Generic placeholder image

Current Medicinal Chemistry

Editor-in-Chief

ISSN (Print): 0929-8673
ISSN (Online): 1875-533X

Research Article

Comprehensive Structural and Functional Characterization of a Seed γ-thionin as a Potent Bioactive Molecule Against Fungal Pathogens and Insect Pests

Author(s): Binish Khaliq, Mohnad Abdalla, Sohaib Mehmood, Ahsan Saeed, Aisha Munawar, Muhammad Qamar Saeed, Qamar Saeed, Muhammad Ibrahim, Zahid Ali, Saber Hussain, Wafa Ali Eltayb, Christian Betzel and Ahmed Akrem*

Volume 29, Issue 42, 2022

Published on: 15 August, 2022

Page: [6446 - 6462] Pages: 17

DOI: 10.2174/0929867329666220608163645

Price: $65

Abstract

Background: Fungi and insect pests ruin stored crop grain, which results in millions of dollars of damage, presenting an ongoing challenge for farmers in addition to diminishing the safety of stored food. A wide-range defensive system against pathogens is needed to reduce or even eliminate the dependence of the crop yield upon the use of pesticides. Plant defensins (γ-thionins) are antimicrobial peptides (AMPs) that are a component of the host defense system. They are known to interact with cell membranes to exhibit antifungal and insecticidal activity. They exhibit a broad range of activities against fungi and insects and are effective at low concentrations. Thionins act on membranes, greatly reducing the development of pathogen resistance.

Objective: The aim of this study is to investigate a bioactive molecule that acts against fungal pathogens and stored grain insect pests.

Methods: γ-thionin protein was extracted from Brassica oleracea L. var. capitata f. alba (white cabbage) seed powder in phosphate buffer (100 mM, pH 7.0) and was identified by MALDI-TOF/TOF. The crude extract was subjected to 70% ammonium sulfate saturation followed by gel filtration chromatography. The disc diffusion assay along with a microtiter bioassay was used to determine the antifungal activity of the protein against phytopathogenic fungi. The insecticidal efficacy was evaluated by feeding insect pests with food contaminated with the purified protein. Additionally, an in silico molecular structure prediction study of the protein was performed using Auto Dock Vina for molecular docking of the protein with either fungal membrane moieties or α-amylase from Tenebrio molitor L. MD simulations of protein-ligand complexes were conducted using Schrodinger’s Desmond module.

Results: γ-Thionin (BoT) was purified from white cabbage seeds and showed 100% homology with thionin (Brassica oleracea L. var. viridis) and 80% homology with defensin-like protein 1 (Raphanus sativus L.), respectively. BoT significantly inhibited the mycelial growth of Aspergillus niger van Tieghem and Aspergillus flavus Link at a concentration of 2 μM. Similarly, 0.12 μM BoT treatment resulted in significant mortality of Tribolium castaneum Herbst and Sitophilus oryzae L. Molecular docking and MD simulation of BoT confirmed the strong binding affinity with fungal membrane moieties (phosphatidylinositol 4,5-bisphosphate and phosphatidic acid), which causes disruption of the cell membrane and leakage of the cellular contents, leading to cell death. BoT blocked the active site of α-amylase, and as a result of the inactivation of this gut enzyme, the digestive systems of insects were disturbed, resulting in their deaths.

Conclusion: This study revealed that γ-thionin is a good antifungal and insecticidal agent that could be used as an alternate to fungicides and insecticides.

Keywords: Brassica oleracea, γ-thionins, antimicrobial peptides, defensins, entomotoxin, pesticides.

[1]
Tamhane, V.A.; Giri, A.P.; Sainani, M.N.; Gupta, V.S. Diverse forms of Pin-II family proteinase inhibitors from Capsicum annuum adversely affect the growth and development of Helicoverpa armigera. Gene, 2007, 403(1-2), 29-38.
[http://dx.doi.org/10.1016/j.gene.2007.07.024] [PMID: 17870253]
[2]
Marmiroli, N.; Maestri, E. Plant peptides in defense and signaling. Peptides, 2014, 56, 30-44.
[http://dx.doi.org/10.1016/j.peptides.2014.03.013] [PMID: 24681437]
[3]
Stotz, H.U.; Thomson, J.G.; Wang, Y. Plant defensins: defense, development and application. Plant Signal. Behav., 2009, 4(11), 1010-1012.
[http://dx.doi.org/10.4161/psb.4.11.9755] [PMID: 20009545]
[4]
Broekaert, W.F.; Terras, F.R.; Cammue, B.P.; Osborn, R.W. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol., 1995, 108(4), 1353-1358.
[http://dx.doi.org/10.1104/pp.108.4.1353] [PMID: 7659744]
[5]
Van der Weerden, N.L.; Anderson, M.A. Plant defensins: common fold, multiple functions. Fungal Biol. Rev., 2013, 26(4), 121-131.
[http://dx.doi.org/10.1016/j.fbr.2012.08.004]
[6]
Mendez, E.; Moreno, A.; Colilla, F.; Pelaez, F.; Limas, G.G.; Mendez, R.; Soriano, F.; Salinas, M.; de Haro, C. Primary structure and inhibition of protein synthesis in eukaryotic cell-free system of a novel thionin, γ-hordothionin, from barley endosperm. Eur. J. Biochem., 1990, 194(2), 533-539.
[http://dx.doi.org/10.1111/j.1432-1033.1990.tb15649.x] [PMID: 2176600]
[7]
Colilla, F.J.; Rocher, A.; Mendez, E. γ-Purothionins: amino acid sequence of two polypeptides of a new family of thionins from wheat endosperm. FEBS Lett., 1990, 270(1-2), 191-194.
[http://dx.doi.org/10.1016/0014-5793(90)81265-P] [PMID: 2226781]
[8]
Stec, B. Plant thionins--the structural perspective. Cell. Mol. Life Sci., 2006, 63(12), 1370-1385.
[http://dx.doi.org/10.1007/s00018-005-5574-5] [PMID: 16715411]
[9]
Tam, J.P.; Wang, S.; Wong, K.H.; Tan, W.L. Antimicrobial peptides from plants. Pharmaceuticals (Basel), 2015, 8(4), 711-757.
[http://dx.doi.org/10.3390/ph8040711] [PMID: 26580629]
[10]
Khairutdinov, B.I.; Ermakova, E.A.; Yusypovych, Y.M.; Bessolicina, E.K.; Tarasova, N.B.; Toporkova, Y.Y.; Kovaleva, V.; Zuev, Y.F.; Nesmelova, I.V. NMR structure, conformational dynamics, and biological activity of PsDef1 defensin from Pinus sylvestris. Biochim. Biophys. Acta. Proteins Proteomics, 2017, 1865(8), 1085-1094.
[http://dx.doi.org/10.1016/j.bbapap.2017.05.012] [PMID: 28528214]
[11]
Oeemig, J.S.; Lynggaard, C.; Knudsen, D.H.; Hansen, F.T.; Nørgaard, K.D.; Schneider, T.; Vad, B.S.; Sandvang, D.H.; Nielsen, L.A.; Neve, S.; Kristensen, H.H.; Sahl, H.G.; Otzen, D.E.; Wimmer, R. Eurocin, a new fungal defensin: structure, lipid binding, and its mode of action. J. Biol. Chem., 2012, 287(50), 42361-42372.
[http://dx.doi.org/10.1074/jbc.M112.382028] [PMID: 23093408]
[12]
Lacerda, A.F.; Vasconcelos, É.A.R.; Pelegrini, P.B.; Grossi de Sa, M.F. Antifungal defensins and their role in plant defense. Front. Microbiol., 2014, 5, 116.
[http://dx.doi.org/10.3389/fmicb.2014.00116] [PMID: 24765086]
[13]
Bohlmann, H.; Apel, K. Thionins. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1991, 42(1), 227-240.
[http://dx.doi.org/10.1146/annurev.pp.42.060191.001303]
[14]
Yount, N.Y.; Yeaman, M.R. Multidimensional signatures in antimicrobial peptides. Proc. Natl. Acad. Sci. , 2004, 101(19), 7363-7368.
[http://dx.doi.org/10.1073/pnas.0401567101] [PMID: 15118082]
[15]
Yeaman, M.R.; Yount, N.Y. Unifying themes in host defence effector polypeptides. Nat. Rev. Microbiol., 2007, 5(9), 727-740.
[http://dx.doi.org/10.1038/nrmicro1744] [PMID: 17703227]
[16]
Sagaram, U.S.; Pandurangi, R.; Kaur, J.; Smith, T.J.; Shah, D.M. Structure-activity determinants in antifungal plant defensins MsDef1 and MtDef4 with different modes of action against Fusarium graminearum. PLoS One, 2011, 6(4), e18550.
[http://dx.doi.org/10.1371/journal.pone.0018550] [PMID: 21533249]
[17]
Avitabile, C.; Capparelli, R.; Rigano, M.M.; Fulgione, A.; Barone, A.; Pedone, C.; Romanelli, A. Antimicrobial peptides from plants: stabilization of the γ core of a tomato defensin by intramolecular disulfide bond. J. Pept. Sci., 2013, 19(4), 240-245.
[http://dx.doi.org/10.1002/psc.2479] [PMID: 23420649]
[18]
Wanasundara, J.P. Proteins of Brassicaceae oilseeds and their potential as a plant protein source. Crit. Rev. Food Sci. Nutr., 2011, 51(7), 635-677.
[http://dx.doi.org/10.1080/10408391003749942] [PMID: 21793726]
[19]
Nieuwhof, M. Cole crops. In: Botany, cultivation, and utilization; London, Leonard Hill, 1969.
[20]
Cheney, G. Anti-peptic ulcer dietary factor (vitamin “U”) in the treatment of peptic ulcer. J. Am. Diet. Assoc., 1950, 26(9), 668-672.
[http://dx.doi.org/10.1016/S0002-8223(21)30396-0] [PMID: 15436263]
[21]
Brooks, J.D.; Paton, V.G.; Vidanes, G. Potent induction of phase 2 enzymes in human prostate cells by sulforaphane. Cancer Epidemiol. Biomarkers Prev., 2001, 10(9), 949-954.
[PMID: 11535546]
[22]
Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 1976, 72(1-2), 248-254.
[http://dx.doi.org/10.1016/0003-2697(76)90527-3] [PMID: 942051]
[23]
Altschul, S.F.; Madden, T.L.; Schäffer, A.A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D.J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res., 1997, 25(17), 3389-3402.
[http://dx.doi.org/10.1093/nar/25.17.3389] [PMID: 9254694]
[24]
Sievers, F.; Wilm, A.; Dineen, D.; Gibson, T.J.; Karplus, K.; Li, W.; Lopez, R.; McWilliam, H.; Remmert, M.; Söding, J.; Thompson, J.D.; Higgins, D.G. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol. Syst. Biol., 2011, 7(1), 539.
[http://dx.doi.org/10.1038/msb.2011.75] [PMID: 21988835]
[25]
Guex, N.; Peitsch, M.C. SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 1997, 18(15), 2714-2723.
[http://dx.doi.org/10.1002/elps.1150181505] [PMID: 9504803]
[26]
Benkert, P.; Biasini, M.; Schwede, T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics, 2011, 27(3), 343-350.
[http://dx.doi.org/10.1093/bioinformatics/btq662] [PMID: 21134891]
[27]
Barry, A.L.; Thornsberry, C.; Jones, R.N.; Fuchs, P.C.; Gavan, T.L.; Gerlach, E.H. Reassessment of the “class” concept of disk susceptibility testing. Cephalothin disks versus minimal inhibitory concentrations with eleven cephalosporins. Am. J. Clin. Pathol., 1978, 70(6), 909-913.
[http://dx.doi.org/10.1093/ajcp/70.6.909] [PMID: 727174]
[28]
Seeliger, D.; de Groot, B.L. Ligand docking and binding site analysis with PyMOL and Autodock/Vina. J. Comput. Aided Mol. Des., 2010, 24(5), 417-422.
[http://dx.doi.org/10.1007/s10822-010-9352-6] [PMID: 20401516]
[29]
Trott, O.; Olson, A.J. AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem., 2010, 31(2), 455-461.
[PMID: 19499576]
[30]
Laskowski, R.A.; Swindells, M.B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model., 2011, 51(10), 2778-2786.
[http://dx.doi.org/10.1021/ci200227u] [PMID: 21919503]
[31]
DeLano, W.L. Pymol: An open-source molecular graphics tool. CCP4 Newsl. Protein Crystallogr., 2002, 40(1), 82-92.
[32]
Bowers, K.J.; Chow, D.E.; Xu, H.; Dror, R.O.; Eastwood, M.P.; Gregersen, B.A.; Klepeis, J.L.; Kolossvary, I.; Moraes, M.A.; Sacerdoti, F.D. Scalable algorithms for molecular dynamics simulations on commodity clusters. SC’06: Proceedings of the 2006 ACM/IEEE Conference on Supercomputing, 2006, , pp. 43-43.
[http://dx.doi.org/10.1109/SC.2006.54]
[33]
Huang, J.; MacKerell, A.D., Jr CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem., 2013, 34(25), 2135-2145.
[http://dx.doi.org/10.1002/jcc.23354] [PMID: 23832629]
[34]
Mark, P.; Nilsson, L. Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A, 2001, 105(43), 9954-9960.
[http://dx.doi.org/10.1021/jp003020w]
[35]
Gressent, F.; Duport, G.; Rahioui, I.; Pauchet, Y.; Bolland, P.; Specty, O.; Rahbe, Y. Biological activity and binding site characteristics of the PA1b Entomotoxin on insects from different orders. J. Insect Sci., 2007, 7(1), 1-10.
[http://dx.doi.org/10.1673/031.007.1201] [PMID: 20331395]
[36]
Nayini, S.Y.; Nalagoni, C.S.R.; Raju, S.S. Forskolin induced morphological and ovarian deformities in the exorista bombycis (uzi fly) and anti-feedent activity of forskolin. Int. J. Pharm. Sci. Res., 2020, 24(1), 4940-4944.
[37]
Athanassiou, C.G.; Arthur, F.H.; Throne, J.E. Effects of short exposures to spinosad-treated wheat or maize on four stored-grain insects. J. Econ. Entomol., 2010, 103(1), 197-202.
[http://dx.doi.org/10.1603/EC09115] [PMID: 20214387]
[38]
Wong, J.H.; Xia, L.; Ng, T.B. A review of defensins of diverse origins. Curr. Protein Pept. Sci., 2007, 8(5), 446-459.
[http://dx.doi.org/10.2174/138920307782411446] [PMID: 17979760]
[39]
Ponz, F.; Paz-Ares, J.; Hernández-Lucas, C.; Carbonero, P.; García-Olmedo, F. Synthesis and processing of thionin precursors in developing endosperm from barley (Hordeum vulgare L.). EMBO J., 1983, 2(7), 1035-1040.
[http://dx.doi.org/10.1002/j.1460-2075.1983.tb01542.x] [PMID: 16453465]
[40]
Nikte, S.; Gahankari, A.; Mulla, J.; Sengupta, D.; Joshi, M.; Tamhane, V. In vitro and in silico studies on membrane interactions of diverse Capsicum annuum flower γ-thionin peptides. Proteins, 2020, 88(1), 227-236.
[http://dx.doi.org/10.1002/prot.25791] [PMID: 31365155]
[41]
Pelegrini, P.B.; Franco, O.L. Plant γ-thionins: novel insights on the mechanism of action of a multi-functional class of defense proteins. Int. J. Biochem. Cell Biol., 2005, 37(11), 2239-2253.
[http://dx.doi.org/10.1016/j.biocel.2005.06.011] [PMID: 16084753]
[42]
Payne, J.A.; Bleackley, M.R.; Lee, T-H.; Shafee, T.M.; Poon, I.K.; Hulett, M.D.; Aguilar, M-I.; van der Weerden, N.L.; Anderson, M.A. The plant defensin NaD1 introduces membrane disorder through a specific interaction with the lipid, phosphatidylinositol 4,5 bisphosphate. Biochim. Biophys. Acta, 2016, 1858(6), 1099-1109.
[http://dx.doi.org/10.1016/j.bbamem.2016.02.016] [PMID: 26896695]
[43]
Guzmán-Rodríguez, J.J.; Ochoa-Zarzosa, A.; López-Gómez, R.; López-Meza, J.E. Plant antimicrobial peptides as potential anticancer agents. BioMed Res. Int., 2015, 2015
[http://dx.doi.org/10.1155/2015/735087]
[44]
Yeung, A.T.; Gellatly, S.L.; Hancock, R.E. Multifunctional cationic host defence peptides and their clinical applications. Cell. Mol. Life Sci., 2011, 68(13), 2161-2176.
[http://dx.doi.org/10.1007/s00018-011-0710-x] [PMID: 21573784]
[45]
Zainal, Z.; Marouf, E.; Ismail, I.; Fei, C. Expression of the Capsicuum annum (chili) defensin gene in transgenic tomatoes confers enhanced resistance to fungal pathogens. Am. J. Plant Physiol., 2009, 4(2), 70-79.
[http://dx.doi.org/10.3923/ajpp.2009.70.79]
[46]
Jha, S.; Tank, H.G.; Prasad, B.D.; Chattoo, B.B. Expression of Dm-AMP1 in rice confers resistance to Magnaporthe oryzae and Rhizoctonia solani. Transgenic Res., 2009, 18(1), 59-69.
[http://dx.doi.org/10.1007/s11248-008-9196-1] [PMID: 18618285]
[47]
Terras, F.; Schoofs, H.; Thevissen, K.; Osborn, R.W.; Vanderleyden, J.; Cammue, B.; Broekaert, W.F. Synergistic enhancement of the antifungal activity of wheat and barley thionins by radish and oilseed rape 2S albumins and by barley trypsin inhibitors. Plant Physiol., 1993, 103(4), 1311-1319.
[http://dx.doi.org/10.1104/pp.103.4.1311] [PMID: 12232024]
[48]
Thevissen, K.; Ghazi, A.; De Samblanx, G.W.; Brownlee, C.; Osborn, R.W.; Broekaert, W.F. Fungal membrane responses induced by plant defensins and thionins. J. Biol. Chem., 1996, 271(25), 15018-15025.
[http://dx.doi.org/10.1074/jbc.271.25.15018] [PMID: 8663029]
[49]
Li, S-S.; Gullbo, J.; Lindholm, P.; Larsson, R.; Thunberg, E.; Samuelsson, G.; Bohlin, L.; Claeson, P.; Ligatoxin, B. Ligatoxin B, a new cytotoxic protein with a novel helix-turn-helix DNA-binding domain from the mistletoe Phoradendron liga. Biochem. J., 2002, 366(Pt 2), 405-413.
[http://dx.doi.org/10.1042/bj20020221] [PMID: 12049612]
[50]
Melo, F.R.; Rigden, D.J.; Franco, O.L.; Mello, L.V.; Ary, M.B.; Grossi de Sá, M.F.; Bloch, C., Jr Inhibition of trypsin by cowpea thionin: characterization, molecular modeling, and docking. Proteins, 2002, 48(2), 311-319.
[http://dx.doi.org/10.1002/prot.10142] [PMID: 12112698]
[51]
Bloch, C., Jr; Richardson, M. A new family of small (5 kDa) protein inhibitors of insect α-amylases from seeds or sorghum (Sorghum bicolar (L) Moench) have sequence homologies with wheat γ-purothionins. FEBS Lett., 1991, 279(1), 101-104.
[http://dx.doi.org/10.1016/0014-5793(91)80261-Z] [PMID: 1995329]
[52]
Choi, M-S.; Kim, Y-H.; Park, H-M.; Seo, B-Y.; Jung, J-K.; Kim, S-T.; Kim, M-C.; Shin, D-B.; Yun, H-T.; Choi, I-S.; Kim, C.K.; Lee, J.Y. Expression of BrD1, a plant defensin from Brassica rapa, confers resistance against brown planthopper (Nilaparvata lugens) in transgenic rices. Mol. Cells, 2009, 28(2), 131-137.
[http://dx.doi.org/10.1007/s10059-009-0117-9] [PMID: 19714315]
[53]
Liu, Y.J.; Cheng, C.S.; Lai, S.M.; Hsu, M.P.; Chen, C.S.; Lyu, P.C. Solution structure of the plant defensin VrD1 from mung bean and its possible role in insecticidal activity against bruchids. Proteins, 2006, 63(4), 777-786.
[http://dx.doi.org/10.1002/prot.20962] [PMID: 16544327]
[54]
Pelegrini, P.B.; Lay, F.T.; Murad, A.M.; Anderson, M.A.; Franco, O.L. Novel insights on the mechanism of action of α-amylase inhibitors from the plant defensin family. Proteins, 2008, 73(3), 719-729.
[http://dx.doi.org/10.1002/prot.22086] [PMID: 18498107]
[55]
Vijayan, S.; Singh, N.; Shukla, P.; Kirti, P. Defensin (TvD1) from Tephrosia villosa exhibited strong anti-insect and anti-fungal activities in transgenic tobacco plants. J. Pest Sci., 2013, 86(2), 337-344.
[http://dx.doi.org/10.1007/s10340-012-0467-5]
[56]
Sarkar, P.; Jana, K.; Sikdar, S.R. Overexpression of biologically safe Rorippa indica defensin enhances aphid tolerance in Brassica juncea. Planta, 2017, 246(5), 1029-1044.
[http://dx.doi.org/10.1007/s00425-017-2750-4] [PMID: 28770337]
[57]
Franco, O.L.; Rigden, D.J.; Melo, F.R.; Grossi-De-Sá, M.F. Plant α-amylase inhibitors and their interaction with insect α-amylases. Eur. J. Biochem., 2002, 269(2), 397-412.
[http://dx.doi.org/10.1046/j.0014-2956.2001.02656.x] [PMID: 11856298]
[58]
Carlini, C.R.; Grossi-de-Sá, M.F. Plant toxic proteins with insecticidal properties. A review on their potentialities as bioinsecticides. Toxicon, 2002, 40(11), 1515-1539.
[http://dx.doi.org/10.1016/S0041-0101(02)00240-4] [PMID: 12419503]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy