Generic placeholder image

The Natural Products Journal

Editor-in-Chief

ISSN (Print): 2210-3155
ISSN (Online): 2210-3163

Research Article

Targeting Breast Cancer in Diabetic Mice Using a Combination of Thymoquinone and Metformin

Author(s): Naeimah S. Sulayman Aboulqassim and Wamidh H. Talib*

Volume 13, Issue 4, 2023

Published on: 17 October, 2022

Article ID: e150622206018 Pages: 17

DOI: 10.2174/2210315512666220615114025

Price: $65

Abstract

Objective: The aim of our study was to assess thymoquinone (TQ) as a combination therapy with metformin (MT) against breast cancer in diabetic tumor-bearing mice.

Methods: The antiproliferative activities of TQ and MET and their combination were tested against three breast cancer cell lines (EMT6/P, T47D, MDA-MB-231) using an MTT assay. We used the isobolographic method to calculate the combination index (CI). Balb/C mice were implanted with EMT6/P cells and diabetes was induced using Streptozotocin (STZ). The antitumor activity was assessed for TQ and MET and their combination in vivo. The antiangiogenic activity and apoptosis induction ability of TQ and MET were estimated using ELISA kits. To estimate the liver and kidney functions, aspartate transaminase (AST), alanine transaminase (ALT) levels, and creatinine were detected in serum samples using standard kits. The impact of the TQ and MET combination on reducing blood glucose levels was measured daily using a glucometer.

Results: Synergistic anticancer effect was observed between TQ and MET. The combination of TQ and MET caused a significant reduction in tumor size (p-value <0.05) with a high cure percentage of (71.42%) and lower blood glucose levels. The combination therapy induces apoptosis, inhibits angiogenesis, and causes tumor regression. Moreover, no significant effect was observed in the serum levels of AST, ALT, and creatinine, as the values were very close to the normal ones.

Conclusion: The combination of TQ and MET is considered a promising anticancer therapy to treat breast cancer induced by diabetes and nondiabetes mice. This combination possesses antiproliferative activity, anti-hyperglycemic activity, inhibits angiogenesis and induces apoptosis. Furthermore, this combination demonstrated low toxicity.

Keywords: Thymoquinone, metformin, combination therapy, breast cancer, diabetic mice, MTT assay.

[1]
Larsson, S.C.; Mantzoros, C.S.; Wolk, A. Diabetes mellitus and risk of breast cancer: A meta-analysis. Int. J. Cancer, 2007, 121(4), 856-862.
[http://dx.doi.org/10.1002/ijc.22717] [PMID: 17397032]
[2]
WHO, U. UNFPA, The World Bank. Trends in maternal mortality: 1990 to 2010. World Health Organization, UNICEF, UNFPA, and The World Bank, 2018.
[3]
Peairs, K.S.; Barone, B.B.; Snyder, C.F.; Yeh, H.C.; Stein, K.B.; Derr, R.L.; Brancati, F.L.; Wolff, A.C. Diabetes mellitus and breast cancer outcomes: A systematic review and meta-analysis. J. Clin. Oncol., 2011, 29(1), 40-46.
[http://dx.doi.org/10.1200/JCO.2009.27.3011] [PMID: 21115865]
[4]
Bronsveld, H.K.; De Bruin, M.L.; Wesseling, J.; Sanders, J.; Hofland, I.; Jensen, V.; Bazelier, M.T.; Ter Braak, B.; de Boer, A.; Vestergaard, P.; Schmidt, M.K. The association of diabetes mellitus and insulin treatment with expression of insulin-related proteins in breast tumors. BMC Cancer, 2018, 18(1), 224.
[http://dx.doi.org/10.1186/s12885-018-4072-8] [PMID: 29486734]
[5]
Bashandy, S.; Jaleel, G.; Abdallah, H.; Harraz, S. Therapeutic implications of thymoquinone in the management of diabetes mellitus and its complications. Am. J. Phytomed. Clin. Therap., 2015, 3(3), 287-301.
[6]
Wild, S.; Roglic, G.; Green, A.; Sicree, R.; King, H. Global prevalence of diabetes: Estimates for the year 2000 and projections for 2030. Diabetes Care, 2004, 27(5), 1047-1053.
[http://dx.doi.org/10.2337/diacare.27.5.1047] [PMID: 15111519]
[7]
Ghoncheh, M.; Pournamdar, Z.; Salehiniya, H. Incidence and mortality and epidemiology of breast cancer in the world. Asian Pac. J. Cancer Prev., 2016, 17(S3), 43-46.
[http://dx.doi.org/10.7314/APJCP.2016.17.S3.43] [PMID: 27165206]
[8]
Kumaraguruparan, R.; Seshagiri, P.B.; Hara, Y.; Nagini, S. Chemoprevention of rat mammary carcinogenesis by black tea polyphenols: Modulation of xenobiotic‐metabolizing enzymes, oxidative stress, cell proliferation, apoptosis, and angiogenesis. Mol. Carcinog., 2007, 46(9), 797-806.
[9]
Schover, L.R. Premature ovarian failure and its consequences: Vasomotor symptoms, sexuality, and fertility. J. Clin. Oncol., 2008, 26(5), 753-758.
[http://dx.doi.org/10.1200/JCO.2007.14.1655] [PMID: 18258983]
[10]
Phoomak, C.; Vaeteewoottacharn, K.; Silsirivanit, A.; Saengboonmee, C.; Seubwai, W.; Sawanyawisuth, K.; Wongkham, C.; Wongkham, S. High glucose levels boost the aggressiveness of highly metastatic cholangiocarcinoma cells via O-GlcNAcylation. Sci. Rep., 2017, 7(1), 43842.
[http://dx.doi.org/10.1038/srep43842] [PMID: 28262738]
[11]
Pearson-Stuttard, J.; Zhou, B.; Kontis, V.; Bentham, J.; Gunter, M.J.; Ezzati, M. Retracted: Worldwide burden of cancer attributable to diabetes and high body-mass index: A comparative risk assessment.‏. Lancet Diabetes Endocrinol., 2018, 6, e6-15.
[12]
Younas, M.; Hano, C.; Giglioli-Guivarc’h, N.; Abbasi, B.H. Mechanistic evaluation of phytochemicals in breast cancer remedy: Current understanding and future perspectives. RSC Adv., 2018, 8(52), 29714-29744.
[http://dx.doi.org/10.1039/C8RA04879G]
[13]
Kaushik, P.; Kaushik, P.P.D. A comprehensive review on medicinal plants with anticancer activity. Global J. Pharm. Educ. Res., 2018, 3(1-2)
[14]
Dastjerdi, M.N.; Mehdiabady, E.M.; Iranpour, F.G.; Bahramian, H. Effect of thymoquinone on P53 gene expression and consequence apoptosis in breast cancer cell line. Int. J. Prev. Med., 2016, 7(1), 66.
[http://dx.doi.org/10.4103/2008-7802.180412] [PMID: 27141285]
[15]
Amin, B.; Hosseinzadeh, H. Black cumin (Nigella sativa) and its active constituent, thymoquinone: An overview on the analgesic and anti-inflammatory effects. Planta medica, 82(01/02), 2016, 8-16.
[16]
Ahmad, A.; Khan, R.M.A.; Alkharfy, K.M.; Raish, M.; Al-Jenoobi, F.I.; Al-Mohizea, A.M. Effects of thymoquinone on the pharmacokinetics and pharmacodynamics of glibenclamide in a rat model., Nat. Prod. Commun, 2015, 10(8), 1934578X1501000821.
[17]
Mahalakshmi, M.M.; Bhavadharini, B.; Kumar Maheswari, R.M.A.; Jebarani, S.; Ninov, L.; Kayal, A.; Unnikrishnan, R. Current practices in the diagnosis and management of gestational diabetes mellitus in India (WINGS-5). Indian J. Endocrinol. Metab., 2016, 20(3), 364.
[PMID: 25932391]
[18]
Falah, R.R.; Talib, W.H.; Shbailat, S.J. Combination of metformin and curcumin targets breast cancer in mice by angiogenesis inhibition, immune system modulation and induction of p53 independent apoptosis. Ther. Adv. Med. Oncol., 2017, 9(4), 235-252.
[19]
Dong-Dong, W.; Yi-Zhen, M.; Su-Mei, H.; Chen, X. Analysis of time course and dose effect from metformin on body mass index in children and adolescents. Front. Pharmacol., 2021, 12, 611480.
[20]
Landman, G.W.; Kleefstra, N.; van Hateren, K.J.; Groenier, K.H.; Gans, R.O.; Bilo, H.J. Metformin associated with lower cancer mortality in type 2 diabetes: ZODIAC-16. Diabetes Care, 2010, 33(2), 322-326.
[http://dx.doi.org/10.2337/dc09-1380] [PMID: 19918015]
[21]
Salani, B.; Del Rio, A.; Marini, C.; Sambuceti, G.; Cordera, R.; Maggi, D. Metformin, cancer and glucose metabolism. Endocr. Relat. Cancer, 2014, 21(6), R461-R471.
[22]
da Trindade, M.T.; Kogawa, A.C.; Salgado, H.R.N. Metformin: A review of characteristics, properties, analytical methods and impact in the green chemistry. Crit. Rev. Anal. Chem., 2018, 48(1), 66-72.
[23]
Talib, W.H. Regressions of breast carcinoma syngraft following treatment with piperine in combination with thymoquinone. Sci. Pharm., 2017, 85(3), 27.
[http://dx.doi.org/10.3390/scipharm85030027] [PMID: 28671634]
[24]
Ichite, N.; Chougule, M.B.; Jackson, T.; Fulzele, S.V.; Safe, S.; Singh, M. Enhancement of docetaxel anticancer activity by a novel diindolylmethane compound in human non-small cell lung cancer. Clin. Cancer Res., 2009, 15(2), 543-552.
[http://dx.doi.org/10.1158/1078-0432.CCR-08-1558] [PMID: 19147759]
[25]
Halees, R.Y.; Talib, W.H.; Issa, R.A. Varthemia iphionoides and pelargonium graveolens extracts as a treatment of breast cancer implanted in diabetic mice. Pharmacogn. Mag., 2019, 15(65), 698.
[http://dx.doi.org/10.4103/pm.pm_18_19]
[26]
Yassa, H.D.; Tohamy, A.F. Extract of Moringa oleifera leaves ameliorates streptozotocin-induced Diabetes mellitus in adult rats. Acta Histochem., 2014, 116(5), 844-854.
[http://dx.doi.org/10.1016/j.acthis.2014.02.002] [PMID: 24657072]
[27]
Faustino-Rocha, A.; Oliveira, P.A.; Pinho-Oliveira, J.; Teixeira-Guedes, C.; Soares-Maia, R.; da Costa, R.G.; Colaço, B.; Pires, M.J.; Colaço, J.; Ferreira, R.; Ginja, M. Estimation of rat mammary tumor volume using caliper and ultrasonography measurements. Lab Anim. (NY), 2013, 42(6), 217-224.
[http://dx.doi.org/10.1038/laban.254] [PMID: 23689461]
[28]
Ekowati, H.; Prasasti, E.; Rastuti, U. The Active fraction from Nigella sativa and its activity against T47D cell line. Indonesian J. Chem., 2011, 11(3), 217-222.
[http://dx.doi.org/10.22146/ijc.21383]
[29]
Asaduzzaman Khan, M.; Tania, M.; Fu, S.; Fu, J. Thymoquinone, as an anticancer molecule: From basic research to clinical investigation. Oncotarget, 2017, 8(31), 51907-51919.
[http://dx.doi.org/10.18632/oncotarget.17206] [PMID: 28881699]
[30]
Chernicky, C.L.; Tan, H.; Yi, L.; Loret de Mola, J.R.; Ilan, J. Treatment of murine breast cancer cells with antisense RNA to the type I insulin-like growth factor receptor decreases the level of plasminogen activator transcripts, inhibits cell growth in vitro, and reduces tumorigenesis in vivo. Mol. Pathol., 2002, 55(2), 102-109.
[http://dx.doi.org/10.1136/mp.55.2.102] [PMID: 11950959]
[31]
Alobaedi, O.H.; Talib, W.H.; Basheti, I.A. Antitumor effect of thymoquinone combined with resveratrol on mice transplanted with breast cancer. Asian Pac. J. Trop. Med., 2017, 10(4), 400-408.
[http://dx.doi.org/10.1016/j.apjtm.2017.03.026] [PMID: 28552110]
[32]
Kabil, N.; Bayraktar, R.; Kahraman, N.; Mokhlis, H.A.; Calin, G.A.; Lopez-Berestein, G.; Ozpolat, B. Thymoquinone inhibits cell proliferation, migration, and invasion by regulating the elongation factor 2 kinase (eEF-2K) signaling axis in triple-negative breast cancer. Breast Cancer Res. Treat., 2018, 171(3), 593-605.
[http://dx.doi.org/10.1007/s10549-018-4847-2] [PMID: 29971628]
[33]
Kato, K.; Gong, J.; Iwama, H.; Kitanaka, A.; Tani, J.; Miyoshi, H.; Nomura, K.; Mimura, S.; Kobayashi, M.; Aritomo, Y.; Kobara, H.; Mori, H.; Himoto, T.; Okano, K.; Suzuki, Y.; Murao, K.; Masaki, T. The antidiabetic drug metformin inhibits gastric cancer cell proliferation in vitro and in vivo. Mol. Cancer Ther., 2012, 11(3), 549-560.
[http://dx.doi.org/10.1158/1535-7163.MCT-11-0594] [PMID: 22222629]
[34]
Horwitz, K.B.; Zava, D.T.; Thilagar, A.K.; Jensen, E.M.; McGuire, W.L. Steroid receptor analyses of nine human breast cancer cell lines. Cancer Res., 1978, 38(8), 2434-2437.
[PMID: 667841]
[35]
Bashmail, H.A.; Alamoudi, A.A.; Noorwali, A.; Hegazy, G.A. AJabnoor, G.; Choudhry, H.; Al-Abd, A.M. Thymoquinone synergizes gemcitabine anti-breast cancer activity via modulating its apoptotic and autophagic activities. Sci. Rep., 2018, 8(1), 11674.
[http://dx.doi.org/10.1038/s41598-018-30046-z] [PMID: 30076320]
[36]
Ferrara, N.; Adamis, A.P. Ten years of anti-vascular endothelial growth factor therapy. Nat. Rev. Drug Discov., 2016, 15(6), 385-403.
[http://dx.doi.org/10.1038/nrd.2015.17] [PMID: 26775688]
[37]
Tanaka, M.; Siemann, D.W. Axl signaling is an important mediator of tumor angiogenesis. Oncotarget, 2019, 10(30), 2887-2898.
[http://dx.doi.org/10.18632/oncotarget.26882] [PMID: 31080559]
[38]
Wang, J.; Li, G.; Wang, Y.; Tang, S.; Sun, X.; Feng, X.; Li, Y.; Bao, G.; Li, P.; Mao, X.; Wang, M.; Liu, P. Suppression of tumor angiogenesis by metformin treatment via a mechanism linked to targeting of HER2/HIF-1α/VEGF secretion axis. Oncotarget, 2015, 6(42), 44579-44592.
[http://dx.doi.org/10.18632/oncotarget.6373] [PMID: 26625311]
[39]
Bobbin, M.L.; Rossi, J.J. RNA interference (RNAi)-based therapeutics: Delivering on the promise? Annu. Rev. Pharmacol. Toxicol., 2019, 56, 103-122.
[40]
Yeo, E.J.; Chun, Y.S.; Cho, Y.S.; Kim, J.; Lee, J.C.; Kim, M.S.; Park, J.W. YC-1: A potential anticancer drug targeting hypoxia-inducible factor 1. J. Natl. Cancer Inst., 2003, 95(7), 516-525.
[41]
Mirmiran, P.; Bahadoran, Z.; Ghasemi, A.; Hosseinpanah, F. Type 2 diabetes and cancer: An overview of epidemiological evidence and potential mechanisms. Crit. Rev. Oncogen., 2019, 24(3), 223-233.
[42]
Scappaticcio, L.; Maiorino, M.I.; Bellastella, G.; Giugliano, D.; Esposito, K. Insights into the relationships between diabetes, prediabetes, and cancer. Endocrine, 2017, 56(2), 231-239.
[http://dx.doi.org/10.1007/s12020-016-1216-y] [PMID: 28040833]
[43]
Pandey, A.; Forte, V.; Abdallah, M.; Alickaj, A.; Mahmud, S.; Asad, S.; McFarlane, S.I. Diabetes mellitus and the risk of cancer. Minerva Endocrinol., 2011, 36(3), 187-209.
[PMID: 22019750]
[44]
Vigneri, P.; Frasca, F.; Sciacca, L.; Pandini, G.; Vigneri, R. Diabetes and cancer. Endocr. Relat. Cancer, 2009, 16(4), 1103-1123.
[http://dx.doi.org/10.1677/ERC-09-0087] [PMID: 19620249]
[45]
Relles, D.; Chipitsyna, G.I.; Gong, Q.; Yeo, C.J.; Arafat, H.A. Thymoquinone promotes pancreatic cancer cell death and reduction of tumor size through combined inhibition of histone deacetylation and induction of histone acetylation. Adv. Prev. Med., 2016, 2016, 1407840.
[http://dx.doi.org/10.1155/2016/1407840] [PMID: 28105374]
[46]
Yi, T.; Cho, S.G.; Yi, Z.; Pang, X.; Rodriguez, M.; Wang, Y.; Sethi, G.; Aggarwal, B.B.; Liu, M. Thymoquinone inhibits tumor angiogenesis and tumor growth through suppressing AKT and extracellular signal-regulated kinase signaling pathways. Mol. Cancer Ther., 2008, 7(7), 1789-1796.
[http://dx.doi.org/10.1158/1535-7163.MCT-08-0124] [PMID: 18644991]
[47]
Jafri, S.H.; Glass, J.; Shi, R.; Zhang, S.; Prince, M.; Kleiner-Hancock, H. Thymoquinone and cisplatin as a therapeutic combination in lung cancer: In vitro and in vivo. J. Exp. Clin. Cancer Res., 2010, 29(1), 87.
[http://dx.doi.org/10.1186/1756-9966-29-87] [PMID: 20594324]
[48]
Zhu, M.; Zhang, Q.; Wang, X.; Kang, L.; Yang, Y.; Liu, Y.; Yang, L.; Li, J.; Yang, L.; Liu, J.; Li, Y.; Zu, L.; Shen, Y.; Qi, Z. Metformin potentiates anti-tumor effect of resveratrol on pancreatic cancer by down-regulation of VEGF-B signaling pathway. Oncotarget, 2016, 7(51), 84190-84200.
[http://dx.doi.org/10.18632/oncotarget.12391] [PMID: 27705937]
[49]
Akbarzadeh, A.; Norouzian, D.; Mehrabi, M.R.; Jamshidi, Sh.; Farhangi, A.; Verdi, A.A.; Mofidian, S.M.; Rad, B.L. Induction of diabetes by Streptozotocin in rats. Indian J. Clin. Biochem., 2007, 22(2), 60-64.
[http://dx.doi.org/10.1007/BF02913315] [PMID: 23105684]
[50]
Anwar, S.; Khan, M.A.; Sadaf, A.; Younus, H. A structural study on the protection of glycation of superoxide dismutase by thymoquinone. Int. J. Biol. Macromol., 2014, 69, 476-481.
[http://dx.doi.org/10.1016/j.ijbiomac.2014.06.003] [PMID: 24933520]
[51]
Kim, H.J.; Lee, S.; Chun, K.H.; Jeon, J.Y.; Han, S.J.; Kim, D.J.; Kim, Y.S.; Woo, J.T.; Nam, M.S.; Baik, S.H.; Ahn, K.J.; Lee, K.W. Metformin reduces the risk of cancer in patients with type 2 diabetes: An analysis based on the Korean National Diabetes Program Cohort. Medicine (Baltimore), 2018, 97(8), e0036.
[http://dx.doi.org/10.1097/MD.0000000000010036] [PMID: 29465545]
[52]
Rena, G.; Hardie, D.G.; Pearson, E.R. The mechanisms of action of metformin. Diabetologia, 2017, 60(9), 1577-1585.
[http://dx.doi.org/10.1007/s00125-017-4342-z] [PMID: 28776086]
[53]
Abdelrazek, H.M.A.; Kilany, O.E.; Muhammad, M.A.A.; Tag, H.M.; Abdelazim, A.M. Black seed thymoquinone improved insulin secretion, hepatic glycogen storage, and oxidative stress in streptozotocininduced diabetic male wistar rats. Oxid. Med. Cell. Longev., 2018, 2018, 8104165.
[http://dx.doi.org/10.1155/2018/8104165] [PMID: 29686746]
[54]
Fullerton, M.D.; Galic, S.; Marcinko, K.; Sikkema, S.; Pulinilkunnil, T.; Chen, Z.P.; O’Neill, H.M.; Ford, R.J.; Palanivel, R.; O’Brien, M.; Hardie, D.G.; Macaulay, S.L.; Schertzer, J.D.; Dyck, J.R.; van Denderen, B.J.; Kemp, B.E.; Steinberg, G.R. Single phosphorylation sites in Acc1 and Acc2 regulate lipid homeostasis and the insulinsensitizing effects of metformin. Nat. Med., 2013, 19(12), 1649-1654.
[http://dx.doi.org/10.1038/nm.3372] [PMID: 24185692]
[55]
Wu, Y.; Wang, F.; Fu, M.; Wang, C.; Quon, M.J.; Yang, P. Cellular stress, excessive apoptosis, and the effect of metformin in a mouse model of type 2 diabetic embryopathy. Diabetes, 2015, 64(7), 2526-2536.
[http://dx.doi.org/10.2337/db14-1683] [PMID: 25720389]
[56]
al-Jebawi, A.F.; Lassman, M.N.; Abourizk, N.N. Lactic acidosis with therapeutic metformin blood level in a low-risk diabetic patient. Diabetes Care, 1998, 21(8), 1364-1365.
[http://dx.doi.org/10.2337/diacare.21.8.1364] [PMID: 9702449]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy