas, F.K.; Collares, T.V.; Lenardão, E.J.; Savegnago, L. Depression-like behavior, hyperglycemia, oxidative stress, and neuroinflammation presented in diabetic mice are reversed by the administration of 1-methyl-3-(phenylselanyl)-1H-indole. J. Psychiatr. Res., 2020, 120, 91-102.
[http://dx.doi.org/10.1016/j.jpsychires.2019.10.003] [PMID: 31654972]
[80]
Bampi, S.R.; Casaril, A.M.; Fronza, M.G.; Domingues, M.; Vieira, B.; Begnini, K.R.; Seixas, F.K.; Collares, T.V.; Lenardão, E.J.; Savegnago, L. The selenocompound 1-methyl-3-(phenylselanyl)-1H-indole attenuates depression-like behavior, oxidative stress, and neuroinflammation in streptozotocin-treated mice. Brain Res. Bull., 2020, 161, 158-165.
[http://dx.doi.org/10.1016/j.brainresbull.2020.05.008] [PMID: 32470357]
[81]
Casaril, A.M.; Domingues, M.; Fronza, M.; Vieira, B.; Begnini, K.; Lenardão, E.J.; Seixas, F.K.; Collares, T.; Nogueira, C.W.; Save-gnago, L. Antidepressant-like effect of a new selenium-containing compound is accompanied by a reduction of neuroinflammation and oxidative stress in lipopolysaccharide-challenged mice. J. Psychopharmacol., 2017, 31(9), 1263-1273.
[http://dx.doi.org/10.1177/0269881117711713] [PMID: 28661258]
[82]
Birmann, P.T.; Sousa, F.S.S.; Domingues, M.; Brüning, C.A.; Vieira, B.M.; Lenardão, E.J.; Savegnago, L. 3-(4-Chlorophenylselanyl)-1-methyl-1H-indole promotes recovery of neuropathic pain and depressive-like behavior induced by partial constriction of the sciatic nerve in mice. J. Trace Elem. Med. Biol., 2019, 54, 126-133.
[http://dx.doi.org/10.1016/j.jtemb.2019.04.014] [PMID: 31109602]
[83]
Casaril, A.M.; Domingues, M.; Bampi, S.R.; de Andrade Lourenço, D.; Padilha, N.B.; Lenardão, E.J.; Sonego, M.; Seixas, F.K.; Collares, T.; Nogueira, C.W.; Dantzer, R.; Savegnago, L. The selenium-containing compound 3-((4-chlorophenyl)selanyl)-1-methyl-1H-indole reverses depressive-like behavior induced by acute restraint stress in mice: modulation of oxido-nitrosative stress and inflammatory pathway. Psychopharmacology (Berl.), 2019, 236(10), 2867-2880.
[http://dx.doi.org/10.1007/s00213-018-5151-x] [PMID: 30610349]
[84]
Casaril, A.M.; Domingues, M.; de Andrade Lourenço, D.; Birmann, P.T.; Padilha, N.; Vieira, B.; Begnini, K.; Seixas, F.K.; Collares, T.; Lenardão, E.J.; Savegnago, L. Depression- and anxiogenic-like behaviors induced by lipopolysaccharide in mice are reversed by a selenium-containing indolyl compound: Behavioral, neurochemical and computational insights involving the serotonergic system. J. Psychiatr. Res., 2019, 115, 1-12.
[http://dx.doi.org/10.1016/j.jpsychires.2019.05.006] [PMID: 31082651]
[85]
Casaril, A.M.; Domingues, M.; Lourenço, D.A.; Vieira, B.; Begnini, K.; Corcini, C.D.; França, R.T.; Varela Junior, A.S.; Seixas, F.K.; Collares, T.; Lenardão, E.J.; Savegnago, L. 3-[(4-chlorophenyl)selanyl]-1-methyl-1H-indole ameliorates long-lasting depression- and anxiogenic-like behaviors and cognitive impairment in post-septic mice: Involvement of neuroimmune and oxidative hallmarks. Chem. Biol. Interact., 2020, 331, 109278.
[http://dx.doi.org/10.1016/j.cbi.2020.109278] [PMID: 33038329]
[86]
Casaril, A.M.; Domingues, M.; Bampi, S.R.; Lourenço, D.A.; Smaniotto, T.A.; Segatto, N.; Vieira, B.; Seixas, F.K.; Collares, T.; Lenardão, E.J.; Savegnago, L. The antioxidant and immunomodulatory compound 3-[(4-chlorophenyl) selanyl]-1-methyl-1H-indole attenuates depression-like behavior and cognitive impairment developed in a mouse model of breast tumor. Brain Behav. Immun., 2020, 84, 229-241.
[http://dx.doi.org/10.1016/j.bbi.2019.12.005] [PMID: 31837417]
[87]
Pesarico, A.P.; Birmann, P.T.; Pinto, R.; Padilha, N.B.; Lenardão, E.J.; Savegnago, L. Short- and long-term repeated forced swim stress induce depressive-like phenotype in mice: Effectiveness of 3-[(4-Chlorophenyl)Selanyl]-1-Methyl-1H-Indole. Front. Behav. Neurosci., 2020, 14, 140.
[http://dx.doi.org/10.3389/fnbeh.2020.00140] [PMID: 33192355]
[88]
Casaril, A.M.; Lourenço, D.A.; Domingues, M.; Smaniotto, T.A.; Birmann, P.T.; Vieira, B.; Sonego, M.S.; Seixas, F.K.; Collares, T.; Lenardão, E.J.; Savegnago, L. Anhedonic- and anxiogenic-like behaviors and neurochemical alterations are abolished by a single administration of a selenium-containing compound in chronically stressed mice. Comprehensive Psychoneuroendocrinology, 2021, 6, 100054.
[http://dx.doi.org/10.1016/j.cpnec.2021.100054]
[89]
Vieira, B.M.; Thurow, S.; Brito, J.S.; Perin, G.; Alves, D.; Jacob, R.G.; Santi, C.; Lenardão, E.J. Sonochemistry: An efficient alternative to the synthesis of 3-selanylindoles using CuI as catalyst. Ultrason. Sonochem., 2015, 27, 192-199.
[http://dx.doi.org/10.1016/j.ultsonch.2015.05.012] [PMID: 26186837]
[90]
Domingues, M.; Casaril, A.M.; Birmann, P.T.; Bampi, S.R.; Lourenço, D.A.; Vieira, B.M.; Dapper, L.H.; Lenardão, E.J.; Sonego, M.; Collares, T.; Seixas, F.K.; Brüning, C.A.; Savegnago, L. Effects of a selanylimidazopyridine on the acute restraint stress-induced depressive- and anxiety-like behaviors and biological changes in mice. Behav. Brain Res., 2019, 366, 96-107.
[http://dx.doi.org/10.1016/j.bbr.2019.03.021] [PMID: 30877027]
[91]
Domingues, M.; Casaril, A.M.; Birmann, P.T.; Lourenço, D.A.; Vieira, B.; Begnini, K.; Lenardão, E.J.; Collares, T.; Seixas, F.K.; Savegnago, L. Selanylimidazopyridine prevents lipopolysaccharide-induced depressive-like behavior in mice by targeting neurotrophins and inflammatory/oxidative mediators. Front. Neurosci., 2018, 12, 486.
[http://dx.doi.org/10.3389/fnins.2018.00486] [PMID: 30072867]
[92]
Victoria, F.N.; Radatz, C.S.; Sachini, M.; Jacob, R.G.; Perin, G.; da Silva, W.P.; Lenardão, E.J. KF/Al2O3 and PEG-400 as a recyclable medium for the selective α-selenation of aldehydes and ketones. Preparation of potential antimicrobial agentes. Tetrahedron Lett., 2009, 50, 6761-6763.
[http://dx.doi.org/10.1016/j.tetlet.2009.09.093]
[93]
Sousa, F.S.S.; Birmann, P.T.; Balaguez, R.; Alves, D.; Brüning, C.A.; Savegnago, L. α-(phenylselanyl) acetophenone abolishes acute restraint stress induced-comorbid pain, depression and anxiety-related behaviors in mice. Neurochem. Int., 2018, 120, 112-120.
[http://dx.doi.org/10.1016/j.neuint.2018.08.006] [PMID: 30114472]
[94]
Sabedra Sousa, F.S.; Birmann, P.T.; Bampi, S.R.; Fronza, M.G.; Balaguez, R.; Alves, D.; Leite, M.R.; Nogueira, C.W.; Brüning, C.A.; Savegnago, L. Lipopolysaccharide-induced depressive-like, anxiogenic-like and hyperalgesic behavior is attenuated by acute administration of α-(phenylselanyl) acetophenone in mice. Neuropharmacology, 2019, 146, 128-137.
[http://dx.doi.org/10.1016/j.neuropharm.2018.11.028] [PMID: 30468797]
[95]
Sousa, F.S.S.; Birmann, P.T.; Baldinotti, R.; Fronza, M.G.; Balaguez, R.; Alves, D.; Brüning, C.A.; Savegnago, L. α- (phenylselanyl) acetophenone mitigates reserpine-induced pain-depression dyad: Behavioral, biochemical and molecular docking evidences. Brain Res. Bull., 2018, 142, 129-137.
[http://dx.doi.org/10.1016/j.brainresbull.2018.07.007] [PMID: 30016730]
[96]
Birmann, P.T.; Casaril, A.M.; Hartwig, D.; Jacob, R.G.; Seixas, F.K.; Collares, T.; Savegnago, L. A novel pyrazole-containing selenium compound modulates the oxidative and nitrergic pathways to reverse the depression-pain syndrome in mice. Brain Res., 2020, 1741, 146880.
[http://dx.doi.org/10.1016/j.brainres.2020.146880] [PMID: 32417177]
[97]
Oliveira, D.H.; Aquino, T.B.; Nascimento, J.E.R.; Perin, G.; Jacob, R.G.; Alves, D. Direct synthesis of 4-organylselanylpyrazoles by copper-catalyzed one-pot cyclocondensation and C-H bond selenylation reactions. Adv. Synth. Catal., 2015, 357, 4041-4049.
[http://dx.doi.org/10.1002/adsc.201500625]
[98]
da Fonseca, C.A.R.; Dos Reis, A.S.; Pinz, M.P.; Peglow, T.J.; Schumacher, R.F.; Perin, G.; Martins, A.W.D.S.; Domingues, W.B.; Campos, V.F.; Soares, M.P.; Roehrs, J.A.; Luchese, C.; Wilhelm, E.A. Bis-(3-amino-2-pyridine) diselenide improves psychiatric disorders -atopic dermatitis comorbidity by regulating inflammatory and oxidative status in mice. Chem. Biol. Interact., 2021, 345, 109564.
[http://dx.doi.org/10.1016/j.cbi.2021.109564] [PMID: 34161785]
[99]
Peglow, T.J.; Schumacher, R.F.; Cargnelutti, R.; Reis, A.S.; Luchese, C.; Wilhelm, E.A.; Perin, G. Preparation of bis(2-pyridyl) diselenide derivatives: Synthesis of selenazolo[5,4-b]pyridines and unsymmetrical diorganyl selenides, and evaluation of antioxidant and anticholinesterasic activities. Tetrahedron Lett., 2017, 58, 3734-3738.
[http://dx.doi.org/10.1016/j.tetlet.2017.08.030]
[100]
Craske, M.G.; Rauch, S.L.; Ursano, R.; Prenoveau, J.; Pine, D.S.; Zinbarg, R.E. What is an anxiety disorder? Summer, 2011, 9, 369-388.
[http://dx.doi.org/10.1176/foc.9.3.foc369]
[101]
Morris, L.W.; Davis, M.A.; Hutchings, C.H. Cognitive and emotional components of anxiety: Literature review and a revised worry-emotionality scale. J. Educ. Psychol., 1981, 73(4), 541-555.
[http://dx.doi.org/10.1037/0022-0663.73.4.541] [PMID: 7024371]
[102]
Schiele, M.A.; Domschke, K. Epigenetics at the crossroads between genes, environment and resilience in anxiety disorders. Genes Brain Behav., 2018, 17(3), e12423.
[http://dx.doi.org/10.1111/gbb.12423] [PMID: 28873274]
[103]
Meyer, D.L.; Davies, D.R.; Barr, J.L.; Manzerra, P.; Forster, G.L. Mild traumatic brain injury in the rat alters neuronal number in the limbic system and increases conditioned fear and anxiety-like behaviors. Exp. Neurol., 2012, 235(2), 574-587.
[http://dx.doi.org/10.1016/j.expneurol.2012.03.012] [PMID: 22498103]
[104]
Murrough, J.W.; Yaqubi, S.; Sayed, S.; Charney, D.S. Emerging drugs for the treatment of anxiety. Expert Opin. Emerg. Drugs, 2015, 20(3), 393-406.
[http://dx.doi.org/10.1517/14728214.2015.1049996] [PMID: 26012843]
[105]
Gordon, J.A.; Hen, R. The serotonergic system and anxiety. Neuromolecular Med., 2004, 5(1), 27-40.
[http://dx.doi.org/10.1385/NMM:5:1:027] [PMID: 15001810]
[106]
Wankhar, W.; Syiem, D.; Pakyntein, C.L.; Thabah, D.; Sunn, S.E. Effect of 5-HT2C receptor agonist and antagonist on chronic unpredictable stress (CUS) - Mediated anxiety and depression in adolescent Wistar albino rat: Implicating serotonin and mitochondrial ETC-I function in serotonergic neurotransmission. Behav. Brain Res., 2020, 393, 112780.
[http://dx.doi.org/10.1016/j.bbr.2020.112780] [PMID: 32579979]
[107]
Juruena, M.F.; Eror, F.; Cleare, A.J.; Young, A.H. The role of early life stress in HPA axis and anxiety. Adv. Exp. Med. Biol., 2020, 1191, 141-153.
[http://dx.doi.org/10.1007/978-981-32-9705-0_9] [PMID: 32002927]
[108]
Silverman, M.N.; Sternberg, E.M. Glucocorticoid regulation of inflammation and its functional correlates: From HPA axis to glucocorticoid receptor dysfunction. Ann. N. Y. Acad. Sci., 2012, 1261, 55-63.
[http://dx.doi.org/10.1111/j.1749-6632.2012.06633.x] [PMID: 22823394]
[109]
Vogelzangs, N.; Beekman, A.T.; de Jonge, P.; Penninx, B.W. Anxiety disorders and inflammation in a large adult cohort. Transl. Psychiatry, 2013, 3, e249.
[http://dx.doi.org/10.1038/tp.2013.27] [PMID: 23612048]
[110]
Calabrese, F.; Rossetti, A.C.; Racagni, G.; Gass, P.; Riva, M.A.; Molteni, R. Brain-derived neurotrophic factor: A bridge between inflammation and neuroplasticity. Front. Cell. Neurosci., 2014, 8, 430.
[http://dx.doi.org/10.3389/fncel.2014.00430] [PMID: 25565964]
[111]
Suliman, S.; Hemmings, S.M.; Seedat, S. Brain-Derived Neurotrophic Factor (BDNF) protein levels in anxiety disorders: Systematic review and meta-regression analysis. Front. Integr. Nuerosci., 2013, 7, 55.
[http://dx.doi.org/10.3389/fnint.2013.00055] [PMID: 23908608]
[112]
Rosa, S.G.; Quines, C.B.; Stangherlin, E.C.; Nogueira, C.W. Diphenyl diselenide ameliorates monosodium glutamate induced anxiety-like behavior in rats by modulating hippocampal BDNF-Akt pathway and uptake of GABA and serotonin neurotransmitters. Physiol. Behav., 2016, 155, 1-8.
[http://dx.doi.org/10.1016/j.physbeh.2015.11.038] [PMID: 26657020]
[113]
Dos Santos, M.M.; de Macedo, G.T.; Prestes, A.S.; Loro, V.L.; Heidrich, G.M.; Picoloto, R.S.; Rosemberg, D.B.; Barbosa, N.V. Hyperglycemia elicits anxiety-like behaviors in zebrafish: Protective role of dietary diphenyl diselenide. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2018, 85, 128-135.
[http://dx.doi.org/10.1016/j.pnpbp.2018.04.017] [PMID: 29723547]
[114]
Yamakawa, G.R.; Eyolfson, E.; Weerawardhena, H.; Mychasiuk, R. Administration of diphenyl diselenide (PhSe)2 following repetitive mild traumatic brain injury exacerbates anxiety-like symptomology in a rat model. Behav. Brain Res., 2020, 382, 112472.
[http://dx.doi.org/10.1016/j.bbr.2020.112472] [PMID: 31926213]
[115]
Reis, A.S.; Pinz, M.; Duarte, L.F.B.; Roehrs, J.A.; Alves, D.; Luchese, C.; Wilhelm, E.A. 4-phenylselenyl-7-chloroquinoline, a novel multitarget compound with anxiolytic activity: Contribution of the glutamatergic system. J. Psychiatr. Res., 2017, 84, 191-199.
[http://dx.doi.org/10.1016/j.jpsychires.2016.10.007] [PMID: 27756019]
[116]
Pinz, M.P.; Dos Reis, A.S.; Vogt, A.G.; Krüger, R.; Alves, D.; Jesse, C.R.; Roman, S.S.; Soares, M.P.; Wilhelm, E.A.; Luchese, C. Current advances of pharmacological properties of 7-chloro-4-(phenylselanyl) quinoline: Prevention of cognitive deficit and anxiety in Alzheimer’s disease model. Biomed. Pharmacother., 2018, 105, 1006-1014.
[http://dx.doi.org/10.1016/j.biopha.2018.06.049] [PMID: 30021335]
[117]
Paltian, J.J.; Dos Reis, A.S.; de Oliveira, R.L.; da Fonseca, C.A.R.; Domingues, W.B.; Dellagostin, E.N.; Campos, V.F.; Kruger, R.; Alves, D.; Luchese, C.; Wilhelm, E.A. The anxiolytic effect of a promising quinoline containing selenium with the contribution of the serotonergic and GABAergic pathways: Modulation of parameters associated with anxiety in mice. Behav. Brain Res., 2020, 393, 112797.
[http://dx.doi.org/10.1016/j.bbr.2020.112797] [PMID: 32649976]
[118]
Rodrigues, K.C.; Bortolatto, C.F.; da Motta, K.P.; de Oliveira, R.L.; Paltian, J.J.; Krüger, R.; Roman, S.S.; Boeira, S.P.; Alves, D.; Wilhelm, E.A.; Luchese, C. The neurotherapeutic role of a selenium-functionalized quinoline in hypothalamic obese rats. Psychopharmacology (Berl.), 2021, 238(7), 1937-1951.
[http://dx.doi.org/10.1007/s00213-021-05821-y] [PMID: 33740091]
[119]
Duarte, L.F.B.; Barbosa, E.S.; Oliveira, R.L.; Pinz, M.P.; Godoi, B.; Schumacher, R.F.; Luchese, C.; Wilhelm, E.A.; Alves, D. A simple method for the synthesis of 4-arylselanyl-7-chloroquinolines used as in vitro acetylcholinesterase inhibitors and in vivo memory improvement. Tetrahedron Lett., 2017, 58, 3319-3322.
[http://dx.doi.org/10.1016/j.tetlet.2017.07.039]
[120]
Birmann, P.T.; Domingues, M.; Casaril, A.M.; Smaniotto, T.A.; Hartwig, D.; Jacob, R.G.; Savegnago, L. A pyrazole-containing selenium compound modulates neuroendocrine, oxidative stress, and behavioral responses to acute restraint stress in mice. Behav. Brain Res., 2021, 396, 112874.
[http://dx.doi.org/10.1016/j.bbr.2020.112874] [PMID: 32835778]
[121]
Duarte, L.F.B.; Oliveira, R.L.; Rodrigues, K.C.; Voss, G.T.; Godoi, B.; Schumacher, R.F.; Perin, G.; Wilhelm, E.A.; Luchese, C.; Alves, D. Organoselenium compounds from purines: Synthesis of 6-arylselanylpurines with antioxidant and anticholinesterase activities and memory improvement effect. Bioorg. Med. Chem., 2017, 25(24), 6718-6723.
[http://dx.doi.org/10.1016/j.bmc.2017.11.019] [PMID: 29157728]
[122]
Ströhle, A.; Gensichen, J.; Domschke, K. The diagnosis and treatment of anxiety disorders. Dtsch. Arztebl. Int., 2018, 155(37), 611-620.
[http://dx.doi.org/10.3238/arztebl.2018.0611] [PMID: 30282583]
[123]
Brady, R.O.; Keshavan, M. Emergent treatments based on the pathophysiology of bipolar disorder: A selective review. Asian J. Psychiatr., 2015, 18, 15-21.
[http://dx.doi.org/10.1016/j.ajp.2015.07.017] [PMID: 26525885]
[124]
Scaini, G.; Andrews, T.; Lima, C.N.C.; Benevenuto, D.; Streck, E.L.; Quevedo, J. Mitochondrial dysfunction as a critical event in the pathophysiology of bipolar disorder. Mitochondrion, 2021, 57, 23-36.
[http://dx.doi.org/10.1016/j.mito.2020.12.002] [PMID: 33340709]
[125]
Kato, T. Molecular neurobiology of bipolar disorder: A disease of ‘mood-stabilizing neurons’? Trends Neurosci., 2008, 31(10), 495-503.
[http://dx.doi.org/10.1016/j.tins.2008.07.007] [PMID: 18774185]
[126]
León-Caballero, J.; Pacchiarotti, I.; Murru, A.; Valentí, M.; Colom, F.; Benach, B.; Pérez, V.; Dalmau, J.; Vieta, E. Bipolar disorder and antibodies against the N-methyl-d-aspartate receptor: A gate to the involvement of autoimmunity in the pathophysiology of bipolar illness. Neurosci. Biobehav. Rev., 2015, 55, 403-412.
[http://dx.doi.org/10.1016/j.neubiorev.2015.05.012] [PMID: 26014349]
[127]
Salvadore, G.; Quiroz, J.A.; Machado-Vieira, R.; Henter, I.D.; Manji, H.K.; Zarate, C.A., Jr The neurobiology of the switch process in bipolar disorder: A review. J. Clin. Psychiatry, 2010, 71(11), 1488-1501.
[http://dx.doi.org/10.4088/JCP.09r05259gre] [PMID: 20492846]
[128]
Maletic, V.; Raison, C. Integrated neurobiology of bipolar disorder. Front. Psychiatry, 2014, 5, 98-155.
[http://dx.doi.org/10.3389/fpsyt.2014.00098] [PMID: 25202283]
[129]
Alda, M. Bipolar disorder: From families to genes. Can. J. Psychiatry, 1997, 42(4), 378-387.
[http://dx.doi.org/10.1177/070674379704200404] [PMID: 9161762]
[130]
Craddock, N.; Sklar, P. Genetics of bipolar disorder. Lancet, 2013, 381(9878), 1654-1662.
[http://dx.doi.org/10.1016/S0140-6736(13)60855-7] [PMID: 23663951]
[131]
Rao, S.; Han, X.; Shi, M.; Siu, C.O.; Waye, M.M.Y.; Liu, G.; Wing, Y.K. Associations of the serotonin transporter promoter polymorphism (5-HTTLPR) with bipolar disorder and treatment response: A systematic review and meta-analysis. Prog. Neuropsychopharmacol. Biol. Psychiatry, 2019, 89, 214-226.
[http://dx.doi.org/10.1016/j.pnpbp.2018.08.035] [PMID: 30217771]
[132]
Tomioka, Y.; Jiménez, E.; Salagre, E.; Arias, B.; Mitjans, M.; Ruiz, V.; Sáiz, P.; García-Portilla, M.P.; de la Fuente, L.; Gomes-da-Costa, S.P.; Bobes, J.; Vieta, E.; Benabarre, A.; Grande, I. Association between genetic variation in the myo-inositol monophosphatase 2 (IMPA2) gene and age at onset of bipolar disorder. J. Affect. Disord., 2018, 232, 229-236.
[http://dx.doi.org/10.1016/j.jad.2018.02.002] [PMID: 29499505]
[133]
Jadhav, S.; Russo, S.; Cowart, L.A.; Greenberg, M.L. Inositol depletion induced by acute treatment of the bipolar disorder drug valproate increases levels of phytosphingosine. J. Biol. Chem., 2017, 292(12), 4953-4959.
[http://dx.doi.org/10.1074/jbc.M117.775460] [PMID: 28100786]
[134]
Angelescu, I.; Brugger, S.P.; Borgan, F.; Kaar, S.J.; Howes, O.D. The magnitude and variability of brain structural alterations in bipolar disorder: A double meta-analysis of 5534 patients and 6651 healthy controls. J. Affect. Disord., 2021, 291, 171-176.
[http://dx.doi.org/10.1016/j.jad.2021.04.090] [PMID: 34038834]
[135]
Overs, B.J.; Lenroot, R.K.; Roberts, G.; Green, M.J.; Toma, C.; Hadzi-Pavlovic, D.; Pierce, K.D.; Schofield, P.R.; Mitchell, P.B.; Fullerton, J.M. Cortical mediation of relationships between dopamine receptor D2 and cognition is absent in youth at risk of bipolar disorder. Psychiatry Res. Neuroimaging, 2021, 309, 111258.
[http://dx.doi.org/10.1016/j.pscychresns.2021.111258] [PMID: 33529975]
[136]
Miklowitz, D.J.; Johnson, S.L. The psychopathology and treatment of bipolar disorder. Annu. Rev. Clin. Psychol., 2006, 2, 199-235.
[http://dx.doi.org/10.1146/annurev.clinpsy.2.022305.095332] [PMID: 17716069]
[137]
Bastos, J.R.; Perico, K.M.; Marciano Vieira, E.L.; Teixeira, A.L.; Machado, F.S.; de Miranda, A.S.; Moreira, F.A. Inhibition of the dopamine transporter as an animal model of bipolar disorder mania: Locomotor response, neuroimmunological profile and pharmacological modulation. J. Psychiatr. Res., 2018, 102, 142-149.
[http://dx.doi.org/10.1016/j.jpsychires.2018.04.004] [PMID: 29656188]
[138]
Barkus, C.; Ferland, J.N.; Adams, W.K.; Churchill, G.C.; Cowen, P.J.; Bannerman, D.M.; Rogers, R.D.; Winstanley, C.A.; Sharp, T. The putative lithium-mimetic ebselen reduces impulsivity in rodent models. J. Psychopharmacol., 2018, 32(9), 1018-1026.
[http://dx.doi.org/10.1177/0269881118784876] [PMID: 29986609]
[139]
Singh, N.; Sharpley, A.L.; Emir, U.E.; Masaki, C.; Herzallah, M.M.; Gluck, M.A.; Sharp, T.; Harmer, C.J.; Vasudevan, S.R.; Cowen, P.J.; Churchill, G.C. Effect of the putative lithium mimetic ebselen on brain myo-inositol, sleep, and emotional processing in humans. Neuropsychopharmacology, 2016, 41(7), 1768-1778.
[http://dx.doi.org/10.1038/npp.2015.343] [PMID: 26593266]
[140]
Masaki, C.; Sharpley, A.L.; Godlewska, B.R.; Berrington, A.; Hashimoto, T.; Singh, N.; Vasudevan, S.R.; Emir, U.E.; Churchill, G.C.; Cowen, P.J. Effects of the potential lithium-mimetic, ebselen, on brain neurochemistry: A magnetic resonance spectroscopy study at 7 tesla. Psychopharmacology (Berl.), 2016, 233(6), 1097-1104.
[http://dx.doi.org/10.1007/s00213-015-4189-2] [PMID: 26758281]
[141]
Sharpley, A.L.; Williams, C.; Holder, A.A.; Godlewska, B.R.; Singh, N.; Shanyinde, M.; MacDonald, O.; Cowen, P.J. A phase 2a randomised, double-blind, placebo-controlled, parallel-group, add-on clinical trial of ebselen (SPI-1005) as a novel treatment for mania or hypomania. Psychopharmacology (Berl.), 2020, 237(12), 3773-3782.
[http://dx.doi.org/10.1007/s00213-020-05654-1] [PMID: 32909076]
[142]
Sousa, F.S.S.; Seus, N.; Alves, D.; Salles, H.D.; Schneider, P.H.; Savegnago, L.; Castro, M. Evaluation of Se-phenyl-thiazolidine-4-carboselenoate protective activity against oxidative and behavioral stress in the maniac model induced by ouabain in male rats. Neurosci. Lett., 2017, 651, 182-187.
[http://dx.doi.org/10.1016/j.neulet.2017.04.030] [PMID: 28432028]
[143]
Rampon, D.S.; Rodembusch, F.S.; Gonçalves, P.F.B.; Lourega, R.V.; Merlo, A.A.; Schneider, P.H. An evaluation of the chalcogen atom effect on the mesomorphic and electronic properties in a new homologous series of chalcogeno esters. J. Braz. Chem. Soc., 2010, 21, 2100-2107.
[http://dx.doi.org/10.1590/S0103-50532010001100011]
[144]
Mäki-Marttunen, V.; Andreassen, O.A.; Espeseth, T. The role of norepinephrine in the pathophysiology of schizophrenia. Neurosci. Biobehav. Rev., 2020, 118, 298-314.
[http://dx.doi.org/10.1016/j.neubiorev.2020.07.038] [PMID: 32768486]
[145]
Prestwood, T.R.; Asgariroozbehani, R.; Wu, S.; Agarwal, S.M.; Logan, R.W.; Ballon, J.S.; Hahn, M.K.; Freyberg, Z. Roles of inflammation in intrinsic pathophysiology and antipsychotic drug-induced metabolic disturbances of schizophrenia. Behav. Brain Res., 2021, 402, 113101.
[http://dx.doi.org/10.1016/j.bbr.2020.113101] [PMID: 33453341]
[146]
Owen, M.J.; Sawa, A.; Mortensen, P.B. Schizophrenia. Lancet, 2016, 388(10039), 86-97.
[http://dx.doi.org/10.1016/S0140-6736(15)01121-6] [PMID: 26777917]
[147]
Bojesen, K.B.; Broberg, B.V.; Fagerlund, B.; Jessen, K.; Thomas, M.B.; Sigvard, A.; Tangmose, K.; Nielsen, M.O.; Andersen, G.S.; Larsson, H.B.W.; Edden, R.A.E.; Rostrup, E.; Glenthøj, B.Y. Associations between cognitive function and levels of glutamatergic metabolites and gammaaminobutyric acid in antipsychotic-Naïve patients with schizophrenia or psychosis. Biol. Psychiatry, 2021, 89(3), 278-287.
[http://dx.doi.org/10.1016/j.biopsych.2020.06.027] [PMID: 32928500]
[148]
Frajman, A.; Maggio, N.; Muler, I.; Haroutunian, V.; Katsel, P.; Yitzhaky, A.; Weiser, M.; Hertzberg, L. Gene expression meta-analysis reveals the down-regulation of three GABA receptor subunits in the superior temporal gyrus of patients with schizophrenia. Schizophr. Res., 2020, 220, 29-37.
[http://dx.doi.org/10.1016/j.schres.2020.04.027] [PMID: 32376074]
[149]
Intson, K.; Geissah, S.; McCullumsmith, R.E.; Ramsey, A.J. A role for endothelial NMDA receptors in the pathophysiology of schizophrenia. Schizophr. Res., in press
[http://dx.doi.org/10.1016/j.schres.2020.10.004] [PMID: 33189520]
[150]
Goff, D.C.; Coyle, J.T. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am. J. Psychiatry, 2001, 158(9), 1367-1377.
[http://dx.doi.org/10.1176/appi.ajp.158.9.1367] [PMID: 11532718]
[151]
Bustillo, J.R.; Chen, H.; Jones, T.; Lemke, N.; Abbott, C.; Qualls, C.; Canive, J.; Gasparovic, C. Increased glutamine in patients undergoing long-term treatment for schizophrenia: A proton magnetic resonance spectroscopy study at 3 T. JAMA Psychiatry, 2014, 71(3), 265-272.
[http://dx.doi.org/10.1001/jamapsychiatry.2013.3939] [PMID: 24402128]
[152]
Takahashi, T.; Suzuki, M. Brain morphologic changes in early stages of psychosis: Implications for clinical application and early intervention. Psychiatry Clin. Neurosci., 2018, 72(8), 556-571.
[http://dx.doi.org/10.1111/pcn.12670] [PMID: 29717522]
[153]
Javitt, D.C. Glutamate and schizophrenia: Phencyclidine, N-methyl-D-aspartate receptors, and dopamine-glutamate interactions. Int. Rev. Neurobiol., 2007, 78, 69-108.
[http://dx.doi.org/10.1016/S0074-7742(06)78003-5] [PMID: 17349858]
[154]
Venkataramaiah, C.; Payani, S.; Priya, B.L.; Pradeepkiran, J.A. Therapeutic potentiality of a new flavonoid against ketamine induced glutamatergic dysregulation in schizophrenia: In vivo and in silico approach. Biomed. Pharmacother., 2021, 138, 111453.
[http://dx.doi.org/10.1016/j.biopha.2021.111453] [PMID: 34187143]
[155]
Kosten, L.; Chowdhury, G.M.I.; Mingote, S.; Staelens, S.; Rothman, D.L.; Behar, K.L.; Rayport, S. Glutaminase activity in GLS1 Het mouse brain compared to putative pharmacological inhibition by ebselen using ex vivo MRS. Neurochem. Int., 2019, 129, 104508.
[http://dx.doi.org/10.1016/j.neuint.2019.104508] [PMID: 31326460]
[156]
Thomas, A.G.; Rojas, C.; Tanega, C.; Shen, M.; Simeonov, A.; Boxer, M.B.; Auld, D.S.; Ferraris, D.V.; Tsukamoto, T.; Slusher, B.S. Kinetic characterization of ebselen, chelerythrine and apomorphine as glutaminase inhibitors. Biochem. Biophys. Res. Commun., 2013, 438(2), 243-248.
[http://dx.doi.org/10.1016/j.bbrc.2013.06.110] [PMID: 23850693]
[157]
Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990-2016: A systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol., 2019, 18(1), 88-106.
[http://dx.doi.org/10.1016/S1474-4422(18)30403-4] [PMID: 30497964]
[158]
Bateman, R.J.; Aisen, P.S.; De Strooper, B.; Fox, N.C.; Lemere, C.A.; Ringman, J.M.; Salloway, S.; Sperling, R.A.; Windisch, M.; Xiong, C. Autosomal-dominant Alzheimer’s disease: A review and proposal for the prevention of Alzheimer’s disease. Alzheimers Res. Ther., 2011, 3(1), 1.
[http://dx.doi.org/10.1186/alzrt59] [PMID: 21211070]
[159]
Verghese, P.B.; Castellano, J.M.; Holtzman, D.M. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol., 2011, 10(3), 241-252.
[http://dx.doi.org/10.1016/S1474-4422(10)70325-2] [PMID: 21349439]
[160]
Xu, W.; Tan, L.; Wang, H-F.; Jiang, T.; Tan, M-S.; Tan, L.; Zhao, Q-F.; Li, J-Q.; Wang, J.; Yu, J-T. Meta-analysis of modifiable risk factors for Alzheimer’s disease. J. Neurol. Neurosurg. Psychiatry, 2015, 86(12), 1299-1306.
[http://dx.doi.org/10.1136/jnnp-2015-310548] [PMID: 26294005]
[161]
Serrano-Pozo, A.; Frosch, M.P.; Masliah, E.; Hyman, B.T. Neuropathological alterations in Alzheimer disease. Cold Spring Harb. Perspect. Med., 2011, 1(1), a006189.
[http://dx.doi.org/10.1101/cshperspect.a006189] [PMID: 22229116]
[162]
Liu, P.P.; Xie, Y.; Meng, X.Y.; Kang, J-S. History and progress of hypotheses and clinical trials for Alzheimer’s disease. Signal Transduct. Target. Ther., 2019, 4, 29.
[http://dx.doi.org/10.1038/s41392-019-0063-8] [PMID: 31637009]
[163]
Ferreira-Vieira, T.H.; Guimaraes, I.M.; Silva, F.R.; Ribeiro, F.M. Alzheimer’s disease: Targeting the cholinergic system. Curr. Neuropharmacol., 2016, 14(1), 101-115.
[http://dx.doi.org/10.2174/1570159X13666150716165726] [PMID: 26813123]
[164]
Hampel, H.; Mesulam, M-M.; Cuello, A.C.; Farlow, M.R.; Giacobini, E.; Grossberg, G.T.; Khachaturian, A.S.; Vergallo, A.; Cavedo, E.; Snyder, P.J.; Khachaturian, Z.S. The cholinergic system in the pathophysiology and treatment of Alzheimer’s disease. Brain, 2018, 141(7), 1917-1933.
[http://dx.doi.org/10.1093/brain/awy132] [PMID: 29850777]
[165]
Swerdlow, R.H.; Khan, S.M.A. A “mitochondrial cascade hypothesis” for sporadic Alzheimer’s disease. Med. Hypotheses, 2004, 63(1), 8-20.
[http://dx.doi.org/10.1016/j.mehy.2003.12.045] [PMID: 15193340]
[166]
Qian, X.; Hamad, B.; Dias-Lalcaca, G. The Alzheimer disease market. Nat. Rev. Drug Discov., 2015, 14(10), 675-676.
[http://dx.doi.org/10.1038/nrd4749] [PMID: 26388231]
[167]
Singh, N.; Halliday, A.C.; Thomas, J.M.; Kuznetsova, O.V.; Baldwin, R.; Woon, E.C.Y.; Aley, P.K.; Antoniadou, I.; Sharp, T.; Vasudevan, S.R.; Churchill, G.C. A safe lithium mimetic for bipolar disorder. Nat. Commun., 2013, 4, 1332.
[http://dx.doi.org/10.1038/ncomms2320] [PMID: 23299882]
[168]
Wang, X.; Yun, J-W.; Lei, X.G. Glutathione peroxidase mimic ebselen improves glucose-stimulated insulin secretion in murine islets. Antioxid. Redox Signal., 2006, 20, 191-203.
[169]
Gabryel, B.; Malecki, A. Ebselen attenuates oxidative stress in ischemic astrocytes depleted of glutathione. Comparison with glutathione precursors. Pharmacol. Rep., 2006, 58, 381-392.
[170]
Xie, Y.; Tan, Y.; Zheng, Y.; Du, X.; Liu, Q. Ebselen ameliorates β-amyloid pathology, tau pathology, and cognitive impairment in triple-transgenic Alzheimer’s disease mice. Eur. J. Biochem., 2017, 22(6), 851-865.
[http://dx.doi.org/10.1007/s00775-017-1463-2] [PMID: 28502066]
[171]
Martini, F.; Pesarico, A.P.; Brüning, C.A.; Zeni, G.; Nogueira, C.W. Ebselen inhibits the activity of acetylcholinesterase globular isoform G4 in vitro and attenuates scopolamine-induced amnesia in mice. J. Cell. Biochem., 2018, 119(7), 5598-5608.
[http://dx.doi.org/10.1002/jcb.26731] [PMID: 29405440]
[172]
Siek, G.C.; Katz, L.S.; Fishman, E.B.; Korosi, T.S.; Marquis, J.K. Molecular forms of acetylcholinesterase in subcortical areas of normal and Alzheimer disease brain. Biol. Psychiatry, 1990, 27(6), 573-580.
[http://dx.doi.org/10.1016/0006-3223(90)90524-6] [PMID: 2322617]
[173]
Grieb, P. Intracerebroventricular streptozotocin injections as a model of Alzheimer’s Disease: In search of a relevant mechanism. Mol. Neurobiol., 2016, 53(3), 1741-1752.
[http://dx.doi.org/10.1007/s12035-015-9132-3] [PMID: 25744568]
[174]
Martini, F.; Rosa, S.G.; Klann, I.P.; Fulco, B.C.W.; Carvalho, F.B.; Rahmeier, F.L.; Fernandes, M.C.; Nogueira, C.W. A multifunctional compound ebselen reverses memory impairment, apoptosis and oxidative stress in a mouse model of sporadic Alzheimer’s disease. J. Psychiatr. Res., 2019, 109, 107-117.
[http://dx.doi.org/10.1016/j.jpsychires.2018.11.021] [PMID: 30521994]
[175]
Klann, I.P.; Martini, F.; Rosa, S.G.; Nogueira, C.W. Ebselen reversed peripheral oxidative stress induced by a mouse model of sporadic Alzheimer’s disease. Mol. Biol. Rep., 2020, 47(3), 2205-2215.
[http://dx.doi.org/10.1007/s11033-020-05326-5] [PMID: 32095983]
[176]
Zhang, S.; Wang, J.; Song, N.; Xie, J.; Jiang, H. Up-regulation of divalent metal transporter 1 is involved in 1-methyl-4-phenylpyridinium (MPP(+))-induced apoptosis in MES23.5 cells. Neurobiol. Aging, 2009, 30(9), 1466-1476.
[http://dx.doi.org/10.1016/j.neurobiolaging.2007.11.025] [PMID: 18191877]
[177]
Zheng, W.; Xin, N.; Chi, Z.H.; Zhao, B.L.; Zhang, J.; Li, J.Y.; Wang, Z.Y. Divalent metal transporter 1 is involved in amyloid precursor protein processing and Abeta generation. FASEB J., 2009, 23(12), 4207-4217.
[http://dx.doi.org/10.1096/fj.09-135749] [PMID: 19679638]
[178]
Xie, L.; Yu, D.; Hu, J.; Fang, Y.; Zuo, Z.; Gu, Y.; Li, D. DMT1 inhibitor ebselen inhibits iron-induced amyloidogenic APP processing. Int. J. Clin. Exp. Med., 2018, 11, 7907-7916.
[179]
Wang, Z.; Li, W.; Wang, Y.; Li, X.; Huang, L.; Li, X. Design, synthesis and evaluation of clioquinol-ebselen hybrids as multi-target-directed ligands against Alzheimer’s disease. RSC Adv., 2016, 2016, 7139-7158.
[http://dx.doi.org/10.1039/C5RA26797H]
[180]
Wang, B.; Wang, Z.; Chen, H.; Lu, C.J.; Li, X. Synthesis and evaluation of 8-hydroxyquinolin derivatives substituted with (ben-zo[d][1,2]selenazol-3(2H)-one) as effective inhibitor of metal-induced Aβ aggregation and antioxidant. Bioorg. Med. Chem., 2016, 24(19), 4741-4749.
[http://dx.doi.org/10.1016/j.bmc.2016.08.017] [PMID: 27567080]
[181]
Luo, Z.; Sheng, J.; Sun, Y.; Lu, C.; Yan, J.; Liu, A.; Luo, H.B.; Huang, L.; Li, X. Synthesis and evaluation of multi-target-directed lig-ands against Alzheimer’s disease based on the fusion of donepezil and ebselen. J. Med. Chem., 2013, 56(22), 9089-9099.
[http://dx.doi.org/10.1021/jm401047q] [PMID: 24160297]
[182]
Yan, J.; Pang, Y.; Zhuang, J.; Lin, H.; Zhang, Q.; Han, L.; Ke, P.; Zhuang, J.; Huang, X. Selenepezil, a selenium-containing compound, exerts neuroprotective effect via modulation of the Keap1-Nrf2-ARE pathway and attenuates Aβ-induced cognitive impairment in vivo. ACS Chem. Neurosci., 2019, 10(6), 2903-2914.
[http://dx.doi.org/10.1021/acschemneuro.9b00106] [PMID: 31035749]
[183]
Qu, L.; Ji, L.; Wang, C.; Luo, H.; Li, S.; Peng, W.; Yin, F.; Lu, D.; Liu, X.; Kong, L.; Wang, X. Synthesis and evaluation of multi-target-directed ligands with BACE-1 inhibitory and Nrf2 agonist activities as potential agents against Alzheimer’s disease. Eur. J. Med. Chem., 2021, 219, 113441.
[http://dx.doi.org/10.1016/j.ejmech.2021.113441] [PMID: 33862517]
[184]
Egan, M.F.; Kost, J.; Tariot, P.N.; Aisen, P.S.; Cummings, J.L.; Vellas, B.; Sur, C.; Mukai, Y.; Voss, T.; Furtek, C.; Mahoney, E.; Harper Mozley, L.; Vandenberghe, R.; Mo, Y.; Michelson, D. Randomized trial of verubecestat for mild-to-moderate Alzheimer’s Disease. N. Engl. J. Med., 2018, 378(18), 1691-1703.
[http://dx.doi.org/10.1056/NEJMoa1706441] [PMID: 29719179]
[185]
Thomé, G.R.; Oliveira, V.A.; Chitolina Schetinger, M.R.; Saraiva, R.A.; Souza, D.; Dorneles Rodrigues, O.E.; Teixeira Rocha, J.B.; Ineu, R.P.; Pereira, M.E. Selenothymidine protects against biochemical and behavioral alterations induced by ICV-STZ model of dementia in mice. Chem. Biol. Interact., 2018, 294, 135-143.
[http://dx.doi.org/10.1016/j.cbi.2018.08.004] [PMID: 30120923]
[186]
de Souza, D.; Mariano, D.O.C.; Nedel, F.; Schultze, E.; Campos, V.F.; Seixas, F.; da Silva, R.S.; Munchen, T.S.; Ilha, V.; Dornelles, L.; Braga, A.L.; Rocha, J.B.T.; Collares, T.; Rodrigues, O.E.D. New organochalcogen multitarget drug: Synthesis and antioxidant and antitumoral activities of chalcogenozidovudine derivatives. J. Med. Chem., 2015, 58(8), 3329-3339.
[http://dx.doi.org/10.1021/jm5015296] [PMID: 25811955]
[187]
Pinz, M.P.; Vogt, A.G.; da Costa Rodrigues, K.; Dos Reis, A.S.; Duarte, L.F.B.; Fronza, M.G.; Domingues, W.B.; Blodorn, E.B.; Alves, D.; Campos, V.F.; Savegnago, L.; Wilhelm, E.A.; Luchese, C. Effect of a purine derivative containing selenium to improve memory decline and anxiety through modulation of the cholinergic system and Na+/K+-ATPase in an Alzheimer’s disease model. Metab. Brain Dis., 2021, 36(5), 871-888.
[http://dx.doi.org/10.1007/s11011-021-00703-w] [PMID: 33651275]
[188]
Wilhelm, E.A.; Torres, M.L.C.P.; Pereira, C.F.; Vogt, A.G.; Cervo, R.; Dos Santos, B.G.T.; Cargnelutti, R.; Luchese, C. Therapeutic potential of selanyl amide derivatives in the in vitro anticholinesterase activity and in in vivo antiamnesic action. Can. J. Physiol. Pharmacol., 2020, 98(5), 304-313.
[http://dx.doi.org/10.1139/cjpp-2019-0291] [PMID: 31821013]
[189]
Rodrigues, J.; Saba, S.; Joussef, A.C.; Rafique, J.; Braga, A.L. KIO3-Catalyzed C(sp2)-H Bond Selenylation/Sulfenylation of (Hetero)arenes: Synthesis of Chalcogenated (Hetero)arenes and their Evaluation for Anti-Alzheimer Activity. Asian J. Org. Chem., 2018, 1819-1824.
[http://dx.doi.org/10.1002/ajoc.201800346]
[190]
Gülçin, İ.; Trofimov, B.; Kaya, R.; Taslimi, P.; Sobenina, L.; Schmidt, E.; Petrova, O.; Malysheva, S.; Gusarova, N.; Farzaliyev, V.; Sujayev, A.; Alwasel, S.; Supuran, C.T. Synthesis of nitrogen, phosphorus, selenium and sulfurcontaining heterocyclic compounds - Determination of their carbonic anhydrase, acetylcholinesterase, butyrylcholinesterase and α-glycosidase inhibition properties. Bioorg. Chem., 2020, 103, 104171.
[http://dx.doi.org/10.1016/j.bioorg.2020.104171] [PMID: 32891857]
[191]
Leme, A.G.H.S.; Cardoso, B.R. Chapter 47 - Selenium and Alzheimer’s disease. In: Genetics, Neurology, Behavior, and Diet in Dementia: The Neuroscience of Dementia; Academic Press, Ed; Elsevier Science, 2020; 2, pp. 739-748.
[192]
Varikasuvu, S.R.; Prasad, V.S.; Kothapalli, J.; Manne, M. Brain selenium in Alzheimer’s Disease (BRAIN SEAD Study): A systematic review and meta-analysis. Biol. Trace Elem. Res., 2019, 189(2), 361-369.
[http://dx.doi.org/10.1007/s12011-018-1492-x] [PMID: 30171594]
[193]
Tysnes, O.B.; Storstein, A. Epidemiology of Parkinson’s disease. J. Neural Transm. (Vienna), 2017, 124(8), 901-905.
[http://dx.doi.org/10.1007/s00702-017-1686-y] [PMID: 28150045]
[194]
Litvan, I.; Bhatia, K.P.; Burn, D.J.; Goetz, C.G.; Lang, A.E.; McKeith, I.; Quinn, N.; Sethi, K.D.; Shults, C.; Wenning, G.K. Movement disorders society scientific issues committee report: SIC task force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Mov. Disord., 2003, 18(5), 467-486.
[http://dx.doi.org/10.1002/mds.10459] [PMID: 12722160]
[195]
Chaudhuri, K.R.; Martinez-Martin, P. Quantitation of non-motor symptoms in Parkinson’s disease. Eur. J. Neurol., 2008, 15(Suppl. 2), 2-7.
[http://dx.doi.org/10.1111/j.1468-1331.2008.02212.x] [PMID: 18702736]
[196]
Chaudhuri, K.R.; Schapira, A.H.V. Non-motor symptoms of Parkinson’s disease: Dopaminergic pathophysiology and treatment. Lancet Neurol., 2009, 8(5), 464-474.
[http://dx.doi.org/10.1016/S1474-4422(09)70068-7] [PMID: 19375664]
[197]
Dauer, W.; Przedborski, S. Parkinson’s disease: Mechanisms and models. Neuron, 2003, 39(6), 889-909.
[http://dx.doi.org/10.1016/S0896-6273(03)00568-3] [PMID: 12971891]
[198]
Lim, K-L.; Zhang, C.W. Molecular events underlying Parkinson’s disease - an interwoven tapestry. Front. Neurol., 2013, 4, 33.
[http://dx.doi.org/10.3389/fneur.2013.00033] [PMID: 23580245]
[199]
Sampaio, T.B.; Pinton, S.; da Rocha, J.T.; Gai, B.M.; Nogueira, C.W. Involvement of BDNF/TrkB signaling in the effect of diphenyl diselenide on motor function in a Parkinson’s disease rat model. Eur. J. Pharmacol., 2017, 795, 28-35.
[http://dx.doi.org/10.1016/j.ejphar.2016.11.054] [PMID: 27915043]
[200]
de Freitas Couto, S.; Araujo, S.M.; Bortolotto, V.C.; Poetini, M.R.; Pinheiro, F.C.; Santos Musachio, E.A.; Meichtry, L.B.; do Sacramento, M.; Alves, D.; La Rosa Novo, D.; Mesko, M.F.; Prigol, M. 7-chloro-4-(phenylselanyl) quinoline prevents dopamine depletion in a Drosophila melanogaster model of Parkinson’s-like disease. J. Trace Elem. Med. Biol., 2019, 54, 232-243.
[http://dx.doi.org/10.1016/j.jtemb.2018.10.015] [PMID: 30366679]
[201]
Talbott, E.O.; Malek, A.M.; Lacomis, D. The epidemiology of amyotrophic lateral sclerosis. Handb. Clin. Neurol., 2016, 138, 225-238.
[http://dx.doi.org/10.1016/B978-0-12-802973-2.00013-6] [PMID: 27637961]
[202]
Brown, R.H.; Al-Chalabi, A. Amyotrophic Lateral Sclerosis. N. Engl. J. Med., 2017, 377(2), 162-172.
[http://dx.doi.org/10.1056/NEJMra1603471] [PMID: 28700839]
[203]
Juneja, T.; Pericak-Vance, M.A.; Laing, N.G.; Dave, S.; Siddique, T. Prognosis in familial amyotrophic lateral sclerosis: Progression and survival in patients with glu100gly and ala4val mutations in Cu, Zn superoxide dismutase. Neurology, 1997, 48(1), 55-57.
[http://dx.doi.org/10.1212/WNL.48.1.55] [PMID: 9008494]
[204]
Pansarasa, O.; Bordoni, M.; Diamanti, L.; Sproviero, D.; Gagliardi, S.; Cereda, C. SOD1 in amyotrophic lateral sclerosis: “Ambivalent” behavior connected to the disease. Int. J. Mol. Sci., 2018, 19(5), 1345.
[http://dx.doi.org/10.3390/ijms19051345] [PMID: 29751510]
[205]
Pardo, C.A.; Xu, Z.; Borchelt, D.R.; Price, D.L.; Sisodia, S.S.; Cleveland, D.W. Superoxide dismutase is an abundant component in cell bodies, dendrites, and axons of motor neurons and in a subset of other neurons. Proc. Natl. Acad. Sci. USA, 1995, 92(4), 954-958.
[http://dx.doi.org/10.1073/pnas.92.4.954] [PMID: 7862672]
[206]
Lang, L.; Zetterström, P.; Brännström, T.; Marklund, S.L.; Danielsson, J.; Oliveberg, M. SOD1 aggregation in ALS mice shows simplistic test tube behavior. Proc. Natl. Acad. Sci. USA, 2015, 112(32), 9878-9883.
[http://dx.doi.org/10.1073/pnas.1503328112] [PMID: 26221023]
[207]
Luchinat, E.; Barbieri, L.; Rubino, J.T.; Kozyreva, T.; Cantini, F.; Banci, L. In-cell NMR reveals potential precursor of toxic species from SOD1 fALS mutants. Nat. Commun., 2014, 5, 5502.
[http://dx.doi.org/10.1038/ncomms6502] [PMID: 25429517]
[208]
Kerman, A.; Liu, H.N.; Croul, S.; Bilbao, J.; Rogaeva, E.; Zinman, L.; Robertson, J.; Chakrabartty, A. Amyotrophic lateral sclerosis is a non-amyloid disease in which extensive misfolding of SOD1 is unique to the familial form. Acta Neuropathol., 2010, 119(3), 335-344.
[http://dx.doi.org/10.1007/s00401-010-0646-5] [PMID: 20111867]
[209]
Yerbury, J.J.; Ooi, L.; Dillin, A.; Saunders, D.N.; Hatters, D.M.; Beart, P.M.; Cashman, N.R.; Wilson, M.R.; Ecroyd, H. Walking the tightrope: Proteostasis and neurodegenerative disease. J. Neurochem., 2016, 137(4), 489-505.
[http://dx.doi.org/10.1111/jnc.13575] [PMID: 26872075]
[210]
Guttenplan, K.A.; Weigel, M.K.; Adler, D.I.; Couthouis, J.; Liddelow, S.A.; Gitler, A.D.; Barres, B.A. Knockout of reactive astrocyte activating factors slows disease progression in an ALS mouse model. Nat. Commun., 2020, 11(1), 3753.
[http://dx.doi.org/10.1038/s41467-020-17514-9] [PMID: 32719333]
[211]
Clement, A.M.; Nguyen, M.D.; Roberts, E.A.; Garcia, M.L.; Boillée, S.; Rule, M.; McMahon, A.P.; Doucette, W.; Siwek, D.; Ferrante, R.J.; Brown, R.H. Jr.; Julien, J-P.; Goldstein, L.S.B.; Cleveland, D.W. Wild-type nonneuronal cells extend survival of SOD1 mutant motor neurons in ALS mice. Science, 2003, 302(5642), 113-117.
[http://dx.doi.org/10.1126/science.1086071] [PMID: 14526083]
[212]
Yamanaka, K.; Boillee, S.; Roberts, E.A.; Garcia, M.L.; McAlonis-Downes, M.; Mikse, O.R.; Cleveland, D.W.; Goldstein, L.S.B. Mutant SOD1 in cell types other than motor neurons and oligodendrocytes accelerates onset of disease in ALS mice. Proc. Natl. Acad. Sci. USA, 2008, 105(21), 7594-7599.
[http://dx.doi.org/10.1073/pnas.0802556105] [PMID: 18492803]
[213]
Di Giorgio, F.P.; Carrasco, M.A.; Siao, M.C.; Maniatis, T.; Eggan, K. Non-cell autonomous effect of glia on motor neurons in an embryonic stem cell-based ALS model. Nat. Neurosci., 2007, 10(5), 608-614.
[http://dx.doi.org/10.1038/nn1885] [PMID: 17435754]
[214]
Ferraiuolo, L.; Meyer, K.; Sherwood, T.W.; Vick, J.; Likhite, S.; Frakes, A.; Miranda, C.J.; Braun, L.; Heath, P.R.; Pineda, R.; Beattie, C.E.; Shaw, P.J.; Askwith, C.C.; McTigue, D.; Kaspar, B.K. Oligodendrocytes contribute to motor neuron death in ALS via SOD1-dependent mechanism. Proc. Natl. Acad. Sci. USA, 2016, 113(42), E6496-E6505.
[http://dx.doi.org/10.1073/pnas.1607496113] [PMID: 27688759]
[215]
Cozzolino, M.; Amori, I.; Pesaresi, M.G.; Ferri, A.; Nencini, M.; Carrì, M.T. Cysteine 111 affects aggregation and cytotoxicity of mutant Cu, Zn-superoxide dismutase associated with familial amyotrophic lateral sclerosis. J. Biol. Chem., 2008, 283(2), 866-874.
[http://dx.doi.org/10.1074/jbc.M705657200] [PMID: 18006498]
[216]
Wang, L.; Gutmann, D.H.; Roos, R.P. Astrocyte loss of mutant SOD1 delays ALS disease onset and progression in G85R transgenic mice. Hum. Mol. Genet., 2011, 20(2), 286-293.
[http://dx.doi.org/10.1093/hmg/ddq463] [PMID: 20962037]
[217]
Boillée, S.; Yamanaka, K.; Lobsiger, C.S.; Copeland, N.G.; Jenkins, N.A.; Kassiotis, G.; Kollias, G.; Cleveland, D.W. Onset and progression in inherited ALS determined by motor neurons and microglia. Science, 2006, 312(5778), 1389-1392.
[http://dx.doi.org/10.1126/science.1123511] [PMID: 16741123]
[218]
Kang, S.H.; Li, Y.; Fukaya, M.; Lorenzini, I.; Cleveland, D.W.; Ostrow, L.W.; Rothstein, J.D.; Bergles, D.E. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat. Neurosci., 2013, 16(5), 571-579.
[http://dx.doi.org/10.1038/nn.3357] [PMID: 23542689]
[219]
Liu, J.; Wang, F. Role of Neuroinflammation in amyotrophic lateral sclerosis: Cellular mechanisms and therapeutic implications. Front. Immunol., 2017, 8, 1005.
[http://dx.doi.org/10.3389/fimmu.2017.01005] [PMID: 28871262]
[220]
Henkel, J.S.; Engelhardt, J.I.; Siklós, L.; Simpson, E.P.; Kim, S.H.; Pan, T.; Goodman, J.C.; Siddique, T.; Beers, D.R.; Appel, S.H. Presence of dendritic cells, MCP-1, and activated microglia/macrophages in amyotrophic lateral sclerosis spinal cord tissue. Ann. Neurol., 2004, 55(2), 221-235.
[http://dx.doi.org/10.1002/ana.10805] [PMID: 14755726]
[221]
Capper, M.J.; Wright, G.S.A.; Barbieri, L.; Luchinat, E.; Mercatelli, E.; McAlary, L.; Yerbury, J.J.; O’Neill, P.M.; Antonyuk, S.V.; Banci, L.; Hasnain, S.S. The cysteine-reactive small molecule ebselen facilitates effective SOD1 maturation. Nat. Commun., 2018, 9(1), 1693.
[http://dx.doi.org/10.1038/s41467-018-04114-x] [PMID: 29703933]
[222]
Wright, G.S.; Antonyuk, S.V.; Hasnain, S.S. A faulty interaction between SOD1 and hCCS in neurodegenerative disease. Sci. Rep., 2016, 6, 27691.
[http://dx.doi.org/10.1038/srep27691] [PMID: 27282955]
[223]
Chantadul, V.; Wright, G.S.A.; Amporndanai, K.; Shahid, M.; Antonyuk, S.V.; Washbourn, G.; Rogers, M.; Roberts, N.; Pye, M.; O’Neill, P.M.; Hasnain, S.S. Ebselen as template for stabilization of A4V mutant dimer for motor neuron disease therapy. Commun. Biol., 2020, 3(1), 97.
[http://dx.doi.org/10.1038/s42003-020-0826-3] [PMID: 32139772]
[224]
Amporndanai, K.; Rogers, M.; Watanabe, S.; Yamanaka, K.; O’Neill, P.M.; Hasnain, S.S. Novel Selenium-based compounds with therapeutic potential for SOD1-linked amyotrophic lateral sclerosis. EBioMedicine, 2020, 59, 102980.
[http://dx.doi.org/10.1016/j.ebiom.2020.102980] [PMID: 32862101]
[225]
Zhang, C.; Wang, H.; Liang, W.; Yang, Y.; Cong, C.; Wang, Y.; Wang, S.; Wang, X.; Wang, D.; Huo, D.; Feng, H. Diphenyl diselenide protects motor neurons through inhibition of microglia-mediated inflammatory injury in amyotrophic lateral sclerosis. Pharmacol. Res., 2021, 165, 105457.
[http://dx.doi.org/10.1016/j.phrs.2021.105457] [PMID: 33515706]
[226]
NORD. The Multiple Sclerosis International Federation, Atlas of MS, 3rd Edition (September 2020).. 2020. Available from: https://www.msif.org/wp-content/uploads/2020/10/Atlas-3rd-Edition-Epidemiology-report-EN-updated-30-9-20.pdf
[227]
Leray, E.; Moreau, T.; Fromont, A.; Edan, G. Epidemiology of multiple sclerosis. Rev. Neurol. (Paris), 2016, 172(1), 3-13.
[http://dx.doi.org/10.1016/j.neurol.2015.10.006] [PMID: 26718593]
[228]
Oh, J.; Vidal-Jordana, A.; Montalban, X. Multiple sclerosis: Clinical aspects. Curr. Opin. Neurol., 2018, 31(6), 752-759.
[http://dx.doi.org/10.1097/WCO.0000000000000622] [PMID: 30300239]
[229]
Thormann, A.; Sørensen, P.S.; Koch-Henriksen, N.; Laursen, B.; Magyari, M. Comorbidity in multiple sclerosis is associated with diagnostic delays and increased mortality. Neurology, 2017, 89(16), 1668-1675.
[http://dx.doi.org/10.1212/WNL.0000000000004508] [PMID: 28931645]
[230]
Correale, J.; Gaitán, M.I.; Ysrraelit, M.C.; Fiol, M.P. Progressive multiple sclerosis: From pathogenic mechanisms to treatment. Brain, 2017, 140(3), 527-546.
[PMID: 27794524]
[231]
Compston, A.; Coles, A. Multiple sclerosis. Lancet, 2008, 372(9648), 1502-1517.
[http://dx.doi.org/10.1016/S0140-6736(08)61620-7] [PMID: 18970977]
[232]
Dendrou, C.A.; Fugger, L.; Friese, M.A. Immunopathology of multiple sclerosis. Nat. Rev. Immunol., 2015, 15(9), 545-558.
[http://dx.doi.org/10.1038/nri3871] [PMID: 26250739]
[233]
Waisman, A.; Johann, L. Antigen-presenting cell diversity for T cell reactivation in central nervous system autoimmunity. J. Mol. Med. (Berl.), 2018, 96(12), 1279-1292.
[http://dx.doi.org/10.1007/s00109-018-1709-7] [PMID: 30386908]
[234]
de Toledo, J.H.D.S.; Fraga-Silva, T.F.C.; Borim, P.A.; de Oliveira, L.R.C.; Oliveira, E.D.S.; Périco, L.L.; Hiruma-Lima, C.A.; de Souza, A.A.L.; de Oliveira, C.A.F.; Padilha, P.M.; Pinatto-Botelho, M.F.; Dos Santos, A.A.; Sartori, A.; Zorzella-Pezavento, S.F.G. Organic selenium reaches the central nervous system and downmodulates local inflammation: A complementary therapy for multiple sclerosis? Front. Immunol., 2020, 11, 571844.
[http://dx.doi.org/10.3389/fimmu.2020.571844] [PMID: 33193354]
[235]
Chanaday, N.L.; de Bem, A.F.; Roth, G.A. Effect of diphenyl diselenide on the development of experimental autoimmune encephalomyelitis. Neurochem. Int., 2011, 59(8), 1155-1162.
[http://dx.doi.org/10.1016/j.neuint.2011.10.004] [PMID: 22032971]
[236]
Huang, Z.; Rose, A.H.; Hoffmann, P.R. The role of selenium in inflammation and immunity: From molecular mechanisms to therapeutic opportunities. Antioxid. Redox Signal., 2012, 16(7), 705-743.
[http://dx.doi.org/10.1089/ars.2011.4145] [PMID: 21955027]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy