Research Article

对肾病尿中上皮钠通道ENaC的γ亚基远端多碱束的蛋白水解活性

卷 29, 期 42, 2022

发表于: 28 July, 2022

页: [6433 - 6445] 页: 13

弟呕挨: 10.2174/0929867329666220608162256

价格: $65

Open Access Journals Promotions 2
摘要

背景: 小鼠实验性肾病综合征导致上皮钠通道ENaC的蛋白水解激活,可能涉及其γ亚基(183RKRK)的远端多碱性束。 目的: 我们试图确定来自肾病小鼠和一组急性肾病综合征患者的尿液样本是否含有针对γ-ENaC该区域的特异性蛋白水解活性。 方法: 将由小鼠γ-ENaC氨基酸180-194组成的肽底物N末端偶联到荧光团上,得到AMCA-FTGRKRKISGKIIHK。将底物与来自小鼠的肾病尿液样品以及有或没有丝氨酸蛋白酶抑制剂抑肽酶的患者尿液样本一起孵育。在反相HPLC上分离消化的多肽,并用荧光检测器(350/450nm)检测。使用MALDI-TOF质谱仪测定峰的肽质量。此外,尿蛋白水解活性的定量使用amc耦合底物反映了多基束内不同的裂解位点。 结果: 在健康人或小鼠的尿液中未发现针对底物的显着蛋白水解活性。与肾病患者(n = 8)的尿液样本或受三种不同实验性肾病综合征模型(n = 4)影响的小鼠进行孵育,导致丝氨酸蛋白酶抑制剂抑肽酶阻止了多基束内底物的裂解。在这两个物种中,最主要的裂解产物是FTGRKR,经FTGRKR- AMC定量测定证实。 结论:类和小鼠的肾病尿都含有抑肽酶敏感的蛋白水解活性,以对抗γ-ENaC的远端多基束,反映了尿或蛋白酶尿中活性蛋白酶的排泄。

关键词: 上皮钠通道,ENaC,蛋白水解活化,肾病综合征,蛋白尿症,多碱性束。

[1]
Artunc, F. Proteolytic activation of the epithelial sodium channel in nephrotic syndrome by proteasuria: Concept and therapeutic potential. Turk J Nephrol, 2020, 29(1), 59-65.
[http://dx.doi.org/10.5152/turkjnephrol.2020.4227]
[2]
Artunc, F.; Wörn, M.; Schork, A.; Bohnert, B.N. Proteasuria-The impact of active urinary proteases on sodium retention in nephrotic syndrome. Acta Physiol. (Oxf.), 2019, 225(4), e13249.
[http://dx.doi.org/10.1111/apha.13249] [PMID: 30597733]
[3]
Kleyman, T.R.; Eaton, D.C. Regulating ENaC’s gate. Am. J. Physiol. Cell Physiol., 2020, 318(1), C150-C162.
[http://dx.doi.org/10.1152/ajpcell.00418.2019] [PMID: 31721612]
[4]
Althaus, M.; Lawong, R.Y. Proteolytic ENaC activation in health and disease-a complicated puzzle. Pflugers Arch., 2022, 4(474), 177-179.
[PMID: 34799769]
[5]
Hughey, R.P.; Bruns, J.B.; Kinlough, C.L.; Harkleroad, K.L.; Tong, Q.; Carattino, M.D.; Johnson, J.P.; Stockand, J.D.; Kleyman, T.R. Epithelial sodium channels are activated by furin-dependent proteolysis. J. Biol. Chem., 2004, 279(18), 18111-18114.
[http://dx.doi.org/10.1074/jbc.C400080200] [PMID: 15007080]
[6]
Bruns, J.B.; Carattino, M.D.; Sheng, S.; Maarouf, A.B.; Weisz, O.A.; Pilewski, J.M.; Hughey, R.P.; Kleyman, T.R. Epithelial Na+ channels are fully activated by furin- and prostasin-dependent release of an inhibitory peptide from the gamma-subunit. J. Biol. Chem., 2007, 282(9), 6153-6160.
[http://dx.doi.org/10.1074/jbc.M610636200] [PMID: 17199078]
[7]
Adachi, M.; Kitamura, K.; Miyoshi, T.; Narikiyo, T.; Iwashita, K.; Shiraishi, N.; Nonoguchi, H.; Tomita, K. Activation of epithelial sodium channels by prostasin in Xenopus oocytes. J. Am. Soc. Nephrol., 2001, 12(6), 1114-1121.
[http://dx.doi.org/10.1681/ASN.V1261114] [PMID: 11373334]
[8]
Carattino, M.D.; Mueller, G.M.; Palmer, L.G.; Frindt, G.; Rued, A.C.; Hughey, R.P.; Kleyman, T.R. Prostasin interacts with the epithelial Na+ channel and facilitates cleavage of the γ-subunit by a second protease. Am. J. Physiol. Renal Physiol., 2014, 307(9), F1080-F1087.
[http://dx.doi.org/10.1152/ajprenal.00157.2014] [PMID: 25209858]
[9]
Anand, D.; Hummler, E.; Rickman, O.J. ENaC activation by proteases. Acta physiologica (Oxford, England), 2022, e13811.
[http://dx.doi.org/10.1111/apha.13811]
[10]
Wang, X.P.; Balchak, D.M.; Gentilcore, C.; Clark, N.L.; Kashlan, O.B. Activation by cleavage of the epithelial Na+ channel α and γ subunits independently coevolved with the vertebrate terrestrial migration. eLife, 2022, 11, 11.
[http://dx.doi.org/10.7554/eLife.75796] [PMID: 34984981]
[11]
Bohnert, B.N.; Menacher, M.; Janessa, A.; Wörn, M.; Schork, A.; Daiminger, S.; Kalbacher, H.; Häring, H.U.; Daniel, C.; Amann, K.; Sure, F.; Bertog, M.; Haerteis, S.; Korbmacher, C.; Artunc, F. Aprotinin prevents proteolytic epithelial sodium channel (ENaC) activation and volume retention in nephrotic syndrome. Kidney Int., 2018, 93(1), 159-172.
[http://dx.doi.org/10.1016/j.kint.2017.07.023] [PMID: 29042083]
[12]
Xiao, M.; Bohnert, B.N.; Aypek, H.; Kretz, O.; Grahammer, F.; Aukschun, U.; Wörn, M.; Janessa, A.; Essigke, D.; Daniel, C.; Amann, K.; Huber, T.B.; Plow, E.F.; Birkenfeld, A.L.; Artunc, F. Plasminogen deficiency does not prevent sodium retention in a genetic mouse model of experimental nephrotic syndrome. Acta Physiol. (Oxf.), 2021, 231(1), e13512.
[http://dx.doi.org/10.1111/apha.13512] [PMID: 32455507]
[13]
Bohnert, B.N.; Essigke, D.; Janessa, A.; Schneider, J.C.; Wörn, M.; Kalo, M.Z.; Xiao, M.; Kong, L.; Omage, K.; Hennenlotter, J.; Amend, B.; Birkenfeld, A.L.; Artunc, F. Experimental nephrotic syndrome leads to proteolytic activation of the epithelial Na+ channel in the mouse kidney. Am. J. Physiol. Renal Physiol., 2021, 321(4), F480-F493.
[http://dx.doi.org/10.1152/ajprenal.00199.2021] [PMID: 34423678]
[14]
Wörn, M.; Bohnert, B.N.; Alenazi, F.; Boldt, K.; Klose, F.; Junger, K.; Ueffing, M.; Birkenfeld, A.L.; Kalbacher, H.; Artunc, F. Proteasuria in nephrotic syndrome-quantification and proteomic profiling. J. Proteomics, 2021, 230, 103981.
[http://dx.doi.org/10.1016/j.jprot.2020.103981] [PMID: 32927112]
[15]
Baechle, D.; Cansier, A.; Fischer, R.; Brandenburg, J.; Burster, T.; Driessen, C.; Kalbacher, H. Biotinylated fluorescent peptide substrates for the sensitive and specific determination of cathepsin D activity. J. Pept. Sci., 2005, 11(3), 166-174.
[http://dx.doi.org/10.1002/psc.607] [PMID: 15635643]
[16]
Jores, T.; Klinger, A.; Groß, L.E.; Kawano, S.; Flinner, N.; Duchardt-Ferner, E.; Wöhnert, J.; Kalbacher, H.; Endo, T.; Schleiff, E.; Rapaport, D. Characterization of the targeting signal in mitochondrial β-barrel proteins. Nat. Commun., 2016, 7(1), 12036.
[http://dx.doi.org/10.1038/ncomms12036] [PMID: 27345737]
[17]
Zaidi, N.; Herrmann, T.; Baechle, D.; Schleicher, S.; Gogel, J.; Driessen, C.; Voelter, W.; Kalbacher, H. A new approach for distinguishing cathepsin E and D activity in antigen-processing organelles. FEBS J., 2007, 274(12), 3138-3149.
[http://dx.doi.org/10.1111/j.1742-4658.2007.05846.x] [PMID: 17521331]
[18]
MEROPS Peptidase S1 family. Available from: https://www.ebi.ac.uk/merops/cgi-bin/famsum?family=S1
[19]
Levey, A.S.; Coresh, J.; Greene, T.; Marsh, J.; Stevens, L.A.; Kusek, J.W.; Van Lente, F. Expressing the Modification of Diet in Renal Disease Study equation for estimating glomerular filtration rate with standardized serum creatinine values. Clin. Chem., 2007, 53(4), 766-772.
[http://dx.doi.org/10.1373/clinchem.2006.077180] [PMID: 17332152]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy