Generic placeholder image

Current Pharmaceutical Design

Editor-in-Chief

ISSN (Print): 1381-6128
ISSN (Online): 1873-4286

Review Article

Antibiotics and Antibiotic Resistance- Flipsides of the Same Coin

Author(s): Sonali Bhardwaj, Parul Mehra, Daljeet Singh Dhanjal, Parvarish Sharma, Varun Sharma, Reena Singh, Eugenie Nepovimova, Chirag Chopra* and Kamil Kuča*

Volume 28, Issue 28, 2022

Published on: 17 August, 2022

Page: [2312 - 2329] Pages: 18

DOI: 10.2174/1381612828666220608120238

Price: $65

Open Access Journals Promotions 2
Abstract

One of the major global health care crises in the 21st century is antibiotic resistance. Almost all clinically used antibiotics have resistance emerging to them. Antibiotic Resistance can be regarded as the ‘Faceless Pandemic’ that has enthralled the entire world. It has become peremptory to develop treatment options as an alternative to antibiotic therapy for combating antibiotic-resistant pathogens. A clearer understanding of antibiotic resistance is required to prevent the rapid spread of antibiotic-resistant genes and the re-emergence of infections. The present review provides an insight into the different classifications and modes of action of antibiotics to understand how the hosts develop resistance to them. In addition, the association of genetics in the development of antibiotic resistance and environmental factors has also been discussed, emphasizing developing action plans to counter this "quiescent pandemic". It is also pertinent to create models that can predict the early resistance so that treatment strategies may build up in advance with the evolving resistance.

Keywords: Antibiotic resistance, de novo mutations, antibiotic stewardship, quiescent pandemic, environmental factors, modes of action.

[1]
Azzam MI, Ezzat SM, Othman BA, El-Dougdoug KA. Antibiotics resistance phenomenon and virulence ability in bacteria from water environment. Water Sci 2017; 31(2): 109-21.
[http://dx.doi.org/10.1016/j.wsj.2017.10.001]
[2]
Jin M, Lu J, Chen Z, et al. Antidepressant fluoxetine induces multiple antibiotics resistance in Escherichia coli via ROS-mediated mutagenesis. Environ Int 2018; 120: 421-30.
[http://dx.doi.org/10.1016/j.envint.2018.07.046] [PMID: 30125859]
[3]
Vicente-Martins S, Oleastro M, Domingues FC, Ferreira S. Arcobacter spp. at retail food from Portugal: Prevalence, genotyping and antibiotics resistance. Food Control 2018; 85: 107-12.
[http://dx.doi.org/10.1016/j.foodcont.2017.09.024]
[4]
Landecker H. Antibiotic resistance and the biology of history. Body Soc 2016; 22(4): 19-52.
[http://dx.doi.org/10.1177/1357034X14561341] [PMID: 28458609]
[5]
Li S, Liu Y, Ge R, et al. Microbial electro-Fenton: A promising system for antibiotics resistance genes degradation and energy generation. Sci Total Environ 2020; 699: 134160.
[http://dx.doi.org/10.1016/j.scitotenv.2019.134160] [PMID: 31639548]
[6]
Khan MUZ, Humza M, Yang S, Iqbal MZ, Xu X, Cai J. Evaluation and optimization of antibiotics resistance profile against clostridium perfringens from Buffalo and Cattle in Pakistan. Antibiotics 2021; 10(1): 1-15.
[http://dx.doi.org/10.3390/antibiotics10010059] [PMID: 33435636]
[7]
Peach KC, Bray WM, Winslow D, Linington PF, Linington RG. Mechanism of action-based classification of antibiotics using high-content bacterial image analysis. Mol Biosyst 2013; 9(7): 1837-48.
[http://dx.doi.org/10.1039/c3mb70027e] [PMID: 23609915]
[8]
Hamid U, Saqib A. Antibacterial agents - Google Books Antibact Agent. 1st Croatia 2017; 1: 1-16.
[9]
O’Rourke A, Beyhan S, Choi Y, et al. Mechanism-of-action classification of antibiotics by global transcriptome profiling. Antimicrob Agents Chemother 2020; 64(3): e01207-19.
[http://dx.doi.org/10.1128/AAC.01207-19] [PMID: 31907190]
[10]
Walsh C, Timothy W. Antibiotics: Challenges, mechanisms, opportunities In: ASM Press Washington DC 2016.
[http://dx.doi.org/10.1128/9781555819316]
[11]
Oberoi AS, Jia Y, Zhang H, Khanal SK, Lu H. Insights into the fate and removal of antibiotics in engineered biological treatment systems. A critical review Environ Sci Technol 2019; 53(13): 7234-64.
[http://dx.doi.org/10.1021/acs.est.9b01131] [PMID: 31244081]
[12]
Kapoor G, Saigal S, Elongavan A. Action and resistance mechanisms of antibiotics: A guide for clinicians. J Anaesthesiol Clin Pharmacol 2017; 33(3): 300-5.
[http://dx.doi.org/10.4103/joacp.JOACP_349_15] [PMID: 29109626]
[13]
Aldred KJ, Kerns RJ, Osheroff N. Mechanism of quinolone action and resistance. Biochemistry 2014; 53(10): 1565-74.
[http://dx.doi.org/10.1021/bi5000564] [PMID: 24576155]
[14]
Clardy J, Fischbach MA, Walsh CT. New antibiotics from bacterial natural products. Nat Biotechnol 2006; 24(12): 1541-50.
[http://dx.doi.org/10.1038/nbt1266] [PMID: 17160060]
[15]
Vázquez-Laslop N, Mankin AS. How macrolide antibiotics work. Trends Biochem Sci 2018; 43(9): 668-84.
[http://dx.doi.org/10.1016/j.tibs.2018.06.011] [PMID: 30054232]
[16]
Polikanov YS, Aleksashin NA, Beckert B, Wilson DN. The mechanisms of action of ribosome-targeting peptide antibiotics. Front Mol Biosci 2018; 5: 48.
[http://dx.doi.org/10.3389/fmolb.2018.00048] [PMID: 29868608]
[17]
Genilloud O. Actinomycetes: Still a source of novel antibiotics. Nat Prod Rep 2017; 34(10): 1203-32.
[http://dx.doi.org/10.1039/C7NP00026J] [PMID: 28820533]
[18]
Hutchings MI, Truman AW, Wilkinson B. Antibiotics: Past, present and future. Curr Opin Microbiol 2019; 51: 72-80.
[http://dx.doi.org/10.1016/j.mib.2019.10.008] [PMID: 31733401]
[19]
Kim JY, Jung HI, An YJ, et al. Structural basis for the extended substrate spectrum of CMY-10, a plasmid-encoded class C β-lactamase. Mol Microbiol 2006; 60(4): 907-16.
[http://dx.doi.org/10.1111/j.1365-2958.2006.05146.x] [PMID: 16677302]
[20]
Zaffiri L, Gardner J, Toledo-Pereyra LH. History of antibiotics. From salvarsan to cephalosporins. J Invest Surg 2012; 25(2): 67-77.
[http://dx.doi.org/10.3109/08941939.2012.664099] [PMID: 22439833]
[21]
Weber CC, Link N, Fux C, Zisch AH, Weber W, Fussenegger M. Broad-spectrum protein biosensors for class-specific detection of antibiotics. Biotechnol Bioeng 2005; 89(1): 9-17.
[http://dx.doi.org/10.1002/bit.20224] [PMID: 15580576]
[22]
Yim G, Wang HH, Davies J. The truth about antibiotics. Int J Med Microbiol 2006; 296(2-3): 163-70.
[http://dx.doi.org/10.1016/j.ijmm.2006.01.039] [PMID: 16503195]
[23]
Jeon JH, Lee JH, Lee JJ, et al. Structural basis for carbapenem-hydrolyzing mechanisms of carbapenemases conferring antibiotic resistance. Int J Mol Sci 2015; 16(5): 9654-92.
[http://dx.doi.org/10.3390/ijms16059654] [PMID: 25938965]
[24]
Awakawa T, Barra L, Abe I. Biosynthesis of sulfonamide and sulfamate antibiotics in actinomycete. J Ind Microbiol Biotechnol 2021; 48(3-4)
[http://dx.doi.org/10.1093/jimb/kuab001]
[25]
Durante-Mangoni E, Grammatikos A, Utili R, Falagas ME. Do we still need the aminoglycosides? Int J Antimicrob Agents 2009; 33(3): 201-5.
[http://dx.doi.org/10.1016/j.ijantimicag.2008.09.001] [PMID: 18976888]
[26]
Fosso MY, Li Y, Garneau-Tsodikova S. New trends in aminoglycosides use. MedChemComm 2014; 5(8): 1075-91.
[http://dx.doi.org/10.1039/C4MD00163J] [PMID: 25071928]
[27]
Suárez C, Gudiol F. Beta-lactam antibiotics. Enferm Infecc Microbiol Clin 2009; 27(2): 116-29.
[http://dx.doi.org/10.1016/j.eimc.2008.12.001] [PMID: 19254642]
[28]
Kong KF, Schneper L, Mathee K. Beta-lactam antibiotics: From antibiosis to resistance and bacteriology. APMIS 2010; 118(1): 1-36.
[http://dx.doi.org/10.1111/j.1600-0463.2009.02563.x] [PMID: 20041868]
[29]
Page MGP. Beta-lactam antibiotics Antibiot Discov Dev. 1st ed. Boston: Springer Boston 2012; pp. 79-117.
[http://dx.doi.org/10.1007/978-1-4614-1400-1_3]
[30]
Kanoh S, Rubin BK. Mechanisms of action and clinical application of macrolides as immunomodulatory medications. Clin Microbiol Rev 2010; 23(3): 590-615.
[http://dx.doi.org/10.1128/CMR.00078-09] [PMID: 20610825]
[31]
Fàbrega A, Madurga S, Giralt E, Vila J. Mechanism of action of and resistance to quinolones. Microb Biotechnol 2009; 2(1): 40-61.
[http://dx.doi.org/10.1111/j.1751-7915.2008.00063.x] [PMID: 21261881]
[32]
Gutierrez A, Stokes JM, Matic I. Our evolving understanding of the mechanism of quinolones. Antibiotics 2018; 7(2): 32.
[http://dx.doi.org/10.3390/antibiotics7020032] [PMID: 29642475]
[33]
Correia S, Poeta P, Hébraud M, Capelo JL, Igrejas G. Mechanisms of quinolone action and resistance: Where do we stand? J Med Microbiol 2017; 66(5): 551-9.
[http://dx.doi.org/10.1099/jmm.0.000475] [PMID: 28504927]
[34]
Leach KL, Swaney SM, Colca JR, et al. The site of action of oxazolidinone antibiotics in living bacteria and in human mitochondria. Mol Cell 2007; 26(3): 393-402.
[http://dx.doi.org/10.1016/j.molcel.2007.04.005] [PMID: 17499045]
[35]
Leach KL, Brickner SJ, Noe MC, Miller PF. Linezolid, the first oxazolidinone antibacterial agent. Ann N Y Acad Sci 2011; 1222(1): 49-54.
[http://dx.doi.org/10.1111/j.1749-6632.2011.05962.x] [PMID: 21434942]
[36]
Barbachyn MR. The oxazolidinones. Top Med Chem. Springer Verlag2018; 26: 97-121.
[http://dx.doi.org/10.1007/7355_2017_15]
[37]
CDC - Center for Disease Control and Prevention. Antibiotics: Miracle Drugs. Available from: https://www2c.cdc.gov/podcasts/media/pdf/GetSmartMiracle.pdf
[38]
Ilić N, Novković M, Guida F, et al. Selective antimicrobial activity and mode of action of adepantins, glycine-rich peptide antibiotics based on anuran antimicrobial peptide sequences. Biochim Biophys Acta 2013; 1828(3): 1004-12.
[http://dx.doi.org/10.1016/j.bbamem.2012.11.017] [PMID: 23196344]
[39]
Baquero F, Levin BR. Proximate and ultimate causes of the bactericidal action of antibiotics. Nat Rev Microbiol 2021; 19(2): 123-32.
[http://dx.doi.org/10.1038/s41579-020-00443-1] [PMID: 33024310]
[40]
Schneider T, Sahl HG. An oldie but a goodie - cell wall biosynthesis as antibiotic target pathway. Int J Med Microbiol 2010; 300(2-3): 161-9.
[http://dx.doi.org/10.1016/j.ijmm.2009.10.005] [PMID: 20005776]
[41]
Sass V, Schneider T, Wilmes M, et al. Human β-defensin 3 inhibits cell wall biosynthesis in Staphylococci. Infect Immun 2010; 78(6): 2793-800.
[http://dx.doi.org/10.1128/IAI.00688-09] [PMID: 20385753]
[42]
Romaniuk JAH, Cegelski L. Bacterial cell wall composition and the influence of antibiotics by cell-wall and whole-cell NMR. Philos Trans R Soc Lond B Biol Sci 2015; 370(1679): 20150024.
[http://dx.doi.org/10.1098/rstb.2015.0024] [PMID: 26370936]
[43]
Nikolaidis I, Favini-Stabile S, Dessen A. Resistance to antibiotics targeted to the bacterial cell wall. Protein Sci 2014; 23(3): 243-59.
[http://dx.doi.org/10.1002/pro.2414] [PMID: 24375653]
[44]
McCoy LS, Xie Y, Tor Y. Antibiotics that target protein synthesis. Wiley Interdiscip Rev RNA 2011; 2(2): 209-32.
[http://dx.doi.org/10.1002/wrna.60] [PMID: 21957007]
[45]
Llano-Sotelo B, Dunkle J, Klepacki D, et al. Binding and action of CEM-101, a new fluoroketolide antibiotic that inhibits protein synthesis. Antimicrob Agents Chemother 2010; 54(12): 4961-70.
[http://dx.doi.org/10.1128/AAC.00860-10] [PMID: 20855725]
[46]
Woolstenhulme CJ, Parajuli S, Healey DW, et al. Nascent peptides that block protein synthesis in bacteria. Proc Natl Acad Sci USA 2013; 110(10): E878-87.
[http://dx.doi.org/10.1073/pnas.1219536110] [PMID: 23431150]
[47]
Kannan K, Vázquez-Laslop N, Mankin AS. Selective protein synthesis by ribosomes with a drug-obstructed exit tunnel. Cell 2012; 151(3): 508-20.
[http://dx.doi.org/10.1016/j.cell.2012.09.018] [PMID: 23101624]
[48]
Mulvey MC, Sacksteder KA, Einck L, Nacy CA. Generation of a novel nucleic acid-based reporter system to detect phenotypic susceptibility to antibiotics in Mycobacterium tuberculosis. MBio 2012; 3(2): e00312-11.
[http://dx.doi.org/10.1128/mBio.00312-11] [PMID: 22415006]
[49]
Kannan K, Kanabar P, Schryer D, et al. The general mode of translation inhibition by macrolide antibiotics. Proc Natl Acad Sci 2014; 111(45): 15958-63.
[http://dx.doi.org/10.1073/pnas.1417334111] [PMID: 25349425]
[50]
Ng VWL, Ke X, Lee ALZ, Hedrick JL, Yang YY. Synergistic co-delivery of membrane-disrupting polymers with commercial antibiotics against highly opportunistic bacteria. Adv Mater 2013; 25(46): 6730-6.
[http://dx.doi.org/10.1002/adma.201302952] [PMID: 24018824]
[51]
Cho H, Uehara T, Bernhardt TG. Beta-lactam antibiotics induce a lethal malfunctioning of the bacterial cell wall synthesis machinery. Cell 2014; 159(6): 1300-11.
[http://dx.doi.org/10.1016/j.cell.2014.11.017] [PMID: 25480295]
[52]
Baek SH, Li AH, Sassetti CM. Metabolic regulation of mycobacterial growth and antibiotic sensitivity. PLoS Biol 2011; 9(5): e1001065.
[http://dx.doi.org/10.1371/journal.pbio.1001065] [PMID: 21629732]
[53]
Lobritz MA, Belenky P, Porter CBM, et al. Antibiotic efficacy is linked to bacterial cellular respiration. Proc Natl Acad Sci USA 2015; 112(27): 8173-80.
[http://dx.doi.org/10.1073/pnas.1509743112] [PMID: 26100898]
[54]
Shaikh S, Fatima J, Shakil S, Rizvi SMD, Kamal MA. Antibiotic resistance and extended spectrum beta-lactamases: Types, epidemiology and treatment. Saudi J Biol Sci 2015; 22(1): 90-101.
[http://dx.doi.org/10.1016/j.sjbs.2014.08.002] [PMID: 25561890]
[55]
Etebu E, Arikekpar I. Antibiotics: Classification and mechanisms of action with emphasis on molecular perspectives. IJAMBR 2016; 4: 90-101.
[56]
Davis TD, Gerry CJ, Tan DS. General platform for systematic quantitative evaluation of small-molecule permeability in bacteria. ACS Chem Biol 2014; 9(11): 2535-44.
[http://dx.doi.org/10.1021/cb5003015] [PMID: 25198656]
[57]
Foss MH, Eun YJ, Grove CI, et al. Inhibitors of bacterial tubulin target bacterial membranes in vivo. MedChemComm 2013; 4(1): 112-9.
[http://dx.doi.org/10.1039/C2MD20127E] [PMID: 23539337]
[58]
Li XZ, Plésiat P, Nikaido H. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin Microbiol Rev 2015; 28(2): 337-418.
[http://dx.doi.org/10.1128/CMR.00117-14] [PMID: 25788514]
[59]
MacLean RC, Hall AR, Perron GG, Buckling A. The population genetics of antibiotic resistance: Integrating molecular mechanisms and treatment contexts. Nat Rev Genet 2010; 11(6): 405-14.
[http://dx.doi.org/10.1038/nrg2778] [PMID: 20479772]
[60]
Smith RA, M’ikanatha NM, Read AF. Antibiotic resistance: A primer and call to action. Health Commun 2015; 30(3): 309-14.
[http://dx.doi.org/10.1080/10410236.2014.943634] [PMID: 25121990]
[61]
Jnawali HN, Yoo H, Ryoo S, et al. Molecular genetics of Mycobacterium tuberculosis resistant to aminoglycosides and cyclic peptide capreomycin antibiotics in Korea. World J Microbiol Biotechnol 2013; 29(6): 975-82.
[http://dx.doi.org/10.1007/s11274-013-1256-x] [PMID: 23329063]
[62]
Kumar R, Yadav BR, Singh RS. Genetic determinants of antibiotic resistance in Staphylococcus aureus isolates from milk of mastitic crossbred cattle. Curr Microbiol 2010; 60(5): 379-86.
[http://dx.doi.org/10.1007/s00284-009-9553-1] [PMID: 19957184]
[63]
Wall S. Prevention of antibiotic resistance - an epidemiological scoping review to identify research categories and knowledge gaps. Glob Health Action 2019; 12(1): 1756191.
[http://dx.doi.org/10.1080/16549716.2020.1756191] [PMID: 32475304]
[64]
Kumar M, Sarma DK, Shubham S, et al. Futuristic non-antibiotic therapies to combat antibiotic resistance: A review. Front Microbiol 2021; 12: 609459.
[http://dx.doi.org/10.3389/fmicb.2021.609459] [PMID: 33574807]
[65]
Sharma G, Sharma S, Sharma P, et al. Escherichia coli biofilm: Development and therapeutic strategies. J Appl Microbiol 2016; 121(2): 309-19.
[http://dx.doi.org/10.1111/jam.13078] [PMID: 26811181]
[66]
Otarigho B, Falade MO. Analysis of antibiotics resistant genes in different strains of Staphylococcus aureus. Bioinformation 2018; 14(3): 113-22.
[http://dx.doi.org/10.6026/97320630014113] [PMID: 29785070]
[67]
Ballhausen B, Kriegeskorte A, Schleimer N, Peters G, Becker K. The mecA homolog mecC confers resistance against β-lactams in Staphylococcus aureus irrespective of the genetic strain background. Antimicrob Agents Chemother 2014; 58(7): 3791-8.
[http://dx.doi.org/10.1128/AAC.02731-13] [PMID: 24752255]
[68]
Navon-Venezia S, Kondratyeva K, Carattoli A. Klebsiella pneumoniae: A major worldwide source and shuttle for antibiotic resistance. FEMS Microbiol Rev 2017; 41(3): 252-75.
[http://dx.doi.org/10.1093/femsre/fux013] [PMID: 28521338]
[69]
Tseng ST, Tai CH, Li CR, Lin CF, Shi ZY. The mutations of katG and inhA genes of isoniazid-resistant Mycobacterium tuberculosis isolates in Taiwan. J Microbiol Immunol Infect 2015; 48(3): 249-55.
[http://dx.doi.org/10.1016/j.jmii.2013.08.018] [PMID: 24184004]
[70]
Hsu L-Y, Lai L-Y, Hsieh P-F, et al. Two novel katg mutations conferring isoniazid resistance in Mycobacterium tuberculosis. Front Microbiol 2020; 11: 1644.
[http://dx.doi.org/10.3389/fmicb.2020.01644] [PMID: 32760384]
[71]
Unemo M, Shafer WM. Antimicrobial resistance in Neisseria gonorrhoeae in the 21st century: Past, evolution, and future. Clin Microbiol Rev 2014; 27(3): 587-613.
[http://dx.doi.org/10.1128/CMR.00010-14] [PMID: 24982323]
[72]
El Salabi A, Walsh TR, Chouchani C. Extended spectrum β-lactamases, carbapenemases and mobile genetic elements responsible for antibiotics resistance in Gram-negative bacteria. Crit Rev Microbiol 2013; 39(2): 113-22.
[http://dx.doi.org/10.3109/1040841X.2012.691870] [PMID: 22667455]
[73]
Schillaci D, Spanò V, Parrino B, et al. Pharmaceutical approaches to target antibiotic resistance mechanisms. J Med Chem 2017; 60(20): 8268-97.
[http://dx.doi.org/10.1021/acs.jmedchem.7b00215] [PMID: 28594170]
[74]
Banin E, Hughes D, Kuipers OP. Editorial: Bacterial pathogens, antibiotics and antibiotic resistance. FEMS Microbiol Rev 2017; 41(3): 450-2.
[http://dx.doi.org/10.1093/femsre/fux016] [PMID: 28486583]
[75]
Alonso JC. Toxin-antitoxin systems in pathogenic bacteria. Toxins 2021; 13(2): 74.
[http://dx.doi.org/10.3390/toxins13020074] [PMID: 33498357]
[76]
Mutschler H, Gebhardt M, Shoeman RL, Meinhart A. A novel mechanism of programmed cell death in bacteria by toxin-antitoxin systems corrupts peptidoglycan synthesis. PLoS Biol 2011; 9(3): e1001033.
[http://dx.doi.org/10.1371/journal.pbio.1001033] [PMID: 21445328]
[77]
Park SJ, Son WS, Lee BJ. Structural overview of toxin-antitoxin systems in infectious bacteria: A target for developing antimicrobial agents. Biochim Biophys Acta 2013; 1834(6): 1155-67.
[http://dx.doi.org/10.1016/j.bbapap.2013.02.027] [PMID: 23459128]
[78]
Fischer N, Raunest M, Schmidt TH, Koch DC, Kandt C. Efflux pump-mediated antibiotics resistance: Insights from computational structural biology. Interdiscip Sci 2014; 6(1): 1-12.
[http://dx.doi.org/10.1007/s12539-014-0191-3] [PMID: 24464699]
[79]
Lin J, Nishino K, Roberts MC, Tolmasky M, Aminov RI, Zhang L. Mechanisms of antibiotic resistance. Front Microbiol 2015; 6: 34.
[http://dx.doi.org/10.3389/fmicb.2015.00034] [PMID: 25699027]
[80]
Abdi SN, Ghotaslou R, Ganbarov K, et al. Acinetobacter baumannii efflux pumps and antibiotic resistance. Infect Drug Resist 2020; 13: 423-34.
[http://dx.doi.org/10.2147/IDR.S228089] [PMID: 32104014]
[81]
De Pascale G, Wright GD. Antibiotic resistance by enzyme inactivation: From mechanisms to solutions. ChemBioChem 2010; 11(10): 1325-34.
[http://dx.doi.org/10.1002/cbic.201000067] [PMID: 20564281]
[82]
Bottery MJ, Pitchford JW, Friman VP. Ecology and evolution of antimicrobial resistance in bacterial communities. ISME J 2021; 15(4): 939-48.
[http://dx.doi.org/10.1038/s41396-020-00832-7] [PMID: 33219299]
[83]
Macià MD, Rojo-Molinero E, Oliver A. Antimicrobial susceptibility testing in biofilm-growing bacteria. Clin Microbiol Infect 2014; 20(10): 981-90.
[http://dx.doi.org/10.1111/1469-0691.12651] [PMID: 24766583]
[84]
Rabin N, Zheng Y, Opoku-Temeng C, Du Y, Bonsu E, Sintim HO. Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 2015; 7(4): 493-512.
[http://dx.doi.org/10.4155/fmc.15.6] [PMID: 25875875]
[85]
Arciola CR, Campoccia D, Speziale P, Montanaro L, Costerton JW. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 2012; 33(26): 5967-82.
[http://dx.doi.org/10.1016/j.biomaterials.2012.05.031] [PMID: 22695065]
[86]
Khameneh B, Diab R, Ghazvini K, Fazly Bazzaz BS. Breakthroughs in bacterial resistance mechanisms and the potential ways to combat them. Microb Pathog 2016; 95: 32-42.
[http://dx.doi.org/10.1016/j.micpath.2016.02.009] [PMID: 26911646]
[87]
Soucy SM, Huang J, Gogarten JP. Horizontal gene transfer: Building the web of life. Nat Rev Genet 2015; 16(8): 472-82.
[http://dx.doi.org/10.1038/nrg3962] [PMID: 26184597]
[88]
Huddleston JR. Horizontal gene transfer in the human gastrointestinal tract: Potential spread of antibiotic resistance genes. Infect Drug Resist 2014; 7: 167-76.
[http://dx.doi.org/10.2147/IDR.S48820] [PMID: 25018641]
[89]
Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev 2018; 42(1): 68-80.
[http://dx.doi.org/10.1093/femsre/fux053] [PMID: 29069382]
[90]
MacLean RC, Millan AS. The evolution of antibiotic resistance. Science 2019; 365: 1082-3.
[http://dx.doi.org/10.1126/science.aax3879]
[91]
Wright GD. Antibiotic resistance in the environment: A link to the clinic? Curr Opin Microbiol 2010; 13(5): 589-94.
[http://dx.doi.org/10.1016/j.mib.2010.08.005] [PMID: 20850375]
[92]
Marston HD, Dixon DM, Knisely JM, Palmore TN, Fauci AS. Antimicrobial resistance. JAMA 2016; 316(11): 1193-204.
[http://dx.doi.org/10.1001/jama.2016.11764] [PMID: 27654605]
[93]
Aslam B, Wang W, Arshad MI, et al. Antibiotic resistance: A rundown of a global crisis. Infect Drug Resist 2018; 11: 1645-58.
[http://dx.doi.org/10.2147/IDR.S173867] [PMID: 30349322]
[94]
Wellington EMH, Boxall ABA, Cross P, et al. The role of the natural environment in the emergence of antibiotic resistance in gram-negative bacteria. Lancet Infect Dis 2013; 13(2): 155-65.
[http://dx.doi.org/10.1016/S1473-3099(12)70317-1] [PMID: 23347633]
[95]
Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: A global multifaceted phenomenon. Pathog Glob Health 2015; 109(7): 309-18.
[http://dx.doi.org/10.1179/2047773215Y.0000000030] [PMID: 26343252]
[96]
Ayukekbong JA, Ntemgwa M, Atabe AN. The threat of antimicrobial resistance in developing countries: Causes and control strategies. Antimicrob Resist Infect Control 2017; 6(1): 47.
[http://dx.doi.org/10.1186/s13756-017-0208-x] [PMID: 28515903]
[97]
Seiler C, Berendonk TU. Heavy metal driven co-selection of antibiotic resistance in soil and water bodies impacted by agriculture and aquaculture. Front Microbiol 2012; 3: 399.
[http://dx.doi.org/10.3389/fmicb.2012.00399] [PMID: 23248620]
[98]
Belachew SA, Hall L, Selvey LA. Non-prescription dispensing of antibiotic agents among community drug retail outlets in Sub-Saharan African countries: A systematic review and meta-analysis. Antimicrob Resist Infect Control 2021; 10(1): 13.
[http://dx.doi.org/10.1186/s13756-020-00880-w] [PMID: 33446266]
[99]
Browne AJ, Chipeta MG, Haines-Woodhouse G, et al. Global antibiotic consumption and usage in humans, 2000-18: A spatial modelling study. Lancet Planet Health 2021; 5(12): e893-904.
[http://dx.doi.org/10.1016/S2542-5196(21)00280-1] [PMID: 34774223]
[100]
Gebrekirstos NH, Workneh BD, Gebregiorgis YS, et al. Non-prescribed antimicrobial use and associated factors among customers in drug retail outlet in Central Zone of Tigray, northern Ethiopia: A cross-sectional study. Antimicrob Resist Infect Control 2017; 6(1): 70.
[http://dx.doi.org/10.1186/s13756-017-0227-7] [PMID: 28670450]
[101]
WHO. Assessing non-prescription and inappropriate use of antibiotics report on survey 2019.
[102]
Li J, Wang T, Shao B, Shen J, Wang S, Wu Y. Plasmid-mediated quinolone resistance genes and antibiotic residues in wastewater and soil adjacent to swine feedlots: Potential transfer to agricultural lands. Environ Health Perspect 2012; 120(8): 1144-9.
[http://dx.doi.org/10.1289/ehp.1104776] [PMID: 22569244]
[103]
Thanner S, Drissner D, Walsh F. Antimicrobial resistance in agriculture. MBio 2016; 7(2): e02227-15.
[http://dx.doi.org/10.1128/mBio.02227-15] [PMID: 27094336]
[104]
Rolain JM, Canton R, Cornaglia G. Emergence of antibiotic resistance: Need for a new paradigm. Clin Microbiol Infect 2012; 18(7): 615-6.
[http://dx.doi.org/10.1111/j.1469-0691.2012.03902.x] [PMID: 22703444]
[105]
Venter H, Henningsen ML, Begg SL. Antimicrobial resistance in healthcare, agriculture and the environment: The biochemistry behind the headlines. Essays Biochem 2017; 61(1): 1-10.
[http://dx.doi.org/10.1042/EBC20160053] [PMID: 28258225]
[106]
Bengtsson-Palme J, Larsson DGJ. Antibiotic resistance genes in the environment: Prioritizing risks. Nat Rev Microbiol 2015; 13(6): 396.
[http://dx.doi.org/10.1038/nrmicro3399-c1] [PMID: 25915637]
[107]
Finley RL, Collignon P, Larsson DGJ, et al. The scourge of antibiotic resistance: The important role of the environment. Clin Infect Dis 2013; 57(5): 704-10.
[http://dx.doi.org/10.1093/cid/cit355] [PMID: 23723195]
[108]
Manyi-Loh C, Mamphweli S, Meyer E, Okoh A. Antibiotic use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules 2018; 23(4): 795.
[http://dx.doi.org/10.3390/molecules23040795] [PMID: 29601469]
[109]
Holmes AH, Moore LSP, Sundsfjord A, et al. Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 2016; 387(10014): 176-87.
[http://dx.doi.org/10.1016/S0140-6736(15)00473-0] [PMID: 26603922]
[110]
Shah SJ, Ahmad H, Rehan RB, et al. Self-medication with antibiotics among non-medical university students of Karachi: A cross-sectional study. BMC Pharmacol Toxicol 2014; 15(1): 74.
[http://dx.doi.org/10.1186/2050-6511-15-74] [PMID: 25534613]
[111]
Komolafe OO. Antibiotic resistance in bacteria - an emerging public health problem. Malawi Med J 2003; 15(2): 63-7.
[http://dx.doi.org/10.4314/mmj.v15i2.10780] [PMID: 27528961]
[112]
Graham DW, Collignon P, Davies J, Larsson DGJ, Snape J. Underappreciated role of regionally poor water quality on globally increasing antibiotic resistance. Environ Sci Technol 2014; 48(20): 11746-7.
[http://dx.doi.org/10.1021/es504206x] [PMID: 25330712]
[113]
Munita JM, Arias CA. Mechanisms of antibiotic resistance. Virulence Mech Bact Pathog. ASM Press: Washington, DC 2016; pp. 481-511.
[http://dx.doi.org/10.1128/9781555819286.ch17]
[114]
Eltayb A, Barakat S, Marrone G, Shaddad S, Stålsby Lundborg C. Antibiotic use and resistance in animal farming: A quantitative and qualitative study on knowledge and practices among farmers in Khartoum, Sudan. Zoonoses Public Health 2012; 59(5): 330-8.
[http://dx.doi.org/10.1111/j.1863-2378.2012.01458.x] [PMID: 22333519]
[115]
Vidarsson G, Overbeeke N, Stemerding AM, et al. Working mechanism of immunoglobulin A1 (IgA1) protease: Cleavage of IgA1 antibody to Neisseria meningitidis PorA requires de novo synthesis of IgA1 Protease. Infect Immun 2005; 73(10): 6721-6.
[http://dx.doi.org/10.1128/IAI.73.10.6721-6726.2005] [PMID: 16177349]
[116]
Lin L, Ayala P, Larson J, et al. The Neisseria type 2 IgA1 protease cleaves LAMP1 and promotes survival of bacteria within epithelial cells. Mol Microbiol 1997; 24(5): 1083-94.
[http://dx.doi.org/10.1046/j.1365-2958.1997.4191776.x] [PMID: 9220014]
[117]
Barth H, Fischer S, Möglich A, Förtsch C. Clostridial C3 toxins target monocytes/macrophages and modulate their functions. Front Immunol 2015; 6: 339.
[http://dx.doi.org/10.3389/fimmu.2015.00339] [PMID: 26175735]
[118]
Uchiyama S, Döhrmann S, Timmer AM, et al. Streptolysin O rapidly impairs neutrophil oxidative burst and antibacterial responses to group a Streptococcus. Front Immunol 2015; 6: 581.
[http://dx.doi.org/10.3389/fimmu.2015.00581] [PMID: 26635795]
[119]
van der Bij AK, Pitout JDD. The role of international travel in the worldwide spread of multiresistant Enterobacteriaceae. J Antimicrob Chemother 2012; 67(9): 2090-100.
[http://dx.doi.org/10.1093/jac/dks214] [PMID: 22678728]
[120]
Barlam TF, Gupta K. Antibiotic resistance spreads internationally across borders. J Law Med Ethics 2015; 43(S3): 12-6.
[http://dx.doi.org/10.1111/jlme.12268] [PMID: 26243237]
[121]
Sreeja MK, Gowrishankar NL, Adisha S, Divya KC. Antibiotic resistance-reasons and the most common resistant pathogens – A review. Res J Pharm Technol 2017; 10(6): 1886-90.
[http://dx.doi.org/10.5958/0974-360X.2017.00331.6]
[122]
Papanicolas LE, Gordon DL, Wesselingh SL, Rogers GB. Not just antibiotics: Is cancer chemotherapy driving antimicrobial resistance? Trends Microbiol 2018; 26(5): 393-400.
[http://dx.doi.org/10.1016/j.tim.2017.10.009] [PMID: 29146383]
[123]
Chokshi A, Sifri Z, Cennimo D, Horng H. Global contributors to antibiotic resistance. J Glob Infect Dis 2019; 11(1): 36-42.
[http://dx.doi.org/10.4103/jgid.jgid_110_18] [PMID: 30814834]
[124]
Rawat D, Nair D. Extended-spectrum ß-lactamases in gram negative bacteria. J Glob Infect Dis 2010; 2(3): 263-74.
[http://dx.doi.org/10.4103/0974-777X.68531] [PMID: 20927289]
[125]
Subramaniam G, Girish M. Antibiotic resistance - a cause for reemergence of infections. Indian J Pediatr 2020; 87(11): 937-44.
[http://dx.doi.org/10.1007/s12098-019-03180-3] [PMID: 32026301]
[126]
Queenan AM, Bush K. Carbapenemases: The versatile β-lactamases. Clin Microbiol Rev 2007; 20(3): 440-58.
[http://dx.doi.org/10.1128/CMR.00001-07] [PMID: 17630334]
[127]
Poirel L, Bonnin RA, Nordmann P. Genetic support and diversity of acquired extended-spectrum β-lactamases in Gram-negative rods. Infect Genet Evol 2012; 12(5): 883-93.
[http://dx.doi.org/10.1016/j.meegid.2012.02.008] [PMID: 22414916]
[128]
Cars O, Nordberg P. Antibiotic resistance-the faceless threat. Int J Risk Saf Med 2005; 17: 103-10.
[129]
Fu H, Lewnard JA, Frost I, Laxminarayan R, Arinaminpathy N. Modelling the global burden of drug-resistant tuberculosis avertable by a post-exposure vaccine. Nat Commun 2021; 12(1): 424.
[http://dx.doi.org/10.1038/s41467-020-20731-x] [PMID: 33462224]
[130]
Gregova G, Kmet V. Antibiotic resistance and virulence of Escherichia coli strains isolated from animal rendering plant. Sci Rep 2020; 10(1): 17108.
[http://dx.doi.org/10.1038/s41598-020-72851-5] [PMID: 33051473]
[131]
Zaman SB, Hussain MA, Nye R, Mehta V, Mamun KT, Hossain N. A review on antibiotic resistance: Alarm bells are ringing. Cureus 2017; 9(6): e1403.
[http://dx.doi.org/10.7759/cureus.1403] [PMID: 28852600]
[132]
Lewis R. The rise of antibiotic-resistant infections. FDA Consum 1995; 29(7): 11-5.
[PMID: 10145087]
[133]
Sriram A, Kalanxhi E, Kapoor G, et al. The State of the World’s Antibiotics Report in 2021. 2021. Available from: https://doi.org/https://cddep.org/wp-content/uploads/2021/02/The- State-of-the-Worlds-Antibiotics-in-2021.pdf
[134]
Taneja N, Sharma M. Antimicrobial resistance in the environment: The Indian scenario. Indian J Med Res 2019; 149(2): 119-28.
[http://dx.doi.org/10.4103/ijmr.IJMR_331_18] [PMID: 31219076]
[135]
Uchil RR, Kohli GS, Katekhaye VM, Swami OC. Strategies to combat antimicrobial resistance. J Clin Diagn Res 2014; 8(7): ME01-4.
[http://dx.doi.org/10.7860/JCDR/2014/8925.4529] [PMID: 25177596]
[136]
Brooks BD, Brooks AE. Therapeutic strategies to combat antibiotic resistance. Adv Drug Deliv Rev 2014; 78: 14-27.
[http://dx.doi.org/10.1016/j.addr.2014.10.027] [PMID: 25450262]
[137]
Bassetti M, De Waele JJ, Eggimann P, et al. Preventive and therapeutic strategies in critically ill patients with highly resistant bacteria. Intensive Care Med 2015; 41(5): 776-95.
[http://dx.doi.org/10.1007/s00134-015-3719-z] [PMID: 25792203]
[138]
Mewes JC, Pulia MS, Mansour MK, Broyles MR, Nguyen HB, Steuten LM. The cost impact of PCT-guided antibiotic stewardship versus usual care for hospitalised patients with suspected sepsis or lower respiratory tract infections in the US: A health economic model analysis. PLoS One 2019; 14(4): e0214222.
[http://dx.doi.org/10.1371/journal.pone.0214222] [PMID: 31013271]
[139]
Traugott KA, Echevarria K, Maxwell P, Green K, Lewis JS II. Monotherapy or combination therapy? The Pseudomonas aeruginosa conundrum. Pharmacotherapy 2011; 31(6): 598-608.
[http://dx.doi.org/10.1592/phco.31.6.598] [PMID: 21923444]
[140]
Mehta KC, Dargad RR, Borade DM, Swami OC. Burden of antibiotic resistance in common infectious diseases: Role of antibiotic combination therapy. J Clin Diagn Res 2014; 8(6): ME05-8.
[http://dx.doi.org/10.7860/JCDR/2014/8778.4489] [PMID: 25121020]
[141]
Schmid A, Wolfensberger A, Nemeth J, Schreiber PW, Sax H, Kuster SP. Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: Systematic review and meta-analysis. Sci Rep 2019; 9(1): 15290.
[http://dx.doi.org/10.1038/s41598-019-51711-x] [PMID: 31664064]
[142]
Chowdhury AS, Lofgren ET, Moehring RW, Broschat SL. Identifying predictors of antimicrobial exposure in hospitalized patients using a machine learning approach. J Appl Microbiol 2020; 128(3): 688-96.
[http://dx.doi.org/10.1111/jam.14499] [PMID: 31651068]
[143]
Rodríguez-González A, Zanin M, Menasalvas-Ruiz E. Public health and epidemiology informatics: Can artificial intelligence help future global challenges? An overview of antimicrobial resistance and impact of climate change in disease epidemiology. Yearb Med Inform 2019; 28(1): 224-31.
[http://dx.doi.org/10.1055/s-0039-1677910] [PMID: 31419836]
[144]
Boolchandani M, D’Souza AW, Dantas G. Sequencing-based methods and resources to study antimicrobial resistance. Nat Rev Genet 2019; 20(6): 356-70.
[http://dx.doi.org/10.1038/s41576-019-0108-4] [PMID: 30886350]
[145]
Macesic N, Polubriaginof F, Tatonetti NP. Machine learning: Novel bioinformatics approaches for combating antimicrobial resistance. Curr Opin Infect Dis 2017; 30(6): 511-7.
[http://dx.doi.org/10.1097/QCO.0000000000000406] [PMID: 28914640]

Rights & Permissions Print Cite
© 2024 Bentham Science Publishers | Privacy Policy