Research Article

种子γ-硫蛋白作为一种抗真菌病原体和害虫的有效生物活性分子的综合结构和功能表征

卷 29, 期 42, 2022

发表于: 15 August, 2022

页: [6446 - 6462] 页: 17

弟呕挨: 10.2174/0929867329666220608163645

价格: $65

conference banner
摘要

背景: 真菌和害虫破坏了储存的粮食,造成数百万美元的损失,除了降低储存粮食的安全性外,还给农民带来了持续的挑战。需要一个针对病原体的广泛防御系统来减少甚至消除作物产量对使用杀虫剂的依赖。植物防御素(γ-硫堇蛋白)是抗菌肽(AMPs),是宿主防御系统的组成部分。已知它们与细胞膜相互作用,表现出抗真菌和杀虫活性。它们对真菌和昆虫表现出广泛的活性,并且在低浓度下有效。硫堇蛋白作用于膜,大大减少了病原体耐药性的发展。 目的: 研究一种抗真菌病原和贮藏粮食害虫的生物活性分子。 方法:用磷酸盐缓冲液(100 mM, pH 7.0)从甘蓝种子粉中提取γ-硫堇蛋白,采用MALDI-TOF/TOF法进行鉴定。粗提物经70%硫酸铵饱和后凝胶过滤层析。圆盘扩散测定法和微量滴定生物测定法用于确定蛋白质对植物病原真菌的抗真菌活性。通过将被纯化蛋白质污染的食物喂食害虫来评估杀虫效果。此外,使用Auto Dock Vina对蛋白质进行了计算机分子结构预测研究,将蛋白质与来自黄粉虫的真菌膜部分或α-淀粉酶进行分子对接。使用Schrodinger的Desmond模块对蛋白质配体复合物进行了MD模拟。 结果:从卷心菜种子中得到的γ-硫堇蛋白(Bo T),与甘蓝(Brassica oleracea L. var. viridis)和防御素样蛋白1 (Raphanus sativus L.)的同源性分别为100%和80%。BoT在浓度为2μM时显着抑制黑曲霉和黄曲霉菌丝体生长。同样,0.12μM Bo T处理导致赤拟谷盗(Tribolium castaneum Herbst)和米象成虫(Sitophilus oryzae L)的显著死亡。BoT的分子对接和MD模拟证实了与真菌膜(磷脂酰肌醇4,5-二磷酸和磷脂酸)的强结合亲和力,这会导致细胞膜破坏和细胞内容物泄漏,导致细胞死亡。BoT阻断了α-淀粉酶的活性位点,由于这种肠道酶的失活,昆虫的消化系统受到干扰,导致它们死亡。 结论: γ-硫堇蛋白是一种良好的抗真菌和杀虫剂,可作为杀菌剂和杀虫剂的替代品。

关键词: 甘蓝,γ-硫堇蛋白,抗菌肽,防御素,内毒素,杀虫剂。

[1]
Tamhane, V.A.; Giri, A.P.; Sainani, M.N.; Gupta, V.S. Diverse forms of Pin-II family proteinase inhibitors from Capsicum annuum adversely affect the growth and development of Helicoverpa armigera. Gene, 2007, 403(1-2), 29-38.
[http://dx.doi.org/10.1016/j.gene.2007.07.024] [PMID: 17870253]
[2]
Marmiroli, N.; Maestri, E. Plant peptides in defense and signaling. Peptides, 2014, 56, 30-44.
[http://dx.doi.org/10.1016/j.peptides.2014.03.013] [PMID: 24681437]
[3]
Stotz, H.U.; Thomson, J.G.; Wang, Y. Plant defensins: defense, development and application. Plant Signal. Behav., 2009, 4(11), 1010-1012.
[http://dx.doi.org/10.4161/psb.4.11.9755] [PMID: 20009545]
[4]
Broekaert, W.F.; Terras, F.R.; Cammue, B.P.; Osborn, R.W. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol., 1995, 108(4), 1353-1358.
[http://dx.doi.org/10.1104/pp.108.4.1353] [PMID: 7659744]
[5]
Van der Weerden, N.L.; Anderson, M.A. Plant defensins: common fold, multiple functions. Fungal Biol. Rev., 2013, 26(4), 121-131.
[http://dx.doi.org/10.1016/j.fbr.2012.08.004]
[6]
Mendez, E.; Moreno, A.; Colilla, F.; Pelaez, F.; Limas, G.G.; Mendez, R.; Soriano, F.; Salinas, M.; de Haro, C. Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, γ-hordothionin, from barley endosperm. Eur. J. Biochem., 1990, 194(2), 533-539.
[http://dx.doi.org/10.1111/j.1432-1033.1990.tb15649.x] [PMID: 2176600]
[7]
Colilla, F.J.; Rocher, A.; Mendez, E. γ-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Lett., 1990, 270(1-2), 191-194.
[http://dx.doi.org/10.1016/0014-5793(90)81265-P] [PMID: 2226781]
[8]
Stec, B. Plant thionins--the structural perspective. Cell. Mol. Life Sci., 2006, 63(12), 1370-1385.
[http://dx.doi.org/10.1007/s00018-005-5574-5] [PMID: 16715411]
[9]
Tam, J.P.; Wang, S.; Wong, K.H.; Tan, W.L. Antimicrobial peptides from plants. Pharmaceuticals (Basel), 2015, 8(4), 711-757.
[http://dx.doi.org/10.3390/ph8040711] [PMID: 26580629]
[10]
Khairutdinov, B.I.; Ermakova, E.A.; Yusypovych, Y.M.; Bessolicina, E.K.; Tarasova, N.B.; Toporkova, Y.Y.; Kovaleva, V.; Zuev, Y.F.; Nesmelova, I.V. NMR structure, conformational dynamics, and biological activity of PsDef1 defensin from Pinus sylvestris. Biochim. Biophys. Acta. Proteins Proteomics, 2017, 1865(8), 1085-1094.
[http://dx.doi.org/10.1016/j.bbapap.2017.05.012] [PMID: 28528214]
[11]
Oeemig, J.S.; Lynggaard, C.; Knudsen, D.H.; Hansen, F.T.; Nørgaard, K.D.; Schneider, T.; Vad, B.S.; Sandvang, D.H.; Nielsen, L.A.; Neve, S.; Kristensen, H.H.; Sahl, H.G.; Otzen, D.E.; Wimmer, R. Eurocin, a new fungal defensin: structure, lipid binding, and its mode of action. J. Biol. Chem., 2012, 287(50), 42361-42372.
[http://dx.doi.org/10.1074/jbc.M112.382028] [PMID: 23093408]
[12]
Lacerda, A.F.; Vasconcelos, É.A.R.; Pelegrini, P.B.; Grossi de Sa, M.F. Antifungal defensins and their role in plant defense. Front. Microbiol., 2014, 5, 116.
[http://dx.doi.org/10.3389/fmicb.2014.00116] [PMID: 24765086]
[13]
Bohlmann, H.; Apel, K. Thionins. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1991, 42(1), 227-240.
[http://dx.doi.org/10.1146/annurev.pp.42.060191.001303]
[14]
Yount, N.Y.; Yeaman, M.R. Multidimensional signatures in antimicrobial peptides. Proc. Natl. Acad. Sci. , 2004, 101(19), 7363-7368.
[http://dx.doi.org/10.1073/pnas.0401567101] [PMID: 15118082]
[15]
Yeaman, M.R.; Yount, N.Y. Unifying themes in host defence effector polypeptides. Nat. Rev. Microbiol., 2007, 5(9), 727-740.
[http://dx.doi.org/10.1038/nrmicro1744] [PMID: 17703227]
[16]
Sagaram, U.S.; Pandurangi, R.; Kaur, J.; Smith, T.J.; Shah, D.M. Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum. PLoS One, 2011, 6(4), e18550.
[http://dx.doi.org/10.1371/journal.pone.0018550] [PMID: 21533249]
[17]
Avitabile, C.; Capparelli, R.; Rigano, M.M.; Fulgione, A.; Barone, A.; Pedone, C.; Romanelli, A. Antimicrobial peptides from plants: stabilization of the γ core of a tomato defensin by intramolecular disulfide bond. J. Pept. Sci., 2013, 19(4), 240-245.
[http://dx.doi.org/10.1002/psc.2479] [PMID: 23420649]
[18]
Wanasundara, J.P. Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Crit. Rev. Food Sci. Nutr., 2011, 51(7), 635-677.
[http://dx.doi.org/10.1080/10408391003749942] [PMID: 21793726]
[19]
Nieuwhof, M. Cole crops. In: Botany, cultivation, and utilization; London, Leonard Hill, 1969.
[20]
Cheney, G. Anti-peptic ulcer dietary factor (vitamin “U”) in the treatment of peptic ulcer. J. Am. Diet. Assoc., 1950, 26(9), 668-672.
[http://dx.doi.org/10.1016/S0002-8223(21)30396-0] [PMID: 15436263]
[21]
Brooks, J.D.; Paton, V.G.; Vidanes, G. Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol. Biomarkers Prev., 2001, 10(9), 949-954.
[PMID: 11535546]
[22]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[23]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[24]
Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; Thompson, J.D.; Higgins, D.G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol., 2011, 7(1), 539.
[http://dx.doi.org/10.1038/msb.2011.75] [PMID: 21988835]
[25]
Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 1997, 18(15), 2714-2723.
[http://dx.doi.org/10.1002/elps.1150181505] [PMID: 9504803]
[26]
Benkert, P.; Biasini, M.; Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 2011, 27(3), 343-350.
[http://dx.doi.org/10.1093/bioinformatics/btq662] [PMID: 21134891]
[27]
Barry, A.L.; Thornsberry, C.; Jones, R.N.; Fuchs, P.C.; Gavan, T.L.; Gerlach, E.H. Reassessment of the “class” concept of disk susceptibility testing. Cephalothin disks versus minimal inhibitory concentrations with eleven cephalosporins. Am. J. Clin. Pathol., 1978, 70(6), 909-913.
[http://dx.doi.org/10.1093/ajcp/70.6.909] [PMID: 727174]
[28]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[29]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[30]
Laskowski, R.A.; Swindells, M.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[31]
DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr., 2002, 40(1), 82-92.
[32]
Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D. Scalable algorithms for molecular dynamics simulations on commodity clusters. SC’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 2006, , pp. 43-43.
[http://dx.doi.org/10.1109/SC.2006.54]
[33]
Huang, J.; MacKerell, A.D., Jr CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem., 2013, 34(25), 2135-2145.
[http://dx.doi.org/10.1002/jcc.23354] [PMID: 23832629]
[34]
Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A, 2001, 105(43), 9954-9960.
[http://dx.doi.org/10.1021/jp003020w]
[35]
Gressent, F.; Duport, G.; Rahioui, I.; Pauchet, Y.; Bolland, P.; Specty, O.; Rahbe, Y. Biological activity and binding site characteristics of the PA1b Entomotoxin on insects from different orders. J. Insect Sci., 2007, 7(1), 1-10.
[http://dx.doi.org/10.1673/031.007.1201] [PMID: 20331395]
[36]
Nayini, S.Y.; Nalagoni, C.S.R.; Raju, S.S. Forskolin induced morphological and ovarian deformities in the exorista bombycis (uzi fly) and anti-feedent activity of forskolin. Int. J. Pharm. Sci. Res., 2020, 24(1), 4940-4944.
[37]
Athanassiou, C.G.; Arthur, F.H.; Throne, J.E. Effects of short exposures to spinosad-treated wheat or maize on four stored-grain insects. J. Econ. Entomol., 2010, 103(1), 197-202.
[http://dx.doi.org/10.1603/EC09115] [PMID: 20214387]
[38]
Wong, J.H.; Xia, L.; Ng, T.B. A review of defensins of diverse origins. Curr. Protein Pept. Sci., 2007, 8(5), 446-459.
[http://dx.doi.org/10.2174/138920307782411446] [PMID: 17979760]
[39]
Ponz, F.; Paz-Ares, J.; Hernández-Lucas, C.; Carbonero, P.; García-Olmedo, F. Synthesis and processing of thionin precursors in developing endosperm from barley (Hordeum vulgare L.). EMBO J., 1983, 2(7), 1035-1040.
[http://dx.doi.org/10.1002/j.1460-2075.1983.tb01542.x] [PMID: 16453465]
[40]
Nikte, S.; Gahankari, A.; Mulla, J.; Sengupta, D.; Joshi, M.; Tamhane, V. In vitro and in silico studies on membrane interactions of diverse Capsicum annuum flower γ-thionin peptides. Proteins, 2020, 88(1), 227-236.
[http://dx.doi.org/10.1002/prot.25791] [PMID: 31365155]
[41]
Pelegrini, P.B.; Franco, O.L. Plant γ-thionins: novel insights on the mechanism of action of a multi-functional class of defense proteins. Int. J. Biochem. Cell Biol., 2005, 37(11), 2239-2253.
[http://dx.doi.org/10.1016/j.biocel.2005.06.011] [PMID: 16084753]
[42]
Payne, J.A.; Bleackley, M.R.; Lee, T-H.; Shafee, T.M.; Poon, I.K.; Hulett, M.D.; Aguilar, M-I.; van der Weerden, N.L.; Anderson, M.A. The plant defensin NaD1 introduces membrane disorder through a specific interaction with the lipid, phosphatidylinositol 4,5 bisphosphate. Biochim. Biophys. Acta, 2016, 1858(6), 1099-1109.
[http://dx.doi.org/10.1016/j.bbamem.2016.02.016] [PMID: 26896695]
[43]
Guzmán-Rodríguez, J.J.; Ochoa-Zarzosa, A.; López-Gómez, R.; López-Meza, J.E. Plant antimicrobial peptides as potential anticancer agents. BioMed Res. Int., 2015, 2015
[http://dx.doi.org/10.1155/2015/735087]
[44]
Yeung, A.T.; Gellatly, S.L.; Hancock, R.E. Multifunctional cationic host defence peptides and their clinical applications. Cell. Mol. Life Sci., 2011, 68(13), 2161-2176.
[http://dx.doi.org/10.1007/s00018-011-0710-x] [PMID: 21573784]
[45]
Zainal, Z.; Marouf, E.; Ismail, I.; Fei, C. Expression of the Capsicuum annum (chili) defensin gene in transgenic tomatoes confers enhanced resistance to fungal pathogens. Am. J. Plant Physiol., 2009, 4(2), 70-79.
[http://dx.doi.org/10.3923/ajpp.2009.70.79]
[46]
Jha, S.; Tank, H.G.; Prasad, B.D.; Chattoo, B.B. Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani. Transgenic Res., 2009, 18(1), 59-69.
[http://dx.doi.org/10.1007/s11248-008-9196-1] [PMID: 18618285]
[47]
Terras, F.; Schoofs, H.; Thevissen, K.; Osborn, R.W.; Vanderleyden, J.; Cammue, B.; Broekaert, W.F. Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors. Plant Physiol., 1993, 103(4), 1311-1319.
[http://dx.doi.org/10.1104/pp.103.4.1311] [PMID: 12232024]
[48]
Thevissen, K.; Ghazi, A.; De Samblanx, G.W.; Brownlee, C.; Osborn, R.W.; Broekaert, W.F. Fungal membrane responses induced by plant defensins and thionins. J. Biol. Chem., 1996, 271(25), 15018-15025.
[http://dx.doi.org/10.1074/jbc.271.25.15018] [PMID: 8663029]
[49]
Li, S-S.; Gullbo, J.; Lindholm, P.; Larsson, R.; Thunberg, E.; Samuelsson, G.; Bohlin, L.; Claeson, P.; Ligatoxin, B. Ligatoxin B, a new cytotoxic protein with a novel helix-turn-helix DNA-binding domain from the mistletoe Phoradendron liga. Biochem. J., 2002, 366(Pt 2), 405-413.
[http://dx.doi.org/10.1042/bj20020221] [PMID: 12049612]
[50]
Melo, F.R.; Rigden, D.J.; Franco, O.L.; Mello, L.V.; Ary, M.B.; Grossi de Sá, M.F.; Bloch, C., Jr Inhibition of trypsin by cowpea thionin: characterization, molecular modeling, and docking. Proteins, 2002, 48(2), 311-319.
[http://dx.doi.org/10.1002/prot.10142] [PMID: 12112698]
[51]
Bloch, C., Jr; Richardson, M. A new family of small (5 kDa) protein inhibitors of insect α-amylases from seeds or sorghum (Sorghum bicolar (L) Moench) have sequence homologies with wheat γ-purothionins. FEBS Lett., 1991, 279(1), 101-104.
[http://dx.doi.org/10.1016/0014-5793(91)80261-Z] [PMID: 1995329]
[52]
Choi, M-S.; Kim, Y-H.; Park, H-M.; Seo, B-Y.; Jung, J-K.; Kim, S-T.; Kim, M-C.; Shin, D-B.; Yun, H-T.; Choi, I-S.; Kim, C.K.; Lee, J.Y. Expression of BrD1, a plant defensin from Brassica rapa, confers resistance against brown planthopper (Nilaparvata lugens) in transgenic rices. Mol. Cells, 2009, 28(2), 131-137.
[http://dx.doi.org/10.1007/s10059-009-0117-9] [PMID: 19714315]
[53]
Liu, Y.J.; Cheng, C.S.; Lai, S.M.; Hsu, M.P.; Chen, C.S.; Lyu, P.C. Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins, 2006, 63(4), 777-786.
[http://dx.doi.org/10.1002/prot.20962] [PMID: 16544327]
[54]
Pelegrini, P.B.; Lay, F.T.; Murad, A.M.; Anderson, M.A.; Franco, O.L. Novel insights on the mechanism of action of α-amylase inhibitors from the plant defensin family. Proteins, 2008, 73(3), 719-729.
[http://dx.doi.org/10.1002/prot.22086] [PMID: 18498107]
[55]
Vijayan, S.; Singh, N.; Shukla, P.; Kirti, P. Defensin (TvD1) from Tephrosia villosa exhibited strong anti-insect and anti-fungal activities in transgenic tobacco plants. J. Pest Sci., 2013, 86(2), 337-344.
[http://dx.doi.org/10.1007/s10340-012-0467-5]
[56]
Sarkar, P.; Jana, K.; Sikdar, S.R. Overexpression of biologically safe Rorippa indica defensin enhances aphid tolerance in Brassica juncea. Planta, 2017, 246(5), 1029-1044.
[http://dx.doi.org/10.1007/s00425-017-2750-4] [PMID: 28770337]
[57]
Franco, O.L.; Rigden, D.J.; Melo, F.R.; Grossi-De-Sá, M.F. Plant α-amylase inhibitors and their interaction with insect α-amylases. Eur. J. Biochem., 2002, 269(2), 397-412.
[http://dx.doi.org/10.1046/j.0014-2956.2001.02656.x] [PMID: 11856298]
[58]
Carlini, C.R.; Grossi-de-Sá, M.F. Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon, 2002, 40(11), 1515-1539.
[http://dx.doi.org/10.1016/S0041-0101(02)00240-4] [PMID: 12419503]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy