Review Article

生物粘附纳米颗粒作为有效的药物递送载体

卷 30, 期 23, 2023

发表于: 31 October, 2022

页: [2604 - 2637] 页: 34

弟呕挨: 10.2174/0929867329666220613111635

价格: $65

摘要

背景:近年来,许多科学家对基于纳米技术的系统产生了兴趣,尤其是在生物医学应用方面。然后,纳米载体呈现出可调谐的能力,并且可以很容易地功能化以靶向特定的上皮细胞、组织和器官,同时可以选择各种材料并产生纳米尺寸的颗粒。目前,具有生物粘附性的纳米粒子已被研究作为有效的药物载体,因为它们可以很容易地穿透和靶向器官。 目的:本研究的目的是探索文献中发现的生物粘附纳米粒子的各种应用。 方法:作者研究了文献,发现生物粘附纳米粒子可以根据临床医生的意见和治疗选择,通过口服、局部、眼部、皮肤、阴道等途径给药。因此,对于开发创新的生物粘附药物纳米载体,应该了解生物粘附纳米颗粒的一般特性、生物粘附理论和纳米颗粒的其他性质。 结果:在这篇评论文章中,作者陈述了当前的理论知识。此外,还讨论了目前纳米粒子的类别及其基本特征。最后,广泛回顾了生物粘附纳米载体的生物医学应用和几种给药途径。 结论:该评论文章旨在涵盖用于药物输送的最新生物粘附纳米颗粒,以帮助任何希望研究或开发创新生物粘附剂配方的科学家。

关键词: 生物粘附,生物粘附分子,生物粘附制剂,生物粘附纳米颗粒,给药途径,应用。

[1]
Siafaka, P.I.; Üstündağ Okur, N.; Karavas, E.; Bikiaris, D.N. Surface modified multifunctional and stimuli responsive nanoparticles for drug targeting: Current status and uses. Int. J. Mol. Sci., 2016, 17(9), 1440.
[http://dx.doi.org/10.3390/ijms17091440] [PMID: 27589733]
[2]
Biswas, A.K.; Islam, M.R.; Choudhury, Z.S.; Mostafa, A.; Kadir, M.F. Nanotechnology based approaches in cancer therapeutics. Adv. Nat. Sci. Nanosci. Nanotechnol., 2014, 5(4), 043001.
[http://dx.doi.org/10.1088/2043-6262/5/4/043001]
[3]
Jeevanandam, J.; Barhoum, A.; Chan, Y.S.; Dufresne, A.; Danquah, M.K. Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations. Beilstein J. Nanotechnol., 2018, 9, 1050-1074.
[http://dx.doi.org/10.3762/bjnano.9.98] [PMID: 29719757]
[4]
Bayda, S.; Adeel, M.; Tuccinardi, T.; Cordani, M.; Rizzolio, F. The history of nanoscience and nanotechnology: From chemical-physical applications to nanomedicine. Molecules, 2019, 25(1), 112.
[http://dx.doi.org/10.3390/molecules25010112] [PMID: 31892180]
[5]
Laurent, S.; Forge, D.; Port, M.; Roch, A.; Robic, C.; Vander Elst, L.; Muller, R.N. Magnetic Iron Oxide nanoparticles: Synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem. Rev., 2010, 110(4), 2574-2574.
[http://dx.doi.org/10.1021/cr900197g] [PMID: 18543879]
[6]
Khan, I.; Saeed, K.; Khan, I. Nanoparticles: Properties, applications and toxicities. Arab. J. Chem., 2019, 12(7), 908-931.
[http://dx.doi.org/10.1016/j.arabjc.2017.05.011]
[7]
Keck, C.M.; Müller, R.H. Nanotoxicological classification system (NCS) - a guide for the risk-benefit assessment of nanoparticulate drug delivery systems. Eur. J. Pharm. Biopharm., 2013, 84(3), 445-448.
[http://dx.doi.org/10.1016/j.ejpb.2013.01.001] [PMID: 23333302]
[8]
Pontes, J.F.; Grenha, A. Multifunctional nanocarriers for lung drug delivery. Nanomaterials (Basel), 2020, 10(2), E183.
[http://dx.doi.org/10.3390/nano10020183] [PMID: 31973051]
[9]
Karthivashan, G.; Ganesan, P.; Park, S.Y.; Kim, J.S.; Choi, D.K. Therapeutic strategies and nano-drug delivery applications in management of ageing Alzheimer’s disease. Drug Deliv., 2018, 25(1), 307-320.
[http://dx.doi.org/10.1080/10717544.2018.1428243] [PMID: 29350055]
[10]
Ye, H.; Shen, Z.; Yu, L.; Wei, M.; Li, Y. Manipulating nanoparticle transport within blood flow through external forces: An exemplar of mechanics in nanomedicine. Proc.- Royal Soc., Math. Phys. Eng. Sci., 2018, 474(2211), 20170845.
[http://dx.doi.org/10.1098/rspa.2017.0845] [PMID: 29662344]
[11]
Poon, W.; Zhang, X.; Nadeau, J. Nanoparticle drug formulations for cancer diagnosis and treatment. Crit. Rev. Oncog., 2014, 19(3-4), 223-245.
[http://dx.doi.org/10.1615/CritRevOncog.2014011563] [PMID: 25271432]
[12]
Yang, P.; Gai, S.; Lin, J. Functionalized mesoporous silica materials for controlled drug delivery. Chem. Soc. Rev., 2012, 41(9), 3679-3698.
[http://dx.doi.org/10.1039/c2cs15308d] [PMID: 22441299]
[13]
Pal, S.L.; Jana, U.; Manna, P.K.; Mohanta, G.P.; Manavalan, R. Nanoparticle: An overview of preparation, characterization and application. Int. Res. J. Pharm., 2011, 1(6), 228-234.
[http://dx.doi.org/10.7897/2230-8407.04408]
[14]
Bailly, A-L.; Correard, F.; Popov, A.; Tselikov, G.; Chaspoul, F.; Appay, R.; Al-Kattan, A.; Kabashin, A.V.; Braguer, D.; Esteve, M-A. In vivo evaluation of safety, biodistribution and pharmacokinetics of laser-synthesized gold nanoparticles. Sci. Rep., 2019, 9(1), 12890.
[http://dx.doi.org/10.1038/s41598-019-48748-3] [PMID: 31501470]
[15]
Haute, D.V.; Berlin, J.M. Challenges in realizing selectivity for nanoparticle biodistribution and clearance: Lessons from gold nanoparticles. Ther. Deliv., 2017, 8(9), 763-774.
[http://dx.doi.org/10.4155/tde-2017-0057] [PMID: 28825391]
[16]
Wei, Y.; Quan, L.; Zhou, C.; Zhan, Q. Factors relating to the biodistribution & clearance of nanoparticles & their effects on in vivo application. Nanomedicine (Lond.), 2018, 13(12), 1495-1512.
[http://dx.doi.org/10.2217/nnm-2018-0040] [PMID: 29972677]
[17]
Liu, J.; Yu, M.; Zhou, C.; Zheng, J. Renal clearable inorganic nanoparticles: A new frontier of bionanotechnology. Mater. Today, 2013, 16(12), 477-486.
[http://dx.doi.org/10.1016/j.mattod.2013.11.003]
[18]
Kamaly, N.; Yameen, B.; Wu, J.; Farokhzad, O.C. Degradable controlled-release polymers and polymeric nanoparticles: Mechanisms of controlling drug release. Chem. Rev., 2016, 116(4), 2602-2663.
[http://dx.doi.org/10.1021/acs.chemrev.5b00346] [PMID: 26854975]
[19]
Liu, Y.; Yang, G.; Jin, S.; Xu, L.; Zhao, C.X. Development of high-drug-loading nanoparticles. ChemPlusChem, 2020, 85(9), 2143-2157.
[http://dx.doi.org/10.1002/cplu.202000496] [PMID: 32864902]
[20]
Siafaka, P.; Betsiou, M.; Tsolou, A.; Angelou, E.; Agianian, B.; Koffa, M.; Chaitidou, S.; Karavas, E.; Avgoustakis, K.; Bikiaris, D. Synthesis of folate- pegylated polyester nanoparticles encapsulating ixabepilone for targeting folate receptor overexpressing breast cancer cells. J. Mater. Sci. Mater. Med., 2015, 26(12), 275.
[http://dx.doi.org/10.1007/s10856-015-5609-x] [PMID: 26543021]
[21]
Mazzotta, E.; De Benedittis, S.; Qualtieri, A.; Muzzalupo, R. Actively targeted and redox responsive delivery of anticancer drug by chitosan nanoparticles. Pharmaceutics, 2019, 12(1), E26.
[http://dx.doi.org/10.3390/pharmaceutics12010026] [PMID: 31888000]
[22]
Karpuz, M.; Silindir-Gunay, M.; Kursunel, M.A.; Esendagli, G.; Dogan, A.; Ozer, A.Y. Design and in vitro evaluation of folate-targeted, co-drug encapsulated theranostic liposomes for non-small cell lung cancer. J. Drug Deliv. Sci. Technol., 2020, 57, 101707.
[http://dx.doi.org/10.1016/j.jddst.2020.101707]
[23]
Bondì, M.L.; Craparo, E.F.; Giammona, G.; Drago, F. Brain-targeted solid lipid nanoparticles containing riluzole: Preparation, characterization and biodistribution. Nanomedicine (Lond.), 2010, 5(1), 25-32.
[http://dx.doi.org/10.2217/nnm.09.67] [PMID: 20025461]
[24]
Pan, C.; Liu, Y.; Zhou, M.; Wang, W.; Shi, M.; Xing, M.; Liao, W. Theranostic pH-sensitive nanoparticles for highly efficient targeted delivery of doxorubicin for breast tumor treatment. Int. J. Nanomed., 2018, 13, 1119-1137.
[http://dx.doi.org/10.2147/IJN.S147464] [PMID: 29520140]
[25]
Zeng, X.; Tao, W.; Mei, L.; Huang, L.; Tan, C.; Feng, S-S. Cholic acid-functionalized nanoparticles of star-shaped PLGA-vitamin E TPGS copolymer for docetaxel delivery to cervical cancer. Biomaterials, 2013, 34(25), 6058-6067.
[http://dx.doi.org/10.1016/j.biomaterials.2013.04.052] [PMID: 23694904]
[26]
Guo, F.; Li, G.; Ma, S.; Zhou, H.; Chen, X. Multi-responsive nanocarriers based on β-CD-PNIPAM star polymer coated MSN-SS-Fc composite particles. Polymers (Basel), 2019, 11(10), 1716.
[http://dx.doi.org/10.3390/polym11101716] [PMID: 31635114]
[27]
Zhang, H.; Li, J.; Sun, W.; Hu, Y.; Zhang, G.; Shen, M.; Shi, X. Hyaluronic acid-modified magnetic iron oxide nanoparticles for MR imaging of surgically induced endometriosis model in rats. PLoS One, 2014, 9(4), e94718.
[http://dx.doi.org/10.1371/journal.pone.0094718] [PMID: 24722347]
[28]
Ardahaie, S.S.; Amiri, A.J.; Amouei, A.; Hosseinzadeh, K.; Ganji, D.D. Investigating the effect of adding nanoparticles to the blood flow in presence of magnetic field in a porous blood arterial. Informatics Med. Unlocked, 2018, 10, 71-81.
[http://dx.doi.org/10.1016/j.imu.2017.10.007]
[29]
Moghimi, S.M.; Simberg, D. Nanoparticle transport pathways into tumors. J. Nanopart. Res., 2018, 20(6), 169.
[http://dx.doi.org/10.1007/s11051-018-4273-8] [PMID: 29950922]
[30]
Barua, S.; Mitragotri, S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: A review of current status and future prospects. Nano Today, 2014, 9(2), 223-243.
[http://dx.doi.org/10.1016/j.nantod.2014.04.008] [PMID: 25132862]
[31]
Kamble, S.S.; Gambhire, M.S.; Gujar, K.N. Optimization and development of candesartan cilexetil loaded solid lipid nanoparticle for the treatment of hypertension. J. Pharm. BioSci., 2015, 3, 53-64.
[32]
Tran, P.H.L.; Duan, W.; Tran, T.T.D. Recent developments of nanoparticle-delivered dosage forms for buccal delivery. Int. J. Pharm., 2019, 571, 118697.
[http://dx.doi.org/10.1016/j.ijpharm.2019.118697] [PMID: 31526839]
[33]
Deepika, D.; Dewangan, H.K.; Maurya, L.; Singh, S. Intranasal drug delivery of frovatriptan succinate-loaded polymeric nanoparticles for brain targeting. J. Pharm. Sci., 2019, 108(2), 851-859.
[http://dx.doi.org/10.1016/j.xphs.2018.07.013] [PMID: 30053555]
[34]
Yadav, H.K.S.; Anwar, N.; Halabi, A.; Alsalloum, G.A. Nanogels as novel drug delivery systems - A review. J. Pharm. Pharmacogn. Res., 2017, 1(1), 1-5.
[35]
Chetoni, P.; Burgalassi, S.; Monti, D.; Tampucci, S.; Tullio, V.; Cuffini, A.M.; Muntoni, E.; Spagnolo, R.; Zara, G.P.; Cavalli, R. Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: Pharmacokinetic studies on rabbits. Eur. J. Pharm. Biopharm., 2016, 109, 214-223.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.006] [PMID: 27789355]
[36]
Behl, G.; Iqbal, J.; O’Reilly, N.J.; McLoughlin, P.; Fitzhenry, L. Synthesis and characterization of poly(2-hydroxyethylmethacrylate) contact lenses containing chitosan nanoparticles as an ocular delivery system for dexamethasone sodium phosphate. Pharm. Res., 2016, 33(7), 1638-1648.
[http://dx.doi.org/10.1007/s11095-016-1903-7] [PMID: 26964548]
[37]
Zaree, S.; Rostamizadeh, K. Preparation and characterization of MPEG-PCL based biodegradable polymeric nanoparticles for anticancer drugs delivery. Pal. J., 2017, 16(3), 53-64.
[38]
Iqbal, M.A.; Md, S.; Sahni, J.K.; Baboota, S.; Dang, S.; Ali, J. Nanostructured lipid carriers system: Recent advances in drug delivery. J. Drug Target., 2012, 20(10), 813-830.
[http://dx.doi.org/10.3109/1061186X.2012.716845] [PMID: 22931500]
[39]
Ma, Y-H.; Yang, J.; Li, B.; Jiang, Y-W.; Lu, X.; Chen, Z. Biodegradable and injectable polymer–liposome hydrogel: A promising cell carrier. Polym. Chem., 2016, 7(11), 2037-2044.
[http://dx.doi.org/10.1039/C5PY01773D]
[40]
Danaei, M.; Dehghankhold, M.; Ataei, S.; Hasanzadeh Davarani, F.; Javanmard, R.; Dokhani, A.; Khorasani, S.; Mozafari, M.R. Impact of particle size and polydispersity index on the clinical applications of lipidic nanocarrier systems. Pharmaceutics, 2018, 10(2), 1-17.
[http://dx.doi.org/10.3390/pharmaceutics10020057] [PMID: 29783687]
[41]
Guerrini, L.; Alvarez-Puebla, R.A.; Pazos-Perez, N. Surface modifications of nanoparticles for stability in biological fluids. Materials (Basel), 2018, 11(7), 1-28.
[http://dx.doi.org/10.3390/ma11071154] [PMID: 29986436]
[42]
Hasan, A.S.; Socha, M.; Lamprecht, A.; Ghazouani, F.E.; Sapin, A.; Hoffman, M.; Maincent, P.; Ubrich, N. Effect of the microencapsulation of nanoparticles on the reduction of burst release. Int. J. Pharm., 2007, 344(1-2), 53-61.
[http://dx.doi.org/10.1016/j.ijpharm.2007.05.066] [PMID: 17643878]
[43]
Rodrigues de Azevedo, C.; von Stosch, M.; Costa, M.S.; Ramos, A.M.; Cardoso, M.M.; Danhier, F.; Préat, V.; Oliveira, R. Modeling of the burst release from PLGA micro- and nanoparticles as function of physicochemical parameters and formulation characteristics. Int. J. Pharm., 2017, 532(1), 229-240.
[http://dx.doi.org/10.1016/j.ijpharm.2017.08.118] [PMID: 28867450]
[44]
Bahadar, H.; Maqbool, F.; Niaz, K.; Abdollahi, M. Toxicity of nanoparticles and an overview of current experimental models. Iran. Biomed. J., 2016, 20(1), 1-11.
[http://dx.doi.org/10.7508/ibj.2016.01.001] [PMID: 26286636]
[45]
Zhu, Y.; Liao, L. Applications of nanoparticles for anticancer drug delivery: A review. J. Nanosci. Nanotechnol., 2015, 15(7), 4753-4773.
[http://dx.doi.org/10.1166/jnn.2015.10298] [PMID: 26373036]
[46]
Siafaka, P.I.; Üstündağ Okur, N.; Karantas, I.D.; Okur, M.E.; Gündoğdu, E.A. Current update on nanoplatforms as therapeutic and diagnostic tools: A review for the materials used as nanotheranostics and imaging modalities. Asian J. Pharm. Sci., 2020, 16(1), 24-46.
[http://dx.doi.org/10.1016/j.ajps.2020.03.003]
[47]
Wang, Z.; Hu, T.; Liang, R.; Wei, M. Application of zero-dimensional nanomaterials in biosensing. Front Chem., 2020, 8, 320.
[http://dx.doi.org/10.3389/fchem.2020.00320] [PMID: 32373593]
[48]
Chen, Z.; Ma, L.; Liu, Y.; Chen, C. Applications of functionalized fullerenes in tumor theranostics. Theranostics, 2012, 2(3), 238-250.
[http://dx.doi.org/10.7150/thno.3509] [PMID: 22509193]
[49]
Kumar, M.; Raza, K. C60-fullerenes as drug delivery carriers for anticancer agents: Promises and hurdles. Pharm. Nanotechnol., 2017, 5(3), 169-179.
[http://dx.doi.org/10.2174/2211738505666170301142232] [PMID: 29361902]
[50]
Yang, F.; Ren, X.; LeCroy, G.E.; Song, J.; Wang, P.; Beckerle, L.; Bunker, C.E.; Xiong, Q.; Sun, Y.P. Zero-dimensional carbon allotropes-carbon nanoparticles versus fullerenes in functionalization by electronic polymers for different optical and redox properties. ACS Omega, 2018, 3(5), 5685-5691.
[http://dx.doi.org/10.1021/acsomega.8b00839] [PMID: 31458768]
[51]
Malodia, K.; Singh, S.K.; Mishra, D.N.; Shrivastava, B. Nanoparticles: An advance technique for drug delivery. Res. J. Pharm. Biol. Chem. Sci., 2012, 3(3), 1186-1208.
[52]
Shi, F.; Zhang, Y.; Na, W.; Zhang, X.; Li, Y.; Su, X. Graphene quantum dots as selective fluorescence sensor for the detection of ascorbic acid and acid phosphatase via Cr(vi)/Cr(iii)-modulated redox reaction. J. Mater. Chem. B Mater. Biol. Med., 2016, 4(19), 3278-3285.
[http://dx.doi.org/10.1039/C6TB00495D] [PMID: 32263263]
[53]
Zhao, M-X.; Zhu, B-J. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Res. Lett., 2016, 11(1), 207.
[http://dx.doi.org/10.1186/s11671-016-1394-9] [PMID: 27090658]
[54]
Badıllı, U.; Mollarasouli, F.; Bakirhan, N.K.; Ozkan, Y.; Ozkan, S.A. Role of quantum dots in pharmaceutical and biomedical analysis, and its application in drug delivery. TrAC. Trends Analyt. Chem., 2020, 131, 116013.
[http://dx.doi.org/10.1016/j.trac.2020.116013]
[55]
Carrow, J.K.; Gaharwar, A.K. Bioinspired polymeric nanocomposites for regenerative medicine. Macromol. Chem. Phys., 2015, 216(3), 248-264.
[http://dx.doi.org/10.1002/macp.201400427]
[56]
Lakkireddy, H.R.; Bazile, D.V. Nano-carriers for drug routeing - towards a new era. J. Drug Target., 2019, 27(5-6), 525-541.
[http://dx.doi.org/10.1080/1061186X.2018.1561891] [PMID: 30570365]
[57]
Begines, B.; Ortiz, T.; Pérez-Aranda, M.; Martínez, G.; Merinero, M.; Argüelles-Arias, F.; Alcudia, A. Polymeric nanoparticles for drug delivery: Recent developments and future prospects. Nanomaterials (Basel), 2020, 10(7), 1403.
[http://dx.doi.org/10.3390/nano10071403] [PMID: 32707641]
[58]
Abhilash, M. Potential applications of nanoparticles. Int. J. Pharma Bio Sci., 2010, 1(1), 1-10.
[59]
Jurj, A.; Braicu, C.; Pop, L-A.; Tomuleasa, C.; Gherman, C.D.; Berindan-Neagoe, I. The new era of nanotechnology, an alternative to change cancer treatment. Drug Des. Devel. Ther., 2017, 11, 2871-2890.
[http://dx.doi.org/10.2147/DDDT.S142337] [PMID: 29033548]
[60]
Treuel, L.; Jiang, X.; Nienhaus, G.U. New views on cellular uptake and trafficking of manufactured nanoparticles. J. R. Soc. Interface, 2013, 10(82), 20120939.
[http://dx.doi.org/10.1098/rsif.2012.0939] [PMID: 23427093]
[61]
Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular uptake of nanoparticles: Journey inside the cell. Chem. Soc. Rev., 2017, 46(14), 4218-4244.
[http://dx.doi.org/10.1039/C6CS00636A] [PMID: 28585944]
[62]
Lee, B.S.; Yip, A.T.; Thach, A.V.; Rodriguez, A.R.; Deming, T.J.; Kamei, D.T. The targeted delivery of doxorubicin with transferrin-conjugated block copolypeptide vesicles. Int. J. Pharm., 2015, 496(2), 903-911.
[http://dx.doi.org/10.1016/j.ijpharm.2015.10.028] [PMID: 26456252]
[63]
Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev., 2016, 99(Pt A), 28-51.
[http://dx.doi.org/10.1016/j.addr.2015.09.012] [PMID: 26456916]
[64]
Huang, W.F.; Tsui, C.P.; Tang, C.Y.; Yang, M.; Gu, L. Surface charge switchable and PH-responsive chitosan/polymer core-shell composite nanoparticles for drug delivery application. Compos., Part B Eng., 2017, 121, 83-91.
[http://dx.doi.org/10.1016/j.compositesb.2017.03.028]
[65]
Rausch, K.; Reuter, A.; Fischer, K.; Schmidt, M. Evaluation of nanoparticle aggregation in human blood serum. Biomacromolecules, 2010, 11(11), 2836-2839.
[http://dx.doi.org/10.1021/bm100971q] [PMID: 20961117]
[66]
Arafa, M.G.; Girgis, G.N.S.; El-Dahan, M.S. Chitosan- coated PLGA nanoparticles for enhanced ocular anti-inflammatory efficacy of Atorvastatin Calcium. Int. J. Nanomedicine, 2020, 15, 1335-1347.
[http://dx.doi.org/10.2147/IJN.S237314] [PMID: 32184589]
[67]
Murugan, K.; Choonara, Y.E.; Kumar, P.; Bijukumar, D.; du Toit, L.C.; Pillay, V. Parameters and characteristics governing cellular internalization and trans-barrier trafficking of nanostructures. Int. J. Nanomedicine, 2015, 10, 2191-2206.
[http://dx.doi.org/10.2147/IJN.S75615] [PMID: 25834433]
[68]
Du, X-J.; Wang, J-L.; Iqbal, S.; Li, H-J.; Cao, Z-T.; Wang, Y-C.; Du, J-Z.; Wang, J. The effect of surface charge on oral absorption of polymeric nanoparticles. Biomater. Sci., 2018, 6(3), 642-650.
[http://dx.doi.org/10.1039/C7BM01096F] [PMID: 29412203]
[69]
Soler Besumbes, E.; Fornaguera, C.; Monge, M.; García-Celma, M.J.; Carrión, J.; Solans, C.; Dols-Perez, A. PLGA cationic nanoparticles, obtained from nano-emulsion templating, as potential DNA vaccines. Eur. Polym. J., 2019, 120, 109229.
[http://dx.doi.org/10.1016/j.eurpolymj.2019.109229]
[70]
Liang, H.; Peng, B.; Dong, C.; Liu, L.; Mao, J.; Wei, S.; Wang, X.; Xu, H.; Shen, J.; Mao, H-Q.; Gao, X.; Leong, K.W.; Chen, Y. Cationic nanoparticle as an inhibitor of cell-free DNA-induced inflammation. Nat. Commun., 2018, 9(1), 4291.
[http://dx.doi.org/10.1038/s41467-018-06603-5] [PMID: 30327464]
[71]
Jain, A.K.; Massey, A.; Yusuf, H.; McDonald, D.M.; McCarthy, H.O.; Kett, V.L. Development of polymeric-cationic peptide composite nanoparticles, a nanoparticle-in-nanoparticle system for controlled gene delivery. Int. J. Nanomedicine, 2015, 10, 7183-7196.
[http://dx.doi.org/10.2147/IJN.S95245] [PMID: 26648722]
[72]
Vedadghavami, A.; Zhang, C.; Bajpayee, A.G. Overcoming negatively charged tissue barriers: Drug delivery using cationic peptides and proteins. Nano Today, 2020, 34, 100898.
[http://dx.doi.org/10.1016/j.nantod.2020.100898] [PMID: 32802145]
[73]
Babos, G.; Biró, E.; Meiczinger, M.; Feczkó, T. Dual drug delivery of Sorafenib and Doxorubicin from PLGA and PEG-PLGA polymeric nanoparticles. Polymers (Basel), 2018, 10(8), 1-12.
[http://dx.doi.org/10.3390/polym10080895] [PMID: 30960820]
[74]
Lugasi, L.; Grinberg, I.; Rudnick-Glick, S.; Okun, E.; Einat, H.; Margel, S. Designed proteinoid polymers and nanoparticles encapsulating risperidone for enhanced antipsychotic activity. J. Nanobiotechnol., 2020, 18(1), 149.
[http://dx.doi.org/10.1186/s12951-020-00709-z] [PMID: 33087104]
[75]
Dalela, M.; Shrivastav, T.G.; Kharbanda, S.; Singh, H. pH-sensitive biocompatible nanoparticles of Paclitaxel-Conjugated Poly(styrene-co-maleic acid) for anticancer drug delivery in solid tumors of syngeneic mice. ACS Appl. Mater. Interfaces, 2015, 7(48), 26530-26548.
[http://dx.doi.org/10.1021/acsami.5b07764] [PMID: 26528585]
[76]
Mangiacotte, N.; Prosperi-Porta, G.; Liu, L.; Dodd, M.; Sheardown, H. Mucoadhesive nanoparticles for drug delivery to the anterior eye. Nanomaterials (Basel), 2020, 10(7), 1400.
[http://dx.doi.org/10.3390/nano10071400] [PMID: 32708500]
[77]
Singh, N.A.; Mandal, A.K.A.; Khan, Z.A. Fabrication of PLA-PEG nanoparticles as delivery systems for improved stability and controlled release of Catechin. J. Nanomater., 2017, 2017, 1-9.
[http://dx.doi.org/10.1155/2017/6907149]
[78]
Hernández-Giottonini, K.Y.; Rodríguez-Córdova, R.J.; Gutiérrez-Valenzuela, C.A.; Peñuñuri-Miranda, O.; Zavala-Rivera, P.; Guerrero-Germán, P.; Lucero-Acuña, A. PLGA nanoparticle preparations by emulsification and nanoprecipitation techniques: Effects of formulation parameters. RSC Advances, 2020, 10(8), 4218-4231.
[http://dx.doi.org/10.1039/C9RA10857B]
[79]
Sinha, V.R.; Bansal, K.; Kaushik, R.; Kumria, R.; Trehan, A. Poly-epsilon-caprolactone microspheres and nanospheres: An overview. Int. J. Pharm., 2004, 278(1), 1-23.
[http://dx.doi.org/10.1016/j.ijpharm.2004.01.044] [PMID: 15158945]
[80]
Chen, H.; Qi, B.; Moore, T.; Wang, F.; Colvin, D.C.; Sanjeewa, L.D.; Gore, J.C.; Hwu, S.J.; Mefford, O.T.; Alexis, F.; Anker, J.N. Multifunctional yolk-in-shell nanoparticles for pH-triggered drug release and imaging. Small, 2014, 10(16), 3364-3370.
[http://dx.doi.org/10.1002/smll.201303769] [PMID: 24753264]
[81]
Schrand, A.M.; Rahman, M.F.; Hussain, S.M.; Schlager, J.J.; Smith, D.A.; Syed, A.F. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol., 2010, 2(5), 544-568.
[http://dx.doi.org/10.1002/wnan.103] [PMID: 20681021]
[82]
Jain, S.; Hirst, D.G.; O’Sullivan, J.M. Gold nanoparticles as novel agents for cancer therapy. Br. J. Radiol., 2012, 85(1010), 101-113.
[http://dx.doi.org/10.1259/bjr/59448833] [PMID: 22010024]
[83]
Li, J.J.; Kawazoe, N.; Chen, G. Gold nanoparticles with different charge and moiety induce differential cell response on mesenchymal stem cell osteogenesis. Biomaterials, 2015, 54, 226-236.
[http://dx.doi.org/10.1016/j.biomaterials.2015.03.001] [PMID: 25858865]
[84]
Nam, G.; Rangasamy, S.; Purushothaman, B.; Song, J.M. The application of bactericidal silver nanoparticles in wound treatment. Nanomater. Nanotechnol., 2015, 1, 23.
[http://dx.doi.org/10.5772/60918]
[85]
Rajkumar, S.; Prabaharan, M. Theranostics based on iron oxide and gold nanoparticles for imaging- guided photothermal and photodynamic therapy of cancer. Curr. Top. Med. Chem., 2017, 17(16), 1858-1871.
[http://dx.doi.org/10.2174/1568026617666161122120537] [PMID: 27875977]
[86]
Filippousi, M.; Altantzis, T.; Stefanou, G.; Betsiou, M.; Bikiaris, D.N.; Angelakeris, M.; Pavlidou, E.; Zamboulis, D.; Van Tendeloo, G. Polyhedral Iron Oxide core–shell nanoparticles in a biodegradable polymeric matrix: preparation, characterization and application in magnetic particle hyperthermia and drug delivery. RSC Advances, 2013, 3(46), 24367.
[http://dx.doi.org/10.1039/c3ra43747g]
[87]
Predescu, A.M.; Matei, E.; Berbecaru, A.C.; Pantilimon, C.; Drăgan, C.; Vidu, R.; Predescu, C.; Kuncser, V. Synthesis and characterization of dextran-coated iron oxide nanoparticles. R. Soc. Open Sci., 2018, 5(3), 171525.
[http://dx.doi.org/10.1098/rsos.171525] [PMID: 29657763]
[88]
Athar, M.; Das, A.J. Therapeutic nanoparticles: State-of-the-Art of nanomedicine. Adv. Mat. Res., 2014, 1(1), 25-37.
[http://dx.doi.org/10.5185/amr.2014.1003]
[89]
Xu, H.L.; Mao, K.L.; Huang, Y.P.; Yang, J.J.; Xu, J.; Chen, P.P.; Fan, Z.L.; Zou, S.; Gao, Z.Z.; Yin, J.Y.; Xiao, J.; Lu, C.T.; Zhang, B.L.; Zhao, Y.Z. Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects. Nanoscale, 2016, 8(29), 14222-14236.
[http://dx.doi.org/10.1039/C6NR02448C] [PMID: 27396404]
[90]
Silva Assis, M.B.; Weneck, I.H.S.R.; Moraes, G.N.; Semaan, F.S.; Pereira, R.P. Citrate-capped iron oxide nanoparticles: Ultrasound-assisted synthesis, structure and thermal properties. Mater. Res. Express, 2019, 6(4), 1-26.
[http://dx.doi.org/10.1088/2053-1591/aaff2a]
[91]
Attama, A.A.; Momoh, M.A.; Builders, P.F. Lipid nanoparticulate drug delivery systems: A revolution in dosage form design and development. In: Recent Adv. Novel Drug Carrier Sys; , 2012; 2012, p. 50486.
[http://dx.doi.org/10.5772/50486]
[92]
Okur, N.Ü.; Siafaka, P.I.; Gökçe, E.H. Challenges in oral drug delivery and applications of lipid nanoparticles as potent oral drug carriers for managing cardiovascular risk factors. Curr. Pharm. Biotechnol., 2021, 22(7), 892-905.
[http://dx.doi.org/10.2174/1389201021666200804155535] [PMID: 32753006]
[93]
Zhu, Y.; Liang, X.; Lu, C.; Kong, Y.; Tang, X.; Zhang, Y.; Yin, T.; Gou, J.; Wang, Y.; He, H. Nanostructured lipid carriers as oral delivery systems for improving oral bioavailability of nintedanib by promoting intestinal absorption. Int. J. Pharm., 2020, 586, 119569.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119569] [PMID: 32592899]
[94]
Kumar, R.; Sinha, V.R. Solid lipid nanoparticle: An efficient carrier for improved ocular permeation of voriconazole. Drug Dev. Ind. Pharm., 2016, 42(12), 1956-1967.
[http://dx.doi.org/10.1080/03639045.2016.1185437] [PMID: 27143048]
[95]
Becker Peres, L.; Becker Peres, L.; de Araújo, P.H.H.; Sayer, C. Solid lipid nanoparticles for encapsulation of hydrophilic drugs by an organic solvent free double emulsion technique. Colloids Surf. B Biointerfaces, 2016, 140, 317-323.
[http://dx.doi.org/10.1016/j.colsurfb.2015.12.033] [PMID: 26764112]
[96]
Bawazeer, S.; El-Telbany, D.F.A.; Al-Sawahli, M.M.; Zayed, G.; Keed, A.A.A.; Abdelaziz, A.E.; Abdel-Naby, D.H. Effect of nanostructured lipid carriers on transdermal delivery of tenoxicam in irradiated rats. Drug Deliv., 2020, 27(1), 1218-1230.
[http://dx.doi.org/10.1080/10717544.2020.1803448] [PMID: 32772730]
[97]
Khosa, A.; Reddi, S.; Saha, R.N. Nanostructured lipid carriers for site-specific drug delivery. Biomed. Pharmacother., 2018, 103, 598-613.
[http://dx.doi.org/10.1016/j.biopha.2018.04.055] [PMID: 29677547]
[98]
Rideau, E.; Dimova, R.; Schwille, P.; Wurm, F.R.; Landfester, K. Liposomes and polymersomes: A comparative review towards cell mimicking. Chem. Soc. Rev., 2018, 47(23), 8572-8610.
[http://dx.doi.org/10.1039/C8CS00162F] [PMID: 30177983]
[99]
Akbarzadeh, A.; Rezaei-Sadabady, R.; Davaran, S.; Joo, S.W.; Zarghami, N.; Hanifehpour, Y.; Samiei, M.; Kouhi, M.; Nejati-Koshki, K. Liposome: Classification, preparation, and applications. Nanoscale Res. Lett., 2013, 8(1), 102.
[http://dx.doi.org/10.1186/1556-276X-8-102] [PMID: 23432972]
[100]
Cho, H-Y.; Lee, C.K.; Lee, Y-B. Preparation and evaluation of PEGylated and Folate-PEGylated liposomes containing paclitaxel for lymphatic delivery. J. Nanomater., 2015, 2015, 1-10.
[http://dx.doi.org/10.1155/2015/471283]
[101]
Sercombe, L.; Veerati, T.; Moheimani, F.; Wu, S.Y.; Sood, A.K.; Hua, S. Advances and challenges of liposome assisted drug delivery. Front. Pharmacol., 2015, 6, 286.
[http://dx.doi.org/10.3389/fphar.2015.00286] [PMID: 26648870]
[102]
Riaz, M.K.; Riaz, M.A.; Zhang, X.; Lin, C.; Wong, K.H.; Chen, X.; Zhang, G.; Lu, A.; Yang, Z. Surface functionalization and targeting strategies of liposomes in solid tumor therapy: A review. Int. J. Mol. Sci., 2018, 19(1), E195.
[http://dx.doi.org/10.3390/ijms19010195] [PMID: 29315231]
[103]
Mallick, S.; Choi, J.S. Liposomes: Versatile and biocompatible nanovesicles for efficient biomolecules delivery. J. Nanosci. Nanotechnol., 2014, 14(1), 755-765.
[http://dx.doi.org/10.1166/jnn.2014.9080] [PMID: 24730295]
[104]
Toh, M-R.; Chiu, G.N.C. Liposomes as sterile preparations and limitations of sterilisation techniques in liposomal manufacturing. Asian J. Pharm. Sci., 2013, 8(2), 88-95.
[http://dx.doi.org/10.1016/j.ajps.2013.07.011]
[105]
Inglut, C.T.; Sorrin, A.J.; Kuruppu, T.; Vig, S.; Cicalo, J.; Ahmad, H.; Huang, H-C. Immunological and toxicological considerations for the design of liposomes. Nanomaterials (Basel), 2020, 10(2), 190.
[http://dx.doi.org/10.3390/nano10020190] [PMID: 31978968]
[106]
Çağdaş, M.; Sezer, A.D.; Bucak, S. Liposomes as Potential Drug Carrier Systems for Drug Delivery. In: Application of Nanotechnology in Drug Delivery; InTech, 2014.
[http://dx.doi.org/10.5772/58459]
[107]
Popescu, B.M.; Ali, N.; Basturea, G.; Comsa, G.I.; Materon, L.A.; Chipara, M. 1-Dimensional nanoparticles – a brief critical review on biological, medical, and toxicological aspects. Appl. Surf. Sci., 2013, 275, 2-6.
[http://dx.doi.org/10.1016/j.apsusc.2013.01.122]
[108]
Siafaka, P.; Okur, M.E.; Ayla, Ş.; Er, S.; Cağlar, E.Ş.; Okur, N.Ü. Design and characterization of nanocarriers loaded with levofloxacin for enhanced antimicrobial activity; physicochemical properties, in vitro release and oral acute toxicity. Braz. J. Pharm. Sci., 2019, 55, 1-13.
[http://dx.doi.org/10.1590/s2175-97902019000118295]
[109]
Simon, J.; Flahaut, E.; Golzio, M. Overview of carbon nanotubes for biomedical applications. Materials (Basel), 2019, 12(4), 624.
[http://dx.doi.org/10.3390/ma12040624] [PMID: 30791507]
[110]
Jha, R.; Jha, P.K.; Gupta, S.; Bhuvaneshwaran, S.P.; Hossain, M.; Guha, S.K. Probing suitable therapeutic nanoparticles for controlled drug delivery and diagnostic reproductive health biomarker development. Mater. Sci. Eng. C, 2016, 61, 235-245.
[http://dx.doi.org/10.1016/j.msec.2015.12.044] [PMID: 26838846]
[111]
Arrabito, G.; Aleeva, Y.; Ferrara, V.; Prestopino, G.; Chiappara, C.; Pignataro, B. On the interaction between 1D materials and living cells. J. Funct. Biomater., 2020, 11(2), 40.
[http://dx.doi.org/10.3390/jfb11020040] [PMID: 32531950]
[112]
Wang, S.; Pratama, F.R.; Ukhtary, M.S.; Saito, R. Independent degrees of freedom in two-dimensional materials. Phys. Rev. B, 2020, 101(8), 081414.
[http://dx.doi.org/10.1103/PhysRevB.101.081414]
[113]
Wang, S.; Hung, N.T.; Tian, H.; Islam, M.S.; Saito, R. Switching behavior of a heterostructure based on periodically doped graphene nanoribbon. Phys. Rev. Appl., 2021, 16(2), 024030.
[http://dx.doi.org/10.1103/PhysRevApplied.16.024030]
[114]
Niu, X.; Li, Y.; Zhou, Q.; Shu, H.; Wang, J. Arsenene-based heterostructures: Highly efficient bifunctional materials for photovoltaics and photocatalytics. ACS Appl. Mater. Interfaces, 2017, 9(49), 42856-42861.
[http://dx.doi.org/10.1021/acsami.7b14842] [PMID: 29160062]
[115]
Tian, H.; Ren, C.; Wang, S. Valleytronics in two-dimensional materials with line defect. Nanotechnology, 2022, 33(21), 212001.
[http://dx.doi.org/10.1088/1361-6528/ac50f2] [PMID: 35105824]
[116]
Rafiei-Sarmazdeh, Z.; Morteza Zahedi-Dizaji, S.; Kafi Kang, A. Two-Dimensional Nanomaterials. In: Nanostructures; IntechOpen, 2020.
[http://dx.doi.org/10.5772/intechopen.85263]
[117]
Mei, L.; Zhu, S.; Yin, W.; Chen, C.; Nie, G.; Gu, Z.; Zhao, Y. Two-dimensional nanomaterials beyond graphene for antibacterial applications: current progress and future perspectives. Theranostics, 2020, 10(2), 757-781.
[http://dx.doi.org/10.7150/thno.39701] [PMID: 31903149]
[118]
Abbasi, E.; Aval, S.F.; Akbarzadeh, A.; Milani, M.; Nasrabadi, H.T.; Joo, S.W.; Hanifehpour, Y.; Nejati-Koshki, K.; Pashaei-Asl, R. Dendrimers: Synthesis, applications, and properties. Nanoscale Res. Lett., 2014, 9(1), 247.
[http://dx.doi.org/10.1186/1556-276X-9-247] [PMID: 24994950]
[119]
Patel, P.M. Dendrimer applications : A review. Int. J. Pharma BioSci., 2013, 4(2), 54.
[120]
Munavalli, B.B.; Naik, S.R.; Torvi, A.I.; Kariduraganavar, M.Y. Dendrimers. In: Functional Polymers. Polymers and Polymeric Composites: A Reference Series; Jafar Mazumder, M.; Sheardown, H.; Al-Ahmed, A., Eds.; Springer, 2019; pp. 289-345.
[http://dx.doi.org/10.1007/978-3-319-95987-0_9]
[121]
Gorzkiewicz, M.; Janaszewska, A.; Ficker, M.; Svenningsen, S.W.; Christensen, J.B.; Klajnert-Maculewicz, B. Pyrrolidone-modified PAMAM dendrimers enhance anti-inflammatory potential of indomethacin in vitro. Colloids Surf. B Biointerfaces, 2019, 181, 959-962.
[http://dx.doi.org/10.1016/j.colsurfb.2019.06.056] [PMID: 31382346]
[122]
Gholami, M.; Mohammadi, R.; Arzanlou, M.; Akbari Dourbash, F.; Kouhsari, E.; Majidi, G.; Mohseni, S.M.; Nazari, S. In vitro antibacterial activity of poly (amidoamine)-G7 dendrimer. BMC Infect. Dis., 2017, 17(1), 395.
[http://dx.doi.org/10.1186/s12879-017-2513-7] [PMID: 28583153]
[123]
Jose, J.; Charyulu, R.N. Prolonged drug delivery system of an antifungal drug by association with polyamidoamine dendrimers. Int. J. Pharm. Investig., 2016, 6(2), 123-127.
[http://dx.doi.org/10.4103/2230-973X.177833] [PMID: 27051632]
[124]
Tripathi, P.K.; Tripathi, S. Dendrimers for Anticancer Drug Delivery. In: Pharmaceutical Applications of Dendrimers; Elsevier, 2020; pp. 131-150.
[http://dx.doi.org/10.1016/B978-0-12-814527-2.00006-8]
[125]
Roy, S.; Pal, K.; Anis, A.; Pramanik, K.; Prabhakar, B. Polymers in mucoadhesive drug-delivery systems: A brief note. Des. Monomers Polym., 2009, 12(6), 483-495.
[http://dx.doi.org/10.1163/138577209X12478283327236]
[126]
Roy, S.K.; Prabhakar, B. Bioadhesive polymeric platforms for transmucosal drug delivery systems - a review. Trop. J. Pharm. Res., 2010, 9(1), 52043.
[http://dx.doi.org/10.4314/tjpr.v9i1.52043]
[127]
Boddupalli, B.M.; Mohammed, Z.N.K.; Nath, R.A.; Banji, D. Mucoadhesive drug delivery system: An overview. J. Adv. Pharm. Technol. Res., 2010, 1(4), 381-387.
[http://dx.doi.org/10.4103/0110-5558.76436] [PMID: 22247877]
[128]
Sourav, M.; Anil, K.; Neeraj, B. Buccoadhesive drug delivery system - a review. World J. Pharm. Pharm. Sci., 2017, 5(1), 378-403.
[http://dx.doi.org/10.20959/wjpps20174-8863]
[129]
Kumar, K.; Dhawan, N.; Sharma, H.; Vaidya, S.; Vaidya, B. Bioadhesive polymers: Novel tool for drug delivery. Artif. Cells Nanomed. Biotechnol., 2014, 42(4), 274-283.
[http://dx.doi.org/10.3109/21691401.2013.815194] [PMID: 23859698]
[130]
Carvalho, F.C.; Bruschi, M.L.; Evangelista, R.C.; Gremião, M.P.D. Mucoadhesive drug delivery systems. Brazilian. J. Pharm. Sci., 2010, 46(1), 1-17.
[http://dx.doi.org/10.1590/S1984-82502010000100002] [PMID: 19499570]
[131]
M Ways, T.M.; Lau, W.M.; Khutoryanskiy, V.V. Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers (Basel), 2018, 10(3), E267.
[http://dx.doi.org/10.3390/polym10030267] [PMID: 30966302]
[132]
Collado-González, M.; González Espinosa, Y.G.; Goycoolea, F.M. Interaction between chitosan and mucin: Fundamentals and applications. Biomimetics (Basel), 2019, 4(2), 32.
[http://dx.doi.org/10.3390/biomimetics4020032]
[133]
Vikas; Viswanadh, M.K.; Mehata, A.K.; Sharma, V.; Priya, V.; Varshney, N.; Mahto, S.K.; Muthu, M.S. Bioadhesive Chitosan Nanoparticles: Dual targeting and pharmacokinetic aspects for advanced lung cancer treatment. Carbohydr. Polym., 2021, 274, 118617.
[http://dx.doi.org/10.1016/j.carbpol.2021.118617]
[134]
McCrorie, P.; Mistry, J.; Taresco, V.; Lovato, T.; Fay, M.; Ward, I.; Ritchie, A.A.; Clarke, P.A.; Smith, S.J.; Marlow, M.; Rahman, R. Etoposide and olaparib polymer-coated nanoparticles within a bioadhesive sprayable hydrogel for post-surgical localised delivery to brain tumours. Eur. J. Pharm. Biopharm., 2020, 157, 108-120.
[http://dx.doi.org/10.1016/j.ejpb.2020.10.005] [PMID: 33068736]
[135]
Ruiz-Pulido, G.; Medina, D.I. An overview of gastrointestinal mucus rheology under different pH conditions and introduction to pH-dependent rheological interactions with PLGA and chitosan nanoparticles. Eur. J. Pharm. Biopharm., 2021, 159, 123-136.
[http://dx.doi.org/10.1016/j.ejpb.2020.12.013] [PMID: 33387633]
[136]
Pawde, D.M.; Viswanadh, M.K.; Mehata, A.K.; Sonkar, R.; Narendra; Poddar, S.; Burande, A.S.; Jha, A.; Vajanthri, K.Y.; Mahto, S.K.; Azger Dustakeer, V.N.; Muthu, M.S. Mannose receptor targeted bioadhesive chitosan nanoparticles of clofazimine for effective therapy of tuberculosis. Saudi Pharm. J., 2020, 28(12), 1616-1625.
[http://dx.doi.org/10.1016/j.jsps.2020.10.008] [PMID: 33424254]
[137]
Guyot, C.; Cerruti, M.; Lerouge, S. Injectable, strong and bioadhesive catechol-chitosan hydrogels physically crosslinked using sodium bicarbonate. Mater. Sci. Eng. C, 2021, 118, 111529.
[http://dx.doi.org/10.1016/j.msec.2020.111529] [PMID: 33255082]
[138]
Rençber, S.; Karavana, S.Y.; Yılmaz, F.F.; Eraç, B.; Nenni, M.; Özbal, S.; Pekçetin, Ç.; Gurer-Orhan, H.; Hoşgör-Limoncu, M.; Güneri, P.; Ertan, G. Development, characterization, and in vivo assessment of mucoadhesive nanoparticles containing fluconazole for the local treatment of oral candidiasis. Int. J. Nanomedicine, 2016, 11, 2641-2653.
[http://dx.doi.org/10.2147/IJN.S103762] [PMID: 27358561]
[139]
Şenyiğit, Z.A.; Karavana, S.Y.; İlem-Özdemir, D.; Çalışkan, Ç.; Waldner, C.; Şen, S.; Bernkop-Schnürch, A.; Baloğlu, E. Design and evaluation of an intravesical delivery system for superficial bladder cancer: Preparation of gemcitabine HCl-loaded chitosan-thioglycolic acid nanoparticles and comparison of chitosan/poloxamer gels as carriers. Int. J. Nanomedicine, 2015, 10, 6493-6507.
[http://dx.doi.org/10.2147/IJN.S93750] [PMID: 26508855]
[140]
Karakucuk, A.; Tort, S.; Han, S.; Oktay, A.N.; Celebi, N. Etodolac nanosuspension based gel for enhanced dermal delivery: In vitro and in vivo evaluation. J. Microencapsul., 2021, 38(4), 218-232.
[http://dx.doi.org/10.1080/02652048.2021.1895344] [PMID: 33752553]
[141]
Rençber, S.; Karavana, S.Y.; Şenyiğit, Z.A.; Eraç, B.; Limoncu, M.H.; Baloğlu, E. Mucoadhesive in situ gel formulation for vaginal delivery of clotrimazole: Formulation, preparation, and in vitro/in vivo evaluation. Pharm. Dev. Technol., 2017, 22(4), 551-561.
[http://dx.doi.org/10.3109/10837450.2016.1163385] [PMID: 27055376]
[142]
Rençber, S.; Karavana, S.Y.; Yilmaz, F.F.; Eraç, B.; Nenni, M.; Gurer-Orhan, H.; Limoncu, M.H.; Güneri, P.; Ertan, G. Formulation and evaluation of fluconazole loaded oral strips for local treatment of oral candidiasis. J. Drug Deliv. Sci. Technol., 2019, 49(January), 615-621.
[http://dx.doi.org/10.1016/j.jddst.2018.12.035]
[143]
Nair, A.B.; Sreeharsha, N.; Al-Dhubiab, B.E.; Hiremath, J.G.; Shinu, P.; Attimarad, M.; Venugopala, K.N.; Mutahar, M. HPMC- and PLGA-based nanoparticles for the mucoadhesive delivery of Sitagliptin: Optimization and in vivo evaluation in rats. Materials (Basel), 2019, 12(24), E4239.
[http://dx.doi.org/10.3390/ma12244239] [PMID: 31861192]
[144]
Ay Şenyiğit, Z.; Coşkunmeriç, N.; Çağlar, E.Ş.; Öztürk, İ.; Atlıhan Gündoğdu, E.; Siafaka, P.I.; Üstündağ Okur, N. Chitosan-bovine serum albumin-Carbopol 940 nanogels for mupirocin dermal delivery: Ex-vivo permeation and evaluation of cellular binding capacity via radiolabeling. Pharm. Dev. Technol., 2021, 26(8), 852-866.
[http://dx.doi.org/10.1080/10837450.2021.1948570] [PMID: 34193003]
[145]
Karavana, S.Y.; Gökçe, E.H.; Rençber, S.; Özbal, S.; Pekçetin, C.; Güneri, P.; Ertan, G. A new approach to the treatment of recurrent aphthous stomatitis with bioadhesive gels containing cyclosporine A solid lipid nanoparticles: in vivo/in vitro examinations. Int. J. Nanomedicine, 2012, 7, 5693-5704.
[http://dx.doi.org/10.2147/IJN.S36883] [PMID: 23180964]
[146]
Zou, W.; Cao, G.; Xi, Y.; Zhang, N. New approach for local delivery of rapamycin by bioadhesive PLGA-carbopol nanoparticles. Drug Deliv., 2009, 16(1), 15-23.
[http://dx.doi.org/10.1080/10717540802481307] [PMID: 19555304]
[147]
Sarti, F.; Iqbal, J.; Müller, C.; Shahnaz, G.; Rahmat, D.; Bernkop-Schnürch, A. Poly(acrylic acid)-cysteine for oral vitamin B12 delivery. Anal. Biochem., 2012, 420(1), 13-19.
[http://dx.doi.org/10.1016/j.ab.2011.08.039] [PMID: 21964499]
[148]
Tekade, M.; Maheshwari, N.; Youngren-Ortiz, S.R.; Pandey, V.; Chourasiya, Y.; Soni, V.; Deb, P.K.; Sharma, M.C. Thiolated-Chitosan: A Novel Mucoadhesive Polymer for Better-Targeted Drug Delivery. In: Biomaterials and Bionanotechnology; Elsevier, 2019; pp. 459-493.
[http://dx.doi.org/10.1016/B978-0-12-814427-5.00013-5]
[149]
Kast, C.E.; Bernkop-Schnürch, A. Thiolated polymers-thiomers: development and in vitro evaluation of chitosan-thioglycolic acid conjugates. Biomaterials, 2001, 22(17), 2345-2352.
[http://dx.doi.org/10.1016/S0142-9612(00)00421-X] [PMID: 11511031]
[150]
Knoll, P.; Le, N.N.; Wibel, R.; Baus, R.A.; Kali, G.; Asim, M.H.; Bernkop-Schnürch, A. Thiolated pectins: In vitro and ex vivo evaluation of three generations of thiomers. Acta Biomater., 2021, 135, 139-149.
[http://dx.doi.org/10.1016/j.actbio.2021.08.016] [PMID: 34418540]
[151]
Jalil, A.; Asim, M.H.; Le, N.N.; Laffleur, F.; Matuszczak, B.; Tribus, M.; Bernkop-Schnürch, A. S-protected gellan gum: Decisive approach towards mucoadhesive antimicrobial vaginal films. Int. J. Biol. Macromol., 2019, 130, 148-157.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.02.092] [PMID: 30779984]
[152]
Dünnhaupt, S.; Barthelmes, J.; Köllner, S.; Sakloetsakun, D.; Shahnaz, G.; Düregger, A.; Bernkop-Schnürch, A. Thiolated nanocarriers for oral delivery of hydrophilic macromolecular drugs. Carbohydr. Polym., 2015, 117, 577-584.
[http://dx.doi.org/10.1016/j.carbpol.2014.09.078] [PMID: 25498673]
[153]
Nagavarma, B.V.N.; Yadav, H.K.S.; Ayaz, A.; Vasudha, L.S.; Shivakumar, H.G. Different techniques for preparation of polymeric nanoparticles- a review. Asian J. Pharm. Clin. Res., 2012, 5(3), 16-23.
[154]
Behera, A.L.; Patil, S.V.; Sahoo, S.K.; Sahoo, S.K. Nanosizing of drugs: A promising approach for drug delivery. Pharm. Sin., 2010, 1(1), 20-28.
[155]
Kadian, R. Nanoparticles: A promising drug delivery approach. Asian J. Pharm. Clin. Res., 2018, 11(1), 30-35.
[http://dx.doi.org/10.22159/ajpcr.2018.v11i1.22035]
[156]
Rençber, S.; Özcan Bülbül, E.; Üstündağ Okur, N.; Ay Şenyiğit, Z. Preparation and detailed characterization of fusidic acid loaded in situ gel formulations for ophthalmic application. J. Res. Pharm., 2021, 25(1), 1.
[http://dx.doi.org/10.35333/jrp.2021.291]
[157]
Chen, C.; Yang, W.; Wang, D.T.; Chen, C.L.; Zhuang, Q.Y.; Kong, X.D. A modified spontaneous emulsification solvent diffusion method for the preparation of curcumin-loaded PLGA nanoparticles with enhanced in vitro anti- tumor activity. Front. Mater. Sci., 2014, 8(4), 332-342.
[http://dx.doi.org/10.1007/s11706-014-0268-2]
[158]
Hornig, S.; Heinze, T.; Becer, C.R.; Schubert, U.S. Synthetic polymeric nanoparticles by nanoprecipitation. J. Mater. Chem., 2009, 19(23), 3838-3840.
[http://dx.doi.org/10.1039/b906556n]
[159]
Rao, J.P.; Geckeler, K.E. Polymer nanoparticles: Preparation techniques and size-control parameters. Prog. Polym. Sci., 2011, 36(7), 887-913.
[http://dx.doi.org/10.1016/j.progpolymsci.2011.01.001]
[160]
Errico, C.; Bartoli, C.; Chiellini, F.; Chiellini, E. Poly(hydroxyalkanoates)-based polymeric nanoparticles for drug delivery. J. Biomed. Biotechnol., 2009, 2009, 571702.
[http://dx.doi.org/10.1155/2009/571702] [PMID: 19789653]
[161]
Hanif, M.; Zaman, M.; Chaurasiya, V. Polymers used in buccal film: A review. Des. Monomers Polym., 2015, 18(2), 105-111.
[http://dx.doi.org/10.1080/15685551.2014.971389]
[162]
Macedo, A.S.; Castro, P.M.; Roque, L.; Thomé, N.G.; Reis, C.P.; Pintado, M.E.; Fonte, P. Novel and revisited approaches in nanoparticle systems for buccal drug delivery. J. Control. Release, 2020, 320, 125-141.
[http://dx.doi.org/10.1016/j.jconrel.2020.01.006] [PMID: 31917295]
[163]
Morales, J.O.; Brayden, D.J. Buccal delivery of small molecules and biologics of mucoadhesive polymers, films, and nanoparticles. Curr. Opin. Pharmacol., 2017, 36, 22-28.
[http://dx.doi.org/10.1016/j.coph.2017.07.011] [PMID: 28800417]
[164]
Hazzah, H.A.; Farid, R.M.; Nasra, M.M.A.; El-Massik, M.A.; Abdallah, O.Y. Lyophilized sponges loaded with curcumin solid lipid nanoparticles for buccal delivery: Development and characterization. Int. J. Pharm., 2015, 492(1-2), 248-257.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.022] [PMID: 26189427]
[165]
Esposito, D.; Conte, C.; d’Angelo, I.; Miro, A.; Ungaro, F.; Quaglia, F. Mucoadhesive zein/beta-cyclodextrin nanoparticles for the buccal delivery of curcumin. Int. J. Pharm., 2020, 586, 119587.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119587] [PMID: 32619690]
[166]
Tzanova, M.M.; Hagesaether, E.; Tho, I. Solid lipid nanoparticle-loaded mucoadhesive buccal films – critical quality attributes and in vitro safety & efficacy. Int. J. Pharm., 2021, 592, 120100.
[167]
Santos, T.C.D.; Rescignano, N.; Boff, L.; Reginatto, F.H.; Simões, C.M.O.; de Campos, A.M.; Mijangos, C.U.; Campos, D.; Ugarte, C. Manufacture and characterization of chitosan/PLGA nanoparticles nanocomposite buccal films. Carbohydr. Polym., 2017, 173, 638-644.
[http://dx.doi.org/10.1016/j.carbpol.2017.06.014] [PMID: 28732908]
[168]
Sneha, R.; Hari, B.N.V.; Devi, D.R. Design of antiretroviral drug-polymeric nanoparticles laden buccal films for chronic hiv therapy in paediatrics. Colloid Interface Sci. Commun., 2018, 27, 49-59.
[http://dx.doi.org/10.1016/j.colcom.2018.10.004]
[169]
Castro, P.M.; Baptista, P.; Madureira, A.R.; Sarmento, B.; Pintado, M.E. Combination of PLGA nanoparticles with mucoadhesive guar-gum films for buccal delivery of antihypertensive peptide. Int. J. Pharm., 2018, 547(1-2), 593-601.
[http://dx.doi.org/10.1016/j.ijpharm.2018.05.051] [PMID: 29800740]
[170]
Kraisit, P.; Limmatvapirat, S.; Luangtana-Anan, M.; Sriamornsak, P. Buccal administration of mucoadhesive blend films saturated with propranolol loaded nanoparticles. Asian J. Pharm. Sci., 2018, 13(1), 34-43.
[http://dx.doi.org/10.1016/j.ajps.2017.07.006] [PMID: 32104376]
[171]
Rahbarian, M.; Mortazavian, E.; Dorkoosh, F.A.; Ra, M. Preparation, evaluation and optimization of nanoparticles composed of thiolated triethyl chitosan: A potential approach for buccal delivery of insulin. J. Drug Deliv. Sci. Technol., 2018, 44, 254-263.
[http://dx.doi.org/10.1016/j.jddst.2017.12.016]
[172]
Marques, A.C.; Rocha, A.I.; Leal, P.; Estanqueiro, M.; Lobo, J.M.S. Development and characterization of mucoadhesive buccal gels containing lipid nanoparticles of ibuprofen. Int. J. Pharm., 2017, 533(2), 455-462.
[http://dx.doi.org/10.1016/j.ijpharm.2017.04.025] [PMID: 28412446]
[173]
Suri, R.; Beg, S.; Kohli, K. Target strategies for drug delivery bypassing ocular barriers. J. Drug Deliv. Sci. Technol., 2020, 55, 101389.
[http://dx.doi.org/10.1016/j.jddst.2019.101389]
[174]
Alkholief, M.; Albasit, H.; Alhowyan, A.; Alshehri, S.; Raish, M.; Abul Kalam, M.; Alshamsan, A. Employing a PLGA-TPGS based nanoparticle to improve the ocular delivery of Acyclovir. Saudi Pharm. J., 2019, 27(2), 293-302.
[http://dx.doi.org/10.1016/j.jsps.2018.11.011] [PMID: 30766442]
[175]
Huang, D.; Chen, Y.S.; Rupenthal, I.D. Overcoming ocular drug delivery barriers through the use of physical forces. Adv. Drug Deliv. Rev., 2018, 126, 96-112.
[http://dx.doi.org/10.1016/j.addr.2017.09.008] [PMID: 28916492]
[176]
Balguri, S.P.; Adelli, G.R.; Majumdar, S. Topical ophthalmic formulations of indomethacin for delivery to the posterior segment ocular tissues. Eur. J. Pharm. Biopharm., 2016, (109), 224-235.
[http://dx.doi.org/10.1016/j.ejpb.2016.10.015] [PMID: 27793755]
[177]
Yang, X.; Trinh, H.M.; Agrahari, V.; Sheng, Y.; Pal, D.; Mitra, A.K. Nanoparticle-based topical ophthalmic gel formulation for sustained release of hydrocortisone butyrate. AAPS PharmSciTech, 2016, 17(2), 294-306.
[http://dx.doi.org/10.1208/s12249-015-0354-5] [PMID: 26085051]
[178]
Ibrahim, M.M.; Abd-Elgawad, A.H.; Soliman, O.A-E.; Jablonski, M.M. Natural bioadhesive biodegradable nanoparticle-based topical ophthalmic formulations for management of glaucoma. Transl. Vis. Sci. Technol., 2015, 4(3), 12.
[http://dx.doi.org/10.1167/tvst.4.3.12] [PMID: 26175958]
[179]
Chaiyasan, W.; Srinivas, S.P.; Tiyaboonchai, W. Crosslinked chitosan-dextran sulfate nanoparticle for improved topical ocular drug delivery. Mol. Vis., 2015, 21, 1224-1234.
[PMID: 26604662]
[180]
Taghe, S.; Mirzaeei, S.; Alany, R.G.; Nokhodchi, A. Polymeric inserts containing Eudragit® L100 nanoparticle for improved ocular delivery of Azithromycin. Biomedicines, 2020, 8(11), 1-21.
[http://dx.doi.org/10.3390/biomedicines8110466] [PMID: 33142768]
[181]
Bin-Jumah, M.; Gilani, S.J.; Jahangir, M.A.; Zafar, A.; Alshehri, S.; Yasir, M.; Kala, C.; Taleuzzaman, M.; Imam, S.S. Clarithromycin-loaded ocular chitosan nanoparticle: Formulation, optimization, characterization, ocular irritation, and antimicrobial activity. Int. J. Nanomedicine, 2020, 15, 7861-7875.
[http://dx.doi.org/10.2147/IJN.S269004] [PMID: 33116505]
[182]
Mittal, N.; Kaur, G. Leucaena leucocephala (Lam.) galactomannan nanoparticles: Optimization and characterization for ocular delivery in glaucoma treatment. Int. J. Biol. Macromol., 2019, 139, 1252-1262.
[http://dx.doi.org/10.1016/j.ijbiomac.2019.08.107] [PMID: 31419555]
[183]
Shahab, M.S.; Rizwanullah, M.; Alshehri, S.; Imam, S.S. Optimization to development of chitosan decorated polycaprolactone nanoparticles for improved ocular delivery of dorzolamide: In vitro, ex vivo and toxicity assessments. Int. J. Biol. Macromol., 2020, 163, 2392-2404.
[http://dx.doi.org/10.1016/j.ijbiomac.2020.09.185] [PMID: 32979440]
[184]
Silva, B.; Marto, J.; Braz, B. S.; Delgado, E.; Almeida, A. J. New nanoparticles for topical ocular delivery of erythropoietin. Int. J. Pharm., 2020, 576, 119020.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119020]
[185]
Yee, W.; Selvaduray, G.; Hawkins, B. Characterization of silver nanoparticle-infused tissue adhesive for ophthalmic use. J. Mech. Behav. Biomed. Mater., 2015, 55, 67-74.
[http://dx.doi.org/10.1016/j.jmbbm.2015.10.011] [PMID: 26562766]
[186]
Sattar, M.; Sayed, O.M.; Lane, M.E. Oral transmucosal drug delivery-current status and future prospects. Int. J. Pharm., 2014, 471(1-2), 498-506.
[http://dx.doi.org/10.1016/j.ijpharm.2014.05.043] [PMID: 24879936]
[187]
Cao, S.J.; Xu, S.; Wang, H.M.; Ling, Y.; Dong, J.; Xia, R.D.; Sun, X.H. Nanoparticles: Oral delivery for protein and peptide drugs. AAPS PharmSciTech, 2019, 20(5), 190.
[http://dx.doi.org/10.1208/s12249-019-1325-z] [PMID: 31111296]
[188]
Gonçalves, L.M.D.; Maestrelli, F.; Di Cesare Mannelli, L.; Ghelardini, C.; Almeida, A.J.; Mura, P. Development of solid lipid nanoparticles as carriers for improving oral bioavailability of glibenclamide. Eur. J. Pharm. Biopharm., 2016, 102, 41-50.
[http://dx.doi.org/10.1016/j.ejpb.2016.02.012] [PMID: 26925503]
[189]
Rahat, I.; Rizwanullah, M.; Gilani, S.J.; Bin-Jummah, M.N.; Imam, S.S.; Kala, C.; Asif, M.; Alshehri, S.; Sharma, S.K. Thymoquinone Loaded Chitosan - Solid Lipid Nanoparticles: Formulation optimization to oral bioavailability study. J. Drug Deliv. Sci. Technol., 2021, 64(102565), 1-11.
[http://dx.doi.org/10.1016/j.jddst.2021.102565]
[190]
Rahat, I.; Imam, S.S.; Rizwanullah, M.; Alshehri, S.; Asif, M.; Kala, C.; Taleuzzaman, M. Thymoquinone-entrapped chitosan-modified nanoparticles: Formulation optimization to preclinical bioavailability assessments. Drug Deliv., 2021, 28(1), 973-984.
[http://dx.doi.org/10.1080/10717544.2021.1927245] [PMID: 34036860]
[191]
Song, Y.; Chen, L. Effect of net surface charge on physical properties of the cellulose nanoparticles and their efficacy for oral protein delivery. Carbohydr. Polym., 2015, 121, 10-17.
[http://dx.doi.org/10.1016/j.carbpol.2014.12.019] [PMID: 25659666]
[192]
Li, L.; Jiang, G.; Yu, W.; Liu, D.; Chen, H.; Liu, Y.; Tong, Z.; Kong, X.; Yao, J. Preparation of chitosan-based multifunctional nanocarriers overcoming multiple barriers for oral delivery of insulin. Mater. Sci. Eng. C, 2017, 70(Pt 1), 278-286.
[http://dx.doi.org/10.1016/j.msec.2016.08.083] [PMID: 27770892]
[193]
Sajeesh, S.; Sharma, C.P. Cyclodextrin – insulin complex encapsulated polymethacrylic acid based nanoparticles for oral insulin delivery. Int. J. Pharm., 2006, 325, 147-154.
[http://dx.doi.org/10.1016/j.ijpharm.2006.06.019]
[194]
Erel, G.; Kotmakçı, M.; Akbaba, H.; Sözer Karadağlı, S.; Kantarcı, A.G. Nanoencapsulated Chitosan Nanoparticles in emulsion-based oral delivery system: In vitro and in vivo evaluation of insulin loaded formulation. J. Drug Deliv. Sci. Technol., 2016, 36, 161-167.
[http://dx.doi.org/10.1016/j.jddst.2016.10.010]
[195]
Penalva, R.E.; Gonzalez-Navarro, I. J. G.; Quincoces, G.; Penuelas, I.; Irache, J. M. Zein nanoparticles for oral folic acid delivery-current. J. Drug Deliv. Sci. Technol., 2015, 30, 450-457.
[http://dx.doi.org/10.1016/j.jddst.2015.06.012]
[196]
Plapied, L.; Vandermeulen, G.; Vroman, B.; Préat, V.; des Rieux, A. Bioadhesive nanoparticles of fungal chitosan for oral DNA delivery. Int. J. Pharm., 2010, 398(1-2), 210-218.
[http://dx.doi.org/10.1016/j.ijpharm.2010.07.041] [PMID: 20674728]
[197]
Du, X.; Gao, N.; Song, X. Bioadhesive polymer/lipid hybrid nanoparticles as oral delivery system of raloxifene with enhancive intestinal retention and bioavailability. Drug Deliv., 2021, 28(1), 252-260.
[http://dx.doi.org/10.1080/10717544.2021.1872742] [PMID: 33501870]
[198]
Alshweiat, A.; Csóka, I.; Tömösi, F.; Janáky, T.; Kovács, A.; Gáspár, R.; Sztojkov-Ivanov, A.; Ducza, E.; Márki, Á.; Szabó-Révész, P.; Ambrus, R. Nasal delivery of nanosuspension-based mucoadhesive formulation with improved bioavailability of loratadine: Preparation, characterization, and in vivo evaluation. Int. J. Pharm., 2020, 579, 119166.
[http://dx.doi.org/10.1016/j.ijpharm.2020.119166] [PMID: 32084574]
[199]
Marx, D.; Williams, G.; Birkhoff, M. Intranasal Drug Administration — An Attractive Delivery Route for Some Drugs. In: Drug Discovery and Development - From Molecules to Medicine; InTech, 2015.
[http://dx.doi.org/10.5772/59468]
[200]
Bourganis, V.; Kammona, O.; Alexopoulos, A.; Kiparissides, C. Recent advances in carrier mediated nose-to-brain delivery of pharmaceutics. Eur. J. Pharm. Biopharm., 2018, 128, 337-362.
[http://dx.doi.org/10.1016/j.ejpb.2018.05.009] [PMID: 29733950]
[201]
Gänger, S.; Schindowski, K. Tailoring formulations for intranasal nose-to-brain delivery: A review on architecture, physico-chemical characteristics and mucociliary clearance of the nasal olfactory mucosa. Pharmaceutics, 2018, 10(3), 116.
[http://dx.doi.org/10.3390/pharmaceutics10030116] [PMID: 30081536]
[202]
Sukumar, U.K.; Bose, R.J.C.; Malhotra, M.; Babikir, H.A.; Afjei, R.; Robinson, E.; Zeng, Y.; Chang, E.; Habte, F.; Sinclair, R.; Gambhir, S.S.; Massoud, T.F.; Paulmurugan, R. Intranasal delivery of targeted polyfunctional gold-iron oxide nanoparticles loaded with therapeutic microRNAs for combined theranostic multimodality imaging and presensitization of glioblastoma to temozolomide. Biomaterials, 2019, 218, 119342.
[http://dx.doi.org/10.1016/j.biomaterials.2019.119342] [PMID: 31326657]
[203]
Van Woensel, M.; Wauthoz, N.; Rosière, R.; Mathieu, V.; Kiss, R.; Lefranc, F.; Steelant, B.; Dilissen, E.; Van Gool, S.W.; Mathivet, T.; Gerhardt, H.; Amighi, K.; De Vleeschouwer, S. Development of siRNA-loaded chitosan nanoparticles targeting Galectin-1 for the treatment of glioblastoma multiforme via intranasal administration. J. Control. Release, 2016, 227, 71-81.
[http://dx.doi.org/10.1016/j.jconrel.2016.02.032] [PMID: 26902800]
[204]
Kürti, L.; Gáspár, R.; Márki, Á.; Kápolna, E.; Bocsik, A.; Veszelka, S.; Bartos, C.; Ambrus, R.; Vastag, M.; Deli, M.A.; Szabó-Révész, P. In vitro and in vivo characterization of meloxicam nanoparticles designed for nasal administration. Eur. J. Pharm. Sci., 2013, 50(1), 86-92.
[http://dx.doi.org/10.1016/j.ejps.2013.03.012] [PMID: 23542493]
[205]
Bartos, C.; Ambrus, R.; Sipos, P.; Budai-Szűcs, M.; Csányi, E.; Gáspár, R.; Márki, Á.; Seres, A.B.; Sztojkov-Ivanov, A.; Horváth, T.; Szabó-Révész, P. Study of sodium hyaluronate-based intranasal formulations containing micro- or nanosized meloxicam particles. Int. J. Pharm., 2015, 491(1-2), 198-207.
[http://dx.doi.org/10.1016/j.ijpharm.2015.06.046] [PMID: 26142244]
[206]
Fonseca, F.N.; Betti, A.H.; Carvalho, F.C.; Gremião, M.P.D.; Dimer, F.A.; Guterres, S.S.; Tebaldi, M.L.; Rates, S.M.K.; Pohlmann, A.R. Mucoadhesive Amphiphilic Methacrylic Copolymer-Functionalized Poly(ε-caprolactone) nanocapsules for nose-to-brain delivery of Olanzapine. J. Biomed. Nanotechnol., 2015, 11(8), 1472-1481.
[http://dx.doi.org/10.1166/jbn.2015.2078] [PMID: 26295147]
[207]
Shim, S.; Yoo, H.S. The application of mucoadhesive chitosan nanoparticles in nasal drug delivery. Mar. Drugs, 2020, 18(12), 605.
[http://dx.doi.org/10.3390/md18120605] [PMID: 33260406]
[208]
Li, Y.; Wang, C.; Sun, Z.; Xiao, J.; Yan, X.; Chen, Y.; Yu, J.; Wu, Y. Simultaneous intramuscular and intranasal administration of chitosan nanoparticles-adjuvanted Chlamydia vaccine elicits elevated protective responses in the lung. Int. J. Nanomedicine, 2019, 14, 8179-8193.
[http://dx.doi.org/10.2147/IJN.S218456] [PMID: 31632026]
[209]
Xu, J.; Dai, W.; Wang, Z.; Chen, B.; Li, Z.; Fan, X. Intranasal vaccination with chitosan-DNA nanoparticles expressing pneumococcal surface antigen a protects mice against nasopharyngeal colonization by Streptococcus pneumoniae. Clin. Vaccine Immunol., 2011, 18(1), 75-81.
[http://dx.doi.org/10.1128/CVI.00263-10] [PMID: 21047997]
[210]
Shim, S.; Soh, S.H.; Im, Y.B.; Park, H.E.; Cho, C.S.; Kim, S.; Yoo, H.S. Elicitation of Th1/Th2 related responses in mice by chitosan nanoparticles loaded with Brucella abortus malate dehydrogenase, outer membrane proteins 10 and 19. Int. J. Med. Microbiol., 2020, 310(1), 151362.
[http://dx.doi.org/10.1016/j.ijmm.2019.151362] [PMID: 31676233]
[211]
Acartürk, F. Mucoadhesive vaginal drug delivery systems. Recent Pat. Drug Deliv. Formul., 2009, 3(3), 193-205.
[http://dx.doi.org/10.2174/187221109789105658] [PMID: 19925443]
[212]
Deshkar, S.S.; Shirolkar, S.V.; Patil, A.T. Vaginal bioadhesive drug delivery systems and their applications. In: Bioadhesives in Drug Delivery; Mittal, K.L.; Bakshi, I.S.; Narang, J.K., Eds.; John Wiley & Sons, Ltd.: USA, 2020; pp. 307-369.
[http://dx.doi.org/10.1002/9781119640240.ch11]
[213]
Cassano, R.; Trombino, S. Solid Lipid Nanoparticles based on L-Cysteine for progesterone intravaginal delivery. Int. J. Polym. Sci., 2019, 2019, 1-10.
[http://dx.doi.org/10.1155/2019/8690145]
[214]
El-Hammadi, M.M.; Arias, J.L. Nanotechnology for Vaginal Drug Delivery and Targeting. In: Nanoengineered Biomaterials for Advanced Drug Delivery; Mozafari, M., Ed.; Elsevier, 2020; pp. 647-682.
[http://dx.doi.org/10.1016/B978-0-08-102985-5.00026-7]
[215]
Traore, Y.L.; Fumakia, M.; Gu, J.; Ho, E.A. Dynamic mechanical behaviour of nanoparticle loaded biodegradable PVA films for vaginal drug delivery. J. Biomater. Appl., 2018, 32(8), 1119-1126.
[http://dx.doi.org/10.1177/0885328217739451] [PMID: 29105543]
[216]
Osmałek, T.; Froelich, A.; Jadach, B.; Tatarek, A.; Gadziński, P.; Falana, A.; Gralińska, K.; Ekert, M.; Puri, V.; Wrotyńska-Barczyńska, J.; Michniak-Kohn, B. Recent advances in polymer-based vaginal drug delivery systems. Pharmaceutics, 2021, 13(6), 1-49.
[http://dx.doi.org/10.3390/pharmaceutics13060884] [PMID: 34203714]
[217]
Mohideen, M.; Quijano, E.; Song, E.; Deng, Y.; Panse, G.; Zhang, W.; Clark, M.R.; Saltzman, W.M. Degradable bioadhesive nanoparticles for prolonged intravaginal delivery and retention of elvitegravir. Biomaterials, 2017, 144, 144-154.
[http://dx.doi.org/10.1016/j.biomaterials.2017.08.029] [PMID: 28829952]
[218]
Araujo, V.H.S.; de Souza, M.P.C.; Carvalho, G.C.; Duarte, J.L.; Chorilli, M. Chitosan-based systems aimed at local application for vaginal infections. Carbohydr. Polym., 2021, 261, 117919.
[http://dx.doi.org/10.1016/j.carbpol.2021.117919] [PMID: 33766328]
[219]
Marciello, M.; Rossi, S.; Caramella, C.; Remuñán-López, C. Freeze-dried cylinders carrying chitosan nanoparticles for vaginal peptide delivery. Carbohydr. Polym., 2017, 170(170), 43-51.
[http://dx.doi.org/10.1016/j.carbpol.2017.04.051] [PMID: 28522002]
[220]
Cover, N.F.; Lai-Yuen, S.; Parsons, A.K.; Kumar, A. Synergetic effects of doxycycline-loaded chitosan nanoparticles for improving drug delivery and efficacy. Int. J. Nanomedicine, 2012, 7, 2411-2419.
[http://dx.doi.org/10.2147/IJN.S27328] [PMID: 22811601]
[221]
Martínez-Pérez, B.; Quintanar-Guerrero, D.; Tapia-Tapia, M.; Cisneros-Tamayo, R.; Zambrano-Zaragoza, M.L.; Alcalá-Alcalá, S.; Mendoza-Muñoz, N.; Piñón-Segundo, E. Controlled-release biodegradable nanoparticles: From preparation to vaginal applications. Eur. J. Pharm. Sci., 2018, 115, 185-195.
[http://dx.doi.org/10.1016/j.ejps.2017.11.029] [PMID: 29208486]
[222]
Melo, C.M.; Cardoso, J.F.; Perassoli, F.B.; de Oliveira Neto, A.S.; Pinto, L.M.; de Freitas Marques, M.B.; da Nova Mussel, W.; Magalhães, J.T.; de Lima Moura, S.A.; de Freitas Araújo, M.G.; Da Silva, G.R. Amphotericin B-loaded Eudragit RL100 nanoparticles coated with hyaluronic acid for the treatment of vulvovaginal candidiasis. Carbohydr. Polym., 2020, 230, 115608.
[http://dx.doi.org/10.1016/j.carbpol.2019.115608] [PMID: 31887870]
[223]
Friedl, H.E.; Dünnhaupt, S.; Waldner, C.; Bernkop-Schnürch, A. Preactivated thiomers for vaginal drug delivery vehicles. Biomaterials, 2013, 34(32), 7811-7818.
[http://dx.doi.org/10.1016/j.biomaterials.2013.06.021] [PMID: 23886732]
[224]
Pradines, B.; Bories, C.; Vauthier, C.; Ponchel, G.; Loiseau, P. M.; Bouchemal, K. Drug-free chitosan coated poly(isobutylcyanoacrylate) nanoparticles are active against trichomonas vaginalis and non-toxic towards pig vaginal mucosa. Pharm. Res., 2014, 32(4), 1229-1236.
[http://dx.doi.org/10.1007/s11095-014-1528-7]
[225]
Das Neves, J.; Araújo, F.; Andrade, F.; Amiji, M.; Bahia, M. F.; Sarmento, B. Biodistribution and pharmacokinetics of dapivirine-loaded nanoparticles after vaginal delivery in mice. Pharm. Res., 2014, 31(7), 1834-1845.
[http://dx.doi.org/10.1007/s11095-013-1287-x]
[226]
Lalan, M.S.; Patel, V.N.; Misra, A. Polymers in Vaginal Drug Delivery: Recent Advancements. In: Applications of Polymers in Drug Delivery; Misra, A.; Shahiwala, A., Eds.; Elsevier, 2021; pp. 281-303.
[http://dx.doi.org/10.1016/B978-0-12-819659-5.00010-0]
[227]
Takalkar, D.; Desai, N. Nanolipid gel of an antimycotic drug for treating vulvovaginal candidiasis—development and evaluation. AAPS PharmSciTech, 2018, 19(3), 1297-1307.
[http://dx.doi.org/10.1208/s12249-017-0918-7]
[228]
Zhang, Y.; Miyamoto, Y.; Ihara, S.; Yang, J.Z.; Zuill, D.E.; Angsantikul, P.; Zhang, Q.; Gao, W.; Zhang, L.; Eckmann, L. Composite thermoresponsive hydrogel with auranofin-loaded nanoparticles for topical treatment of vaginal trichomonad infection. Adv. Ther. (Weinh.), 2019, 2(12), 1900157.
[http://dx.doi.org/10.1002/adtp.201900157] [PMID: 32377561]
[229]
Machado, A.; Cunha-Reis, C.; Araújo, F.; Nunes, R.; Seabra, V.; Ferreira, D.; das Neves, J.; Sarmento, B. Development and in vivo safety assessment of tenofovir-loaded nanoparticles-in-film as a novel vaginal microbicide delivery system. Acta Biomater., 2016, 44, 332-340.
[http://dx.doi.org/10.1016/j.actbio.2016.08.018] [PMID: 27544812]
[230]
Cunha-Reis, C.; Machado, A.; Barreiros, L.; Araújo, F.; Nunes, R.; Seabra, V.; Ferreira, D.; Segundo, M.A.; Sarmento, B.; das Neves, J. Nanoparticles-in-film for the combined vaginal delivery of anti-HIV microbicide drugs. J. Control. Release, 2016, 243, 43-53.
[http://dx.doi.org/10.1016/j.jconrel.2016.09.020] [PMID: 27664327]
[231]
Hua, S. Physiological and pharmaceutical considerations for rectal drug formulations. Front. Pharmacol., 2019, 10, 1196.
[http://dx.doi.org/10.3389/fphar.2019.01196] [PMID: 31680970]
[232]
Jannin, V.; Lemagnen, G.; Gueroult, P.; Larrouture, D.; Tuleu, C. Rectal route in the 21st Century to treat children. Adv. Drug Deliv. Rev., 2014, 73, 34-49.
[http://dx.doi.org/10.1016/j.addr.2014.05.012] [PMID: 24871671]
[233]
Purohit, T.J.; Hanning, S.M.; Wu, Z. Advances in rectal drug delivery systems. Pharm. Dev. Technol., 2018, 23(10), 942-952.
[http://dx.doi.org/10.1080/10837450.2018.1484766] [PMID: 29888992]
[234]
Zhang, S.; Langer, R.; Traverso, G. Nanoparticulate drug delivery systems targeting inflammation for treatment of inflammatory bowel disease. Nano Today, 2017, 16, 82-96.
[http://dx.doi.org/10.1016/j.nantod.2017.08.006] [PMID: 31186671]
[235]
Mesquita, L.; Galante, J.; Nunes, R.; Sarmento, B. das Neves, J. Pharmaceutical vehicles for vaginal and rectal administration of Anti-HIV microbicide nanosystems. Pharmaceutics, 2019, 11(3), 145.
[http://dx.doi.org/10.3390/pharmaceutics11030145] [PMID: 30917532]
[236]
Lamprecht, A. Selective nanoparticle adhesion can enhance colitis therapy. Nat. Rev. Gastroenterol. Hepatol., 2010, 7(6), 311-312.
[http://dx.doi.org/10.1038/nrgastro.2010.66]
[237]
Maisel, K.; Chattopadhyay, S.; Moench, T.; Hendrix, C.; Cone, R.; Ensign, L.M.; Hanes, J. Enema ion compositions for enhancing colorectal drug delivery. J. Control. Release, 2015, 209, 280-287.
[http://dx.doi.org/10.1016/j.jconrel.2015.04.040] [PMID: 25937321]
[238]
Abdelbary, G.; Fahmy, R.H. Diazepam-loaded solid lipid nanoparticles: Design and characterization. AAPS PharmSciTech, 2009, 10(1), 211-219.
[http://dx.doi.org/10.1208/s12249-009-9197-2] [PMID: 19277870]
[239]
Mohamed, R.A.; Abass, H.A.; Attia, M.A.; Heikal, O.A. Formulation and evaluation of metoclopramide solid lipid nanoparticles for rectal suppository. J. Pharm. Pharmacol., 2013, 65(11), 1607-1621.
[http://dx.doi.org/10.1111/jphp.12136] [PMID: 24102470]
[240]
Siczek, K.; Fichna, J.; Zatorski, H.; Karolewicz, B.; Klimek, L.; Owczarek, A. Development of the rectal dosage form with silver-coated glass beads for local-action applications in lower sections of the gastrointestinal tract. Pharm. Dev. Technol., 2018, 23(3), 295-300.
[http://dx.doi.org/10.1080/10837450.2017.1359843] [PMID: 28756715]
[241]
Moawad, F.A.; Ali, A.A.; Salem, H.F. Nanotransfersomes-loaded thermosensitive in situ gel as a rectal delivery system of tizanidine HCl: Preparation, in vitro and in vivo performance. Drug Deliv., 2017, 24(1), 252-260.
[http://dx.doi.org/10.1080/10717544.2016.1245369] [PMID: 28156169]
[242]
Din, F.U.; Choi, J.Y.; Kim, D.W.; Mustapha, O.; Kim, D.S.; Thapa, R.K.; Ku, S.K.; Youn, Y.S.; Oh, K.T.; Yong, C.S.; Kim, J.O.; Choi, H.G. Irinotecan-encapsulated double-reverse thermosensitive nanocarrier system for rectal administration. Drug Deliv., 2017, 24(1), 502-510.
[http://dx.doi.org/10.1080/10717544.2016.1272651] [PMID: 28181835]
[243]
Melo, M.; Nunes, R.; Sarmento, B.; das Neves, J. Colorectal distribution and retention of polymeric nanoparticles following incorporation into a thermosensitive enema. Biomater. Sci., 2019, 7(9), 3801-3811.
[http://dx.doi.org/10.1039/C9BM00759H] [PMID: 31237275]
[244]
Amaral, A.C.; Saavedra, P.H.V.; Oliveira Souza, A.C.; de Melo, M.T.; Tedesco, A.C.; Morais, P.C.; Soares Felipe, M.S.; Bocca, A.L. Miconazole loaded chitosan-based nanoparticles for local treatment of vulvovaginal candidiasis fungal infections. Colloids Surf. B Biointerfaces, 2019, 174, 409-415.
[http://dx.doi.org/10.1016/j.colsurfb.2018.11.048] [PMID: 30481701]
[245]
Fernandes Costa, A.; Evangelista Araujo, D.; Santos Cabral, M.; Teles Brito, I.; Borges de Menezes Leite, L.; Pereira, M.; Correa Amaral, A. Development, characterization, and in vitro-in vivo evaluation of polymeric nanoparticles containing miconazole and farnesol for treatment of vulvovaginal candidiasis. Med. Mycol., 2019, 57(1), 52-62.
[http://dx.doi.org/10.1093/mmy/myx155] [PMID: 29361177]
[246]
Rossi, S.; Vigani, B.; Puccio, A.; Bonferoni, M.C.; Sandri, G.; Ferrari, F. Chitosan ascorbate nanoparticles for the vaginal delivery of antibiotic drugs in atrophic vaginitis. Mar. Drugs, 2017, 15(10), 319-336.
[http://dx.doi.org/10.3390/md15100319] [PMID: 29048359]
[247]
Sekar, V.; Rajendran, K.; Vallinayagam, S.; Deepak, V.; Mahadevan, S. Synthesis and characterization of chitosan ascorbate nanoparticles for therapeutic inhibition for cervical cancer and their in silico modeling. J. Ind. Eng. Chem., 2018, 62, 239-249.
[http://dx.doi.org/10.1016/j.jiec.2018.01.001]
[248]
Ho, D.K.; Frisch, S.; Biehl, A.; Terriac, E.; De Rossi, C.; Schwarzkopf, K.; Lautenschläger, F.; Loretz, B.; Murgia, X.; Lehr, C.M. Farnesylated Glycol chitosan as a platform for drug delivery: Synthesis, characterization, and investigation of mucus-particle interactions. Biomacromolecules, 2018, 19(8), 3489-3501.
[http://dx.doi.org/10.1021/acs.biomac.8b00795] [PMID: 29989799]
[249]
Manna, S.; Lakshmi, U.S.; Racharla, M.; Sinha, P.; Kanthal, L.K.; Kumar, S.P.N. Bioadhesive HPMC gel containing gelatin nanoparticles for intravaginal delivery of Tenofovir. J. Appl. Pharm. Sci., 2016, 6(8), 22-29.
[http://dx.doi.org/10.7324/JAPS.2016.60804]
[250]
Hasanifard, M.; Ebrahimi-Hosseinzadeh, B.; Hatamian-Zarmi, A.; Rezayan, A.H.; Esmaeili, M.A. Development of thiolated chitosan nanoparticles based mucoadhesive vaginal drug delivery systems 1. Polym. Sci. Ser. A, 2017, 59(6), 858-865.
[http://dx.doi.org/10.1134/S0965545X17060025]
[251]
Damelin, L.H.; Fernandes, M.A.; Tiemessen, C.T. Alginate microbead-encapsulated silver complexes for selective delivery of broad-spectrum silver-based microbicides. Int. J. Antimicrob. Agents, 2015, 46(4), 394-400.
[http://dx.doi.org/10.1016/j.ijantimicag.2015.05.016] [PMID: 26184337]
[252]
Binesh, N.; Farhadian, N.; Mohammadzadeh, A. Enhanced antibacterial activity of uniform and stable chitosan nanoparticles containing metronidazole against anaerobic bacterium of Bacteroides fragilis. Colloids Surf. B Biointerfaces, 2021, 202, 111691.
[http://dx.doi.org/10.1016/j.colsurfb.2021.111691] [PMID: 33743445]
[253]
Facchinatto, W.M.; Galante, J.; Mesquita, L.; Silva, D.S.; Martins Dos Santos, D.; Moraes, T.B.; Campana-Filho, S.P.; Colnago, L.A.; Sarmento, B.; das Neves, J. Clotrimazole-loaded N-(2-hydroxy)-propyl-3-trimethylammonium, O-palmitoyl chitosan nanoparticles for topical treatment of vulvovaginal candidiasis. Acta Biomater., 2021, 125, 312-321.
[http://dx.doi.org/10.1016/j.actbio.2021.02.029] [PMID: 33639312]
[254]
Alqahtani, F.; Aleanizy, F.; El Tahir, E.; Alhabib, H.; Alsaif, R.; Shazly, G.; AlQahtani, H.; Alsarra, I.; Mahdavi, J. Antibacterial activity of chitosan nanoparticles against pathogenic N. gonorrhoea. Int. J. Nanomedicine, 2020, 15, 7877-7887.
[http://dx.doi.org/10.2147/IJN.S272736] [PMID: 33116506]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy